Интеллектуальная обработка информации и распозн..


Интеллектуальная обработка информации и распознавания образов
Основные аспекты проблемы распознавания образов. Информационный подход и проблема образов. Задача распознавания образов как одна из задач анализа данных.
Понятие образа
Образ, класс — классификационная группировка в системе классификации, объединяющая (выделяющая) определенную группу объектов по некоторому признаку.
Образное восприятие мира — одно из загадочных свойств живого мозга, позволяющее разобраться в бесконечном потоке воспринимаемой информации и сохранять ориентацию в океане разрозненных данных о внешнем мире. Воспринимая внешний мир, мы всегда производим классификацию воспринимаемых ощущений, т. е. разбиваем их на группы похожих, но не тождественных явлений. Например, несмотря на существенное различие, к одной группе относятся все буквы А, написанные различными почерками, или все звуки, соответствующие одной и той же ноте, взятой в любой октаве и на любом инструменте, а оператор, управляющий техническим объектом, на целое множество состояний объекта реагирует одной и той же реакцией. Характерно, что для составления понятия о группе восприятий определенного класса достаточно ознакомиться с незначительным количеством ее представителей. Ребенку можно показать всего один раз какую-либо букву, чтобы он смог найти эту букву в тексте, написанном различными шрифтами, или узнать ее, даже если она написана в умышленно искаженном виде. Это свойство мозга позволяет сформулировать такое понятие, как образ.
Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей. Примерами образов могут быть: река, море, жидкость, музыка Чайковского, стихи Маяковского и т. д. В качестве образа можно рассматривать и некоторую совокупность состояний объекта управления, причем вся эта совокупность состояний характеризуется тем, что для достижения заданной цели требуется одинаковое воздействие на объект. Образы обладают характерными объективными свойствами в том смысле, что разные люди, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты. Именно эта объективность образов позволяет людям всего мира понимать друг друга.
Способность восприятия внешнего мира в форме образов позволяет с определенной достоверностью узнавать бесконечное число объектов на основании ознакомления с конечным их числом, а объективный характер основного свойства образов позволяет моделировать процесс их распознавания. Будучи отражением объективной реальности, понятие образа столь же объективно, как и сама реальность, а поэтому это понятие может быть само по себе объектом специального исследования.
В литературе, посвященной проблеме обучения распознавания образов (ОРО), часто вместо понятия образа вводится понятие класса.
Проблема обучения распознаванию образов (ОРО)
Одним из самых интересных свойств человеческого мозга является способность отвечать на бесконечное множество состояний внешней среды конечным числом реакций. Может быть, именно это свойство позволило человеку достигнуть высшей формы существования живой материи, выражающейся в способности к мышлению, т. е. активному отражению объективного мира в виде образов, понятий, суждений и т. д. Поэтому проблема ОРО возникла при изучении физиологических свойств мозга.
Рассмотрим пример задач из области ОРО.
Рис. 1
Здесь представлены 12 задач, в которых следует отобрать признаки, при помощи которых можно отличить левую триаду картинок от правой. Решение данных задач требует моделирования логического мышления в полном объеме.
В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными — на все объекты различных образов. Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов без каких-либо других подсказок. В качестве объектов обучения могут быть либо картинки, либо другие визуальные изображения (буквы), либо различные явления внешнего мира, например звуки, состояния организма при медицинском диагнозе, состояние технического объекта в системах управления и др. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает машине правило классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя.
Проблема обучения распознаванию образов интересна как с прикладной, так и с принципиальной точки зрения. С прикладной точки зрения решение этой проблемы важно прежде всего потому, что оно открывает возможность автоматизировать многие процессы, которые до сих пор связывали лишь с деятельностью живого мозга. Принципиальное значение проблемы тесно связано с вопросом, который все чаще возникает в связи с развитием идей кибернетики: что может и что принципиально не может делать машина? В какой мере возможности машины могут быть приближены к возможностям живого мозга? В частности, может ли машина развить в себе способность перенять у человека умение производить определенные действия в зависимости от ситуаций, возникающих в окружающей среде? Пока стало ясно только то, что если человек может сначала сам осознать свое умение, а потом его описать, т. е. указать, почему он производит действия в ответ на каждое состояние внешней среды или как (по какому правилу) он объединяет отдельные объекты в образы, то такое умение без принципиальных трудностей может быть передано машине. Если же человек обладает умением, но не может объяснить его, то остается только один путь передачи умения машине — обучение примерами.
Круг задач, которые могут решаться с помощью распознающих систем, чрезвычайно широк. Сюда относятся не только задачи распознавания зрительных и слуховых образов, но и задачи распознавания сложных процессов и явлений, возникающих, например, при выборе целесообразных действий руководителем предприятия или выборе оптимального управления технологическими, экономическими, транспортными или военными операциями. В каждой из таких задач анализируются некоторые явления, процессы, состояния внешнего мира, всюду далее называемые объектами наблюдения. Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную информацию. Такая информация представляет собой характеристику объектов, их отображение на множестве воспринимающих органов распознающей системы.
Но каждый объект наблюдения может воздействовать по-разному, в зависимости от условий восприятия. Например, какая-либо буква, даже одинаково написанная, может в принципе как угодно смещаться относительно воспринимающих органов. Кроме того, объекты одного и того же образа могут достаточно сильно отличаться друг от друга и, естественно, по-разному воздействовать на воспринимающие органы.
Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы.
При решении задач управления методами распознавания образов вместо термина "изображение" применяют термин "состояние". Состояние — это определенной формы отображение измеряемых текущих (или мгновенных) характеристик наблюдаемого объекта. Совокупность состояний определяет ситуацию. Понятие "ситуация" является аналогом понятия "образ". Но эта аналогия не полная, так как не всякий образ можно назвать ситуацией, хотя всякую ситуацию можно назвать образом.
Ситуацией принято называть некоторую совокупность состояний сложного объекта, каждая из которых характеризуется одними и теми же или схожими характеристиками объекта. Например, если в качестве объекта наблюдения рассматривается некоторый объект управления, то ситуация объединяет такие состояния этого объекта, в которых следует применять одни и те же управляющие воздействия. Если объектом наблюдения является военная игра, то ситуация объединяет все состояния игры, которые требуют, например, мощного танкового удара при поддержке авиации.
Выбор исходного описания объектов является одной из центральных задач проблемы ОРО. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться тривиальной и, наоборот, неудачно выбранное исходное описание может привести либо к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения. Например, если решается задача распознавания объектов, отличающихся по цвету, а в качестве исходного описания выбраны сигналы, получаемые от датчиков веса, то задача распознавания в принципе не может быть решена.
Геометрический и структурный подходы.
Каждый раз, когда сталкиваются с незнакомыми задачами, появляется естественное желание представить их в виде некоторой легко понимаемой модели, которая позволяла бы осмыслить задачу в таких терминах, которые легко воспроизводятся нашим воображением. А так как мы существуем в пространстве и во времени, наиболее понятной для нас является пространственно-временная интерпретация задач.
Любое изображение, которое возникает в результате наблюдения какого-либо объекта в процессе обучения или экзамена, можно представить в виде вектора, а значит и в виде точки некоторого пространства признаков. Если утверждается, что при показе изображений возможно однозначно отнести их к одному из двух (или нескольких) образов, то тем самым утверждается, что в некотором пространстве существует две (или несколько) области, не имеющие общих точек, и что изображения — точки из этих областей. Каждой такой области можно приписать наименование, т. е. дать название, соответствующее образу.
Проинтерпретируем теперь в терминах геометрической картины процесс обучения распознаванию образов, ограничившись пока случаем распознавания только двух образов. Заранее считается известным лишь только то, что требуется разделить две области в некотором пространстве и что показываются точки только из этих областей. Сами эти области заранее не определены, т. е. нет каких-либо сведений о расположении их границ или правил определения принадлежности точки к той или иной области.
В ходе обучения предъявляются точки, случайно выбранные из этих областей, и сообщается информация о том, к какой области принадлежат предъявляемые точки. Никакой дополнительной информации об этих областях, т. е. о расположении их границ, в ходе обучения не сообщается. Цель обучения состоит либо в построении поверхности, которая разделяла бы не только показанные в процессе обучения точки, но и все остальные точки, принадлежащие этим областям, либо в построении поверхностей, ограничивающих эти области так, чтобы в каждой из них находились только точки одного образа. Иначе говоря, цель обучения состоит в построении таких функций от векторов-изображений, которые были бы, например, положительны на всех точках одного и отрицательны на всех точках другого образа. В связи с тем, что области не имеют общих точек, всегда существует целое множество таких разделяющих функций, а в результате обучения должна быть построена одна из них.
Если предъявляемые изображения принадлежат не двум, а большему числу образов, то задача состоит в построении по показанным в ходе обучения точкам поверхности, разделяющей все области, соответствующие этим образам, друг от друга. Задача эта может быть решена, например, путем построения функции, принимающей над точками каждой из областей одинаковое значение, а над точками из разных областей значение этой функции должно быть различно.
Рис. 2 - Два образа.
На первый взгляд кажется, что знание всего лишь некоторого количества точек из области недостаточно, чтобы отделить всю область. Действительно, можно указать бесчисленное количество различных областей, которые содержат эти точки, и как бы ни была построена по ним поверхность, выделяющая область, всегда можно указать другую область, которая пересекает поверхность и вместе с тем содержит показанные точки. Однако известно, что задача о приближении функции по информации о ней в ограниченном множестве точек, существенно более узкой, чем все множество, на котором функция задана, является обычной математической задачей об аппроксимации функций. Разумеется, решение таких задач требует введения определенных ограничений на классе рассматриваемых функций, а выбор этих ограничений зависит от характера информации, которую может добавить учитель в процессе обучения. Одной из таких подсказок является гипотеза о компактности образов. Интуитивно ясно, что аппроксимация разделяющей функции будет задачей тем более легкой, чем более компактны и чем более разнесены в пространстве области, подлежащие разделению. Так, например, в случае, показанном на Рис. 2а, разделение заведомо более просто, чем в случае, показанном на Рис. 2б. Действительно, в случае, изображенном на Рис. 2а, области могут быть разделены плоскостью, и даже при больших погрешностях в определении разделяющей функции она все же будет продолжать разделять области. В случае же на Рис. 2б, разделение осуществляется замысловатой поверхностью и даже незначительные отклонения в ее форме приводят к ошибкам разделения. Именно это интуитивное представление о сравнительно легко разделимых областях привело к гипотезе компактности.
Наряду с геометрической интерпретацией проблемы обучения распознаванию образов существует и иной подход, который назван структурным, или лингвистическим. Поясним лингвистический подход на примере распознавания зрительных изображений. Сначала выделяется набор исходных понятий — типичных фрагментов, встречающихся на изображениях, и характеристик взаимного расположения фрагментов — "слева", "снизу", "внутри" и т. д. Эти исходные понятия образуют словарь, позволяющий строить различные логические высказывания, иногда называемые предположениями. Задача состоит в том, чтобы из большого количества высказываний, которые могли бы быть построены с использованием этих понятий, отобрать наиболее существенные для данного конкретного случая.
Далее, просматривая конечное и по возможности небольшое число объектов из каждого образа, нужно построить описание этих образов. Построенные описания должны быть столь полными, чтобы решить вопрос о том, к какому образу принадлежит данный объект. При реализации лингвистического подхода возникают две задачи: задача построения исходного словаря, т. е. набор типичных фрагментов, и задача построения правил описания из элементов заданного словаря.
В рамках лингвистической интерпретации проводится аналогия между структурой изображений и синтаксисом языка. Стремление к этой аналогии было вызвано возможностью использовать аппарат математической лингвистики, т. е. методы по своей природе являются синтаксическими. Использование аппарата математической лингвистики для описания структуры изображений можно применять только после того, как произведена сегментация изображений на составные части, т. е. выработаны слова для описания типичных фрагментов и методы их поиска. После предварительной работы, обеспечивающей выделение слов, возникают собственно лингвистические задачи, состоящие из задач автоматического грамматического разбора описаний для распознавания изображений. При этом проявляется самостоятельная область исследований, которая требует не только знания основ математической лингвистики, но и овладения приемами, которые разработаны специально для лингвистической обработки изображений.
Гипотеза компактности
Если предположить, что в процессе обучения пространство признаков формируется исходя из задуманной классификации, то тогда можно надеяться, что задание пространства признаков само по себе задает свойство, под действием которого образы в этом пространстве легко разделяются. Именно эти надежды по мере развития работ в области распознавания образов стимулировали появление гипотезы компактности, которая гласит: образам соответствуют компактные множества в пространстве признаков. Под компактным множеством пока будем понимать некие "сгустки" точек в пространстве изображений, предполагая, что между этими сгустками существуют разделяющие их разряжения.
Однако эту гипотезу не всегда удавалось подтвердить экспериментально, но, что самое главное, те задачи, в рамках которых гипотеза компактности хорошо выполнялась (Рис. 2а), все без исключения находили простое решение. И наоборот, те задачи, для которых гипотеза не подтверждалась (Рис. 2б), либо совсем не решались, либо решались с большим трудом с привлечением дополнительных ухищрений. Этот факт заставил по меньшей мере усомниться в справедливости гипотезы компактности, так как для опровержения любой гипотезы достаточно одного отрицающего ее примера. Вместе с этим, выполнение гипотезы всюду там, где удавалось хорошо решить задачу обучения распознаванию образов, сохраняло к этой гипотезе интерес. Сама гипотеза компактности превратилась в признак возможности удовлетворительного решения задач распознавания.
Формулировка гипотезы компактности подводит вплотную к понятию абстрактного образа. Если координаты пространства выбирать случайно, то и изображения в нем будут распределены случайно. Они будут в некоторых частях пространства располагаться более плотно, чем в других. Назовем некоторое случайно выбранное пространство абстрактным изображением. В этом абстрактном пространстве почти наверняка будут существовать компактные множества точек. Поэтому в соответствии с гипотезой компактности множества объектов, которым в абстрактном пространстве соответствуют компактные множества точек, разумно назвать абстрактными образами данного пространства.
Обучение и самообучение. Адаптация и обучение
Все картинки, представленные на Рис. 1, характеризуют задачу обучения. В каждой из этих задач задается несколько примеров (обучающая последовательность) правильно решенных задач. Если бы удалось подметить некое всеобщее свойство, не зависящее ни от природы образов, ни от их изображений, а определяющее лишь их способность к разделимости, то наряду с обычной задачей обучения распознаванию, с использованием информации о принадлежности каждого объекта из обучающей последовательности тому или иному образу можно было бы поставить иную классификационную задачу — так называемую задачу обучения без учителя. Задачу такого рода на описательном уровне можно сформулировать следующим образом: системе одновременно или последовательно предъявляются объекты без каких-либо указаний об их принадлежности к образам. Входное устройство системы отображает множество объектов на множество изображений и, используя некоторое заложенное в нее заранее свойство разделимости образов, производит самостоятельную классификацию этих объектов. После такого процесса самообучения система должна приобрести способность к распознаванию не только уже знакомых объектов (объектов из обучающей последовательности), но и тех, которые ранее не предъявлялись. Процессом самообучения некоторой системы называется такой процесс, в результате которого эта система без подсказки учителя приобретает способность к выработке одинаковых реакций на изображения объектов одного и того же образа и различных реакций на изображения различных образов. Роль учителя при этом состоит лишь в подсказке системе некоторого объективного свойства, одинакового для всех образов и определяющего способность к разделению множества объектов на образы.
Оказывается, таким объективным свойством является свойство компактности образов. Взаимное расположение точек в выбранном пространстве уже содержит информацию о том, как следует разделить множество точек. Эта информация и определяет то свойство разделимости образов, которое оказывается достаточным для самообучения системы распознаванию образов.
Большинство известных алгоритмов самообучения способны выделять только абстрактные образы, т. е. компактные множества в заданных пространствах. Различие между ними состоит, по-видимому, в формализации понятия компактности. Однако это не снижает, а иногда и повышает ценность алгоритмов самообучения, так как часто сами образы заранее никем не определены, а задача состоит в том, чтобы определить, какие подмножества изображений в заданном пространстве представляют собой образы. Хорошим примером такой постановки задачи являются социологические исследования, когда по набору вопросов выделяются группы людей. В таком понимании задачи алгоритмы самообучения генерируют заранее не известную информацию о существовании в заданном пространстве образов, о которых ранее никто не имел никакого представления.
Кроме того, результат самообучения характеризует пригодность выбранного пространства для конкретной задачи обучения распознаванию. Если абстрактные образы, выделяемые в процессе самообучения, совпадают с реальными, то пространство выбрано удачно. Чем сильнее абстрактные образы отличаются от реальных, тем "неудобнее" выбранное пространство для конкретной задачи.
Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на группы внешних идентичных сигналов путем многократного воздействия на систему внешней корректировки. Такую внешнюю корректировку в обучении принято называть "поощрениями" и "наказаниями". Механизм генерации этой корректировки практически полностью определяет алгоритм обучения. Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.
Адаптация — это процесс изменения параметров и структуры системы, а возможно, и управляющих воздействий на основе текущей информации с целью достижения определенного состояния системы при начальной неопределенности и изменяющихся условиях работы.
Обучение — это процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные совокупности внешних воздействий, а адаптация — это подстройка параметров и структуры системы с целью достижения требуемого качества управления в условиях непрерывных изменений внешних условий.
Методы и системы распознавания.
СМОТРИ ВОПР 1
Алгоритмы распознавания I (статические). Ошибки 1-го и 2-го рода.
Алгоритмы распознавания II (логические). Типовые задачи.
ЛОГИЧЕСКИЕ МЕТОДЫ РАСПОЗНАВАНИЯ
 
Логические методы содержат сведения по проблемам применения математической логики в диагностике состояний и использовании методов распознавания для идентификации кривых. Логические методы основаны на установлении логических связей между признаками и состояниями объектов, поэтому рассматриваются простые (качественные) признаки, для которых возможны лишь два значения (0 и 1), и состояния технической системы в описываемых методах могут иметь только два значения (наличие и отсутствие). Состояния системы выражаются символами (да – нет, ложь – истина, 0 – 1). Переменные величины и функции, принимающие только два значения, называются логическими, или булевскими.
Логической величиной (высказыванием) называется величина, которая может принимать только одно значение (0–1). Логические переменные – заглавные латинские буквы. Логической суммой двух логических переменных A и B называется логическая величина C(дизъюнкция). Величина С является истинной (С = 1), если истинно хотя бы одно из высказываний А и В:
 
                                               (29)
 
Логическим произведением двух величин А и В является величина С (конъюнкция).
Булевской функцией называется логическая величина, значение которой зависит от других логических величин: E = f (A, B, C…).
В практических задачах упрощают выражения булевских функций, используя правила.
 
Правило абсорбции: А+А = А     А∙А = А.
Правило коммутативности: А+В = В+А     А∙В = В∙А
Правило ассоциативности: (А+В)+С = А+(В+С)     (А∙В) ∙С = А∙ (В∙С)
Правило дистрибутивности: А(В+С) = АВ+ВС       А+ВС=(А+В)(А+С)
Правило поглощения: А+А∙В = А      А(А+В)=А
Базисом булевской функции называется совокупность всех возможных значений ее аргументов (область задания функции).
Алгоритмы распознавания II(структурные). Основные элементы техники структурного распознавания.
Смотри отдельный файтАлгебраический подход к задаче распознавания.
Задача классификации и распознания образов в системе автономного адаптивного управления.
При современном уровне развития техники, когда даже бытовая техника оснащается микропроцессорными устройствами, возникла потребность в интеллектуальных адаптивных системах управления, способных приспосабливаться к очень широкому диапазону внешних условий. Более того, возникла потребность в универсальной технологии создания таких систем. Научный опыт человечества свидетельствует о том, что в природе можно найти великое множество ценных идей для науки и техники. Человеческий мозг является самым удивительным и загадочным созданием природы. Способность живых организмов, наделенных высшей нервной системой, приспосабливаться к окружающей среде может служить призывом к подражанию природе или имитации при создании технических систем.
Среди имитационных подходов выделяется класс нейросетевых методов. Нейронные сети (НС) нашли широкое применение в областях искуственного интеллекта, в основном связанных с распознаванием образов и с теорией управления. Одним из основных принципов нейросетевого подхода является принцип коннективизма. Суть его выражается в том, что рассматриваются очень простые однотипные объекты, соединенные в большую и сложную сеть. Таким образом, НС является в первую очередь графом, с которым можно связать совокупность образов, представленных как численные значения, ассоциированные с вершинами графа, алгоритм для преобразования этих численных значений посредством передачи данных между соседними вершинами и простых операций над ними. Современный уровень развития микроэлектроники позволяет создавать нейрочипы, состоящие из очень большого числа простых элементов, способных выполнять только арифметические операции. Таким образом, нейросетевые методы поддерживается аппаратно.
Математически НС можно рассматривать как класс методов статистического моделирования, который в свою очередь можно разделить на три класса: оценка плотности вероятности, классификация и регрессия [NN]. В частности, в [NN] показано, что с помощью сетей обратного распространения и обобщенного - правила решается задача оценки плотности вероятности методом смешивания гауссовских распределений.
В отделе имитационных систем Института Системного Программирования РАН разработан метод автономного адаптивного управления (ААУ). Предполагается, что система ААУ может быть полностью реализована на нейронной сети [Диссер, Жданов1-9]. В отличии от традиционного использования НС для решения только задач распознавания и формирования образов, в методе ААУ согласованно решаются задачи
распознавания и формирования образов
получения и хранения знаний (эмпирически найденных закономерных связей образов и воздействий на объект управления)
оценки качественных характеристик образов
принятия решений (выбора воздействий).
Особенностями метода ААУ являются:
Избыточность нейронов в сети, необходимая для адаптации системы управления (УС) к изменяющимся условиям существования объекта управления (ОУ). Вследствие этого для практической реализации УС необходимо создание больших НС (для сравнения человеческий мозг содержит ~1011 нейронов).
НС состоит из специфичных нейронов, являющимися более близкими аналогами биологического нейрона и приспособленными для решения задач ААУ (раздел 3.2)
Нейроны в сети соединяются специальным образом, также для решения задач ААУ.
Особенности метода ААУ делают непригодными или малопригодными существующие системы САПР и системы моделирования традиционных НС (например, BrainMaker) для создания прототипов УС ААУ. Ввиду этого обстоятельства задачами дипломной работы были:
Разработка инструмента СПИНС для моделирования и исследования нейросетевых реализаций прототипов УС ААУ.
Разработка общей схемы нейросетевой реализации прототипов УС ААУ.
Формальная модель нейрона и нейросети.
Понятие схемы было введено для формализации вычислений на параллельных компьютерах [Итоги91]. Мы используем это понятие для формального описания нейронных сетей, т.к. оно подходит для этих целей почти без изменений. Одним из следствий такой близости схем и НС является возможность хорошего распараллеливания вычислений в моделях НС.
Определение 1.2.1. Назовем схемой c ориентированный ациклический ортграф (допустимы ребра с общими вершинами), вершинами которого являются параметризованные операции, т.е. операции, зависящие от некоторого параметра t. Аргументами операции являются все входные вершины или входы, т.е. такие вершины, для которых есть ребра (входные ребра), исходящие из них и направленные к данной вершине, - входная арность i-ой вершины, т.е. число входных вершин, -выходная арность i-ой вершины, т.е. число выходных вершин или выходов. Определим размер схемы s(c) как общее число вершин схемы, глубину схемы d(c) как максимальную длину ориентированного пути в графе c. Порядок вершины определяется рекурсивно: для вершин у которых нет входов, принадлежащих сети (истоки сети), порядок равен 0, для остальных порядок есть максимум порядка входов плюс единица. Входами сети будем называть некоторое подмножество множества истоков сети. Выходами сети будем считать просто некоторое множество вершин сети.
Определение1.2.2. Здесь и далее под нейронной сетью будем понимать схему.
По сути схема является совокупностью композиций некоторых параметризованных операций. Глубина схемы есть максимальный уровень вложенности композиций. В методологии НС важно, что эти операции являются вычислительно простыми, наподобие взвешенной суммы или булевых конъюнкции и дизъюнкции, при этом выбирается большое количество аргументов и композиций. В этом суть коннективизма. Параметр t является по сути временным параметром. Заметим, что здесь и далее полагаем время дискретным, хотя для формализации НС это не принципиально. Перенумеровав вершины схемы, можно записать общий вид параметризованной операции:,
где (t) - i-ая параметризованная операция, - входные вершины, - синаптическая задержка на ребре . Конкретный вид функции для предлагаемой модели нейрона будет представлен в разделе "Аппарат ФРО".
Пример 1.2.1. В качестве операции-вершины может быть любая операция трехзначной логики (разд. 1.5).
Определение1.2.3. Выходами подграфа G(V, N), где V - множество ребер, N - множество вершин. сети будем называть все ребра , входами все ребра .
Определение1.2.4. Определим блок как связный подграф сети с одним выходом.
Определение1.2.5. Назовем блок шаблоном некоторого блока если между этими блоками существует изоморфное отображение, т.е. такая пара отображений
Определение1.2.6. Разбиением сети на блоки с шаблоном B будем называть совокупность непересекающихся блоков такую, что для всех этих блоков B является шаблоном и объединение всех блоков и межблоковых ребер (имеется ввиду два разных объединения: множеств вершин и множеств ребер) есть вся сеть.
Определение1.3.7. Совокупность рекурсивных разбиений сети , где есть разбиение шаблона будем называть конструкцией сети, а множество шаблонами конструктора.
Определение1.2.8. Таким образом, под формальной моделью нейрона будем понимать шаблон разбиения сети , у которого выход есть булева операция. Под нейроном будем понимать собственно блок.
Например, на рис.1.2.1 представлена формальная модель перспептрона, где все блоки имеют один шаблон МакКаллока-Питтса [Маккалок].
Вообще говоря, состояние обученности нейрона для каждой формальной модели определяется по своему и, неформально выражаясь, это состояние, в котором считается, что нейрон уже "обучен" для решения своей задачи классификации. Отметим, что процесс обучения необратим.
Определение 1.2.9. Будем говорить, что сетью распознан образ i, если после предъявления сети некоторого входного сигнала на выходе i-ого нейрона появляется 1.
Распознавание образа есть по сути положительный ответ в решении задачи классификации для данного нейрона.
Краткое описание метода автономного адаптивного управления.
Метод ААУ подробно описан в работах [Жданов3-9], поэтому представим только основные его стороны. Будем называть управляющей системой (УС) систему управления, имитирующую нервную систему в соответствии с методологией ААУ. Под объектом управления (ОУ) будем понимать организм, который несет в себе нервную систему, другими словами, ОУ - это объект, который должен управляться посредством УС, расположенной внутри ОУ и взаимодействующей со своим окружением посредством блока датчиков (БД) и исполнительных органов (ИО).
На рис. 1.3.1 представлена система, под которой будем понимать среду, в которую вложен ОУ, в свою очередь содержащий в себе УС. Как видно из рисунка, можно утверждать, что УС управляет не только ОУ, но всей системой. Под средой в системе можно понимать разные объединения объектов. Будем называть средой W совокупность объектов, лежащих вне УС; средой S - совокупность объектов, лежащих вне ОУ; средой U - всю систему.
Блок датчиков поставляет УС входную информацию в виде двоичного вектора. Этот блок необходим в реальных системах для сопряжения среды и УС, поэтому при моделировании УС на ЭВМ не использовался и мы не акцентируем внимание на нем в данной работе.
Работу блока формирования и распознавания образов (ФРО) можно представить следующим способом (подробное описание см. в работах [Жданов3, Жданов8]). В блоке ФРО на основании априорной информации о возможных функциональных свойствах среды заданы некоторые объекты, назовем их нейронами (например, нейроны специального вида, описанные в работе [Жданов8]), на которые отображаются некоторые классы пространственно-временных явлений, которые потенциально могут существовать в системе. Отображение задается топологией сети. В классе, отображаемом на нейрон, выделяется подкласс, который может восприниматься данным нейроном. Каждый нейрон может статистически анализировать воспринимаемый им подкласс. Накапливая статистическую информацию о воспринимаемом подклассе, нейрон может принять решение, является ли этот подкласс случайным или неслучайным явлением в системе. Если какой-либо нейрон принимает решение, что отображаемый на него подкласс является неслучайным событием, то он переходит в некоторое отличное от исходного ?обученное? состояние. Если нейрон обучен, то будем говорить также, что сформирован образ, этот образ идентифицируется номером данного нейрона. Подкласс явлений, воспринимаемый нейроном, и вызвавший его обучение, то есть пространственно-временные явления, статистически достоверно существующие в системе, называется прообразом данного образа. Сформированный образ может быть распознан блоком ФРО, когда прообраз данного образа наблюдается БД. Блок ФРО указывает, какие из сформированных образов распознаны в текущий момент. Одновременно с этим распознанные образы участвуют в формировании образов более высоких порядков, то есть имеет место агрегирование и абстрагирование образов.
Блок формирование базы знаний [Жданов4-6] (БЗ) предназначен для автоматического представления эмпирически найденных УС знаний о функциональных свойствах системы. Элементарной конструкцией базы знаний (БЗ) в методе ААУ является статистически достоверное сведение о том, как определенное действие Yj влияет на прообраз определенного сформированного образа. Действием Yj названо подмножество множества допустимых воздействий, элементы которого абсолютно идентичны для УС по их влиянию на сформированные образы. Непустое сведение может иметь одно из двух значений: либо действие Yj влечет распознавание образа Oi , либо действие Yj влечет вытеснение образа Oi. При помощи БЗ можно видеть, как конкретное действие влияет на всю совокупность сформированных образов.
Блок оценки состояния [Жданов7] (БОС) вырабатывает интегральную оценку качества состояния ОУ St. Оценка St используется для расчета оценки (веса) pi каждого из вновь сформированных образов некоторым статистическим способом. В свою очередь, St функционально зависит от оценок pi распознанных образов. Имеется некоторое множество изначально сформированных и оцененных образов. Оценка St используется также для расчета темпа принятия решений.
Блок выбор действия [Жданов4-6] или, в дальнейшем, блок принятия решений (БПР) реализует процедуру принятия решения, основанную на анализе текущей ситуации, целевых функций, содержимого БЗ, а также оценки текущего значения оценки St. Фактическая информация о текущей ситуации представлена множеством образов, распознанных в текущий момент блоком ФРО, а информация о качестве текущего состояния представлена оценкой St. Множество распознанных образов определяет в БЗ тот ее раздел, который адекватен текущей ситуации (те знания, которые истинны в текущих условиях). В соответствии с целевой функцией, предполагающей стремление УС к улучшению качества состояния ОУ, УС выбирает по БЗ то действие, которое имеет максимальную сумму оценок вызываемых и вытесняемых образов. Из множества выходных воздействий, соответствующего выбранному действию Yj, конкретное выходное воздействие выбирается случайным способом, что соответствует второй целевой функции, предусматривающей стремление к получению новых знаний.
Блок определение времени принятия решения определяет глубину просмотра БЗ в зависимости от текущей оценки St. Чем выше значение St, тем больше образов (в порядке убывания модуля их веса) может учесть УС при принятии решения, тем меньше темп принятия решений. При моделировании этот блок не использовался и в данной работе рассматриваться не будет.
В УС могут быть средства для априорного анализа последствий альтернативных выбираемых действий на несколько шагов вперед.
Таков в самых общих чертах алгоритм управления, реализуемый УС в методе ААУ. Основные свойства процесса управления состоят в том, что УС автоматически накапливает эмпирические знания о свойствах предъявленного ей объекта управления и принимает решения, опираясь на накопленные знания. Качество управления растет по мере увеличения объема накопленных знаний. Заметим также, что управление состоит не в том, что УС реагирует на входную информацию (в определенном смысле - отрицательная обратная связь), а в том, что УС постоянно активно ищет возможный в текущих условиях способ улучшить состояние ОУ (положительная обратная связь). Тем самым УС ААУ обладает внутренней активностью.
При создании приложений может быть целесообразным использование УС ААУ для управления только в тех областях пространства признаков, в которых ранее используемые методы неэффективны. Другими словами, полезно разделить признаковое пространство на две области: на область, для которой имеется априорная информация о свойствах ОУ, и в которой можно применить подходящую детерминированную систему управления, и на область, в которой нет априорной информации о свойствах ОУ, где требуется адаптация в реальном времени управления, в этой области целесообразно управление по методу ААУ.Основные понятия и обозначения.
Каждый вход и выход блока среды U представляется в математической модели, вообще говоря, случайным вектором, а совокупность случайных векторов, параметризованных временем , образуют процесс. Кроме того, выделим вторую категорию процессов, в которую входят процессы, сформированные параметризованными СВ - выходами внутренних элементов блоков УС. Например, для ФРО и, вообще, всех блоков, состоящих из нейронов, это выходы всех нейронов. В полной математической модели среды U, процесс, представляющий выходы всех нейронов УС и выходы внутренних блоков среды W , назовем процессом среды U.
В дальнейшем мы будем пользоваться следующими обозначениями:
T - конечный временной интервал жизни системы;
- параметр времени;
- начальный момент времени работы УС;
- входной процесс, входной процесс для ФРО, а значит и для УС;
- i - ая компонента ;- реализация входного процесса, или входной фильм, определенный на интервале времени ;- i - ая компонента ;- процесс среды, выход блока среды W;
- i - ая компонента ;- процесс ФРО, совокупность выходов всех нейронов блока ФРО на интервале ;- i - ая компонента ;- процесс управляющих воздействий на среду со стороны УС, где
Y - множество допустимых воздействий на среду со стороны УС;
F - множество образов аппарата ФРО.
Алгебра образов.
В качестве алгебраических операций над образами мы будем использовать операции трехзначной логики, которая является расширением обычной логики с двумя значениями: истина и ложь, обозначаемые далее как 1 и 0 соответственно, и имеет третье значение: неопределенность или . Здесь приведены таблицы для операций трехзначной логики. Первый столбец содержит значения первого аргумента, первая строка - второго.
Отрицание для неопределенности дает неопределенность, для остальных значений - то же самое, что и в двузначной логике. Для удобства мы полагаем, что результат операции в момент есть неопределенность по определению.
Моделирование среды.
Для экспериментальной проверки метода автономного адаптивного управления необходимо создать математическую модель среды, достаточную для имитации реакции и поведения реальной среды на некотором уровне, приемлемом для данной управляющей системы. Но проверка является не единственной задачей, решаемой с помощью модели среды. Во-первых, если на начальном этапе в базе знаний УС нет знаний, ее необходимо наполнить начальными данными. Возможны случаи, когда получение исходных знаний невозможно во время реальной работы УС, поскольку оно происходит методом проб и ошибок и существует реальная угроза гибели всей системы. Поэтому начальное обучение в таких случаях необходимо проводить "на стенде", т.е. с моделью среды. Естественно, чем ближе модель к свойствам реальной среды, тем лучше обучится УС и тем выше вероятность выживания системы. Моделировать среду можно множеством способов. Например, сделать макет объекта управления, поместить его в условия, близкие к тем, где он предназначен работать и дать ему возможность обучаться, пока у экспериментаторов не будет уверенности в живучести аппарата и в способности к адаптации в том диапазоне внешних условий, где он предназначен работать. Но на пути создания реальной действующей системы возможно несколько промежуточных этапов. Представим, что система создается "с нуля" и известна только некоторая априорная информация о среде и, возможно, какие-то представления о законах управления. Создавать сразу действующий макет дорого, поскольку на данном этапе даже не известно, какие образы УС должна уметь распознавать, и, возможно, придется делать несколько эспериментальных прототипов. Для исследования данного вопроса предлагается смоделировать среду, например, с помощью ЭВМ.
Как одну из моделей среды для исследований свойств ААУ мы предлагаем взять конечный автомат [КА]. КА является широко известным, хорошо изученным, понятным и удобным при моделировании среды объектом по следующим соображениям: 1) различные состояния среды естественным образом отображаются в состояния КА; 2) переходы из одного состояния среды в другое под воздействием УС и других объектов естественным образом отображаются в переходы КА между состояниями при чтении входного слова. Отметим, что среди известных и распространенных КА наиболее подходящими для модели являются автоматы Мура и недетерминированные автоматы Рабина-Скотта или НРС-автоматы. Правда, модели, основанные на первых, нуждаются в дополнительном введении стохастических источников, а НРС-автоматы нуждаются в модификации, поскольку реальные среды являются недетерминированными объектами. Более того, недетерминированность модели среды необходима для обучения УС. В самом деле, если бы реакция среды была полностью детерминированной и зависела только от воздействий на нее УС, то УС, найдя первый закон управления, использовала бы только его при выборе управляющих воздействий, так как по критериям системы управления лучше использовать хоть какой-нибудь закон управления и получить относительно гарантированный результат, чем продолжать поиски методом проб и ошибок. Получился бы замкнутый порочный круг: система воздействует на среду только одним способом, среда детерминированно реагирует на это воздействие, УС видит только одну реакцию (которая может быть не самой лучшей) и пытается вызвать только эту реакцию. Избежать таких "зацикливаний" можно посредством моделирования недетеминированной реакции среды.
Приведем определение автоматов Мура [КА] и введем модифицированные НРС-автоматы.
Определение 2.1. (Конечный) автомат Мура есть пятерка А = (Z, X, Y, f, h). Здесь Z - множество состояний, X - множество входов, Y - множество выходов, f - функция переходов, и h -функция выходов, - сюръективное отображение.
Автомат работает по следующему принципу. Если КА находится в некотором состоянии , то выход автомата определяется функцией выхода. Выход автомата интерпретируется в данном случае как реакция среды, которая, возможно, с некоторыми преобразованиями в блоке датчиков может быть подана на вход аппарата формирования и распознавания образов как двоичный вектор. В каждый момент времени автомат читает входное слово, которое интерпретируется как суммарное воздействие со стороны УС и других внешних объектов. Множество входов может быть шире чем множество допустимых воздействий на среду со стороны УС и включать в себя слова или команды, которые могут подаваться со стохастических источников, находящихся внутри среды. По прочитанному входному слову и функции переходов определяется состояние в следующий момент времени.
Определение 2.2. (Конечный) модифицированный недетерминированный автомат Рабина-Скотта (МНРС) есть семерка А = (Z, X, T, S, F, h, p). Здесь Z и X - конечные множества (состояний и входов соответственно; X называют также входным алфавитом автомата А); (множества начальных и финальных состояний соответственно); , где , (иначе говоря T - многозначное отображение с конечной областью определения); h - то же, что и для автомата Мура; p - функция вероятности переходов, , причем
Отметим, что мы рассматриваем только неалфавитные МНРС, т.е. КА, у которых нет переходов для пустого слова : , а, следовательно, нет и спонтанных переходов. Отличительной особенностью МНРС является неоднозначность переходов или возможность соответствия одной и той же паре состояние - входное слово нескольких переходов и приписанной каждому переходу вероятности. Условие (2.1) означает, что сумма вероятностей всех переходов из любого состояния есть 1.
Отличие принципа действия МНРС от автомата Мура состоит в том, что, когда автомат находится в некотором состоянии и прочел входное слово, то реализуется один из возможных из данного состояния и при данном входном слове переход, при этом вероятность реализации перехода определяется функцией p.
Приведенные две модели среды с двумя разными КА не являются эквивалентными и задают разные модели поведения. Очевидно, что любая модель с автоматом Мура может быть смоделирована моделью с МНРС, причем обратное утверждение для любой модели неверно. Автомат Мура проще в реализации и исследованиях, а с помощью МНРС можно построить более точную модель среды.
Аппарат формирования и распознавания образов.
Биологический нейрон.
На рис. 3.1.1, взятом из [Turchin] представлен в упрощенном виде биологический нейрон. Схематично его можно разделить на три части: тело клетки, содержащее ядро и клеточную протоплазму; дендриты - древовидные отростки, служащие входами нейрона; аксон, или нервное волокно, - единственный выход нейрона, представляющий собой длинный цилиндрический отросток, ветвящийся на конце. Для описания формальной модели нейрона выделим следующие факты:
В любой момент возможны лишь два состояния волокна: наличие импульса и его отсутствие, так называемый закон "все или ничего".
Передача выходного сигнала с аксона предыдущего нейрона на дендриты или прямо на тело следующего нейрона осуществляется в специальных образованиях - синапсах. Входные сигналы суммируются с синаптическими задержками и в зависимости от суммарного потенциала генерируется либо нет выходной импульс - спайк.
Формальная модель нейрона.
Впервые формальная логическая модель нейрона была введена Маккалоком и Питтсом в 1948 году [Маккалок] и с тех пор было предложено огромное количество моделей. Но все они предназначены для решения в основном задач распознавания и классификации образов. Можно указать целый ряд основных отличий предлагаемой в данной работе модели и уже существующих. Во-первых, в классических моделях всегда присутствует "учитель" или "супервизор", подстраивающий параметры сети по определенному алгоритму, предлагаемый же нейрон должен подстраиваться "сам" в зависимости от "увиденной" им последовательности входных векторов. Формально говоря, при работе нейрона должна использоваться только информация с его входов. Во-вторых, в предложенной модели нет вещественных весов и взвешенной суммации по этим весам, что является большим плюсом при создании нейрочипа и модельных вычислениях, поскольку целочисленная арифметика выполняется всегда быстрее, чем рациональная и проще в реализации. Главное же отличие предлагаемой модели состоит в цели применения. C помощью нее решаются все задачи управляющей системы: формирование и распознавание образов (ФРО), распознавание и запоминание закономерностей (БЗ), анализ информации БЗ и выбор действий (БПР), в отличии от классических моделей, где решается только первая задача.
Важной задачей ФРО для автономных систем также является не только распознавание образов, но и их хранение или запоминание. Это следует из автономности системы, т.к. для неавтономных систем распознанные образы могут храниться и использоваться вне системы. Вообще говоря, проблему запоминания можно решить множеством способов. Например, один из известных способов - организовать кольцо из нейронов, в котором сигнал мог бы прецессировать до бесконечности или в течении некоторого времени в случае затухания. В последнем случае система приобретает новое полезное свойство "забывчивости", которое, как известно, присуще биологическим системам и позволяет более рационально и экономно использовать ресурсы, т.к. ненужная или малоиспользуемая информация просто "забывается". Эксперименты проводились с формальной моделью без памяти, но очевидно, что она нужна. Нами предлагается ввести так называемую синаптическую память, т.е. способность запоминать входной сигнал в синаптическом блоке.
В данной работе мы используем нейрон из [Жданов2], который модифицирован в соответствии с [Братищев]. Мы приведем лишь краткое описание. На рис. 3.2.1 представлена блочная схема предлагаемой формальной модели нейрона. Входы нейрона xit подаются на блоки задержки Di для задержки сигнала на время ?i , а затем на триггерные элементы Ti для удлинения сигнала на величину ?i . Данные элементы обеспечивают некоторую неопределенность момента поступления входного сигнала по отношению к моменту генерации выходного спайка и образуют таким образом синаптическую память, поскольку входной сигнал запоминается в этих элементах на некоторое время.
С учетом задержек ?i и ?i получаем, что, если на выходе обученного нейрона в момент t появился единичный сигнал, то единичные импульсы на входы нейрона поступили в интервалы времени di = [ t - ?i - ?i ; t - ?i -1]. Неопределенность моментов поступления входных импульсов будет тем меньше, чем меньше задержки ?i.
Пример временной диаграммы работы обученного нейрона с двумя входами и с заданными задержками ?i и ?i иллюстрирует рис. 3.2.2. Вопросительными знаками показаны неопределенности моментов прихода входных импульсов, соответствующие интервалам di.
Различное отношение и расположение задержек ?i и ?i во времени наделяет нейрон возможностями формирования и распознавания образов следующих видов.
Если , то имеем пространственный образ. Например, образ некоторой геометрической фигуры.
Если , то имеем образ следования (важен порядок следования образующих, допустима неопределенность в конкретных моментах прихода импульсов). Примером может быть распознавание слов при чтении по буквам.
Если - ?i = 1, то имеем пространственно-временной образ (ПВО), в этом случае однозначно определено, по каким входам и в какие моменты времени приходили сигналы. Примером может быть распознавание музыкального тона определенной высоты.
Элемент lw предназначен для набора статистики по данному пространственно-временному образу. Значение lw=1 указывает на то, что данный нейрон обучен.
Задержки ?i и ?i заданы изначально, т.е. являются константными параметрами нейрона. Если поступающая на данный нейрон последовательность сигналов содержит закономерность, описываемую такими временными параметрами, то нейрон сформирует образ такого пространственно-временного прообраза. Очевидно, что необходимое число нейронов такого типа в сети будет тем меньше, чем больше априорной информации о временных характеристиках прообразов известно на стадии синтеза сети.
Приведем формализм нейрона.
Задача построения ФРО.
Для того, чтобы более правильно и экономно построить нейронную сеть ФРО, необходимо понять смысл или "концепцию" [Turchin] формируемых образов, т.е., более точно выражаясь, найти для данного образа множество обучающих входных фильмов или множество всех таких реализаций входных процессов, которые приводят к обучению данного нейрона или формированию данного образа. Введем понятие обучающего входного фильма.
Определение 3.3.1. Всякий входной фильм назовем обучающим для нейрона , если - начальный момент времени работы системы и , .
Таким образом, задачу построения НС ФРО можно сформулировать следующим образом: для данной совокупности входных фильмов построить такую сеть, в которой бы присутствовали нейроны, для которых данные входные фильмы являются обучающими. Построенная таким образом сеть способна решать эталонную задачу классификации, где в качестве эталонов используются данные входные фильмы. Известно множество способов конструирования и настройки сетей для классических формальных моделей нейронов, например, сети обратного распространения, использующие обобщенное -правило. Проблема предлагаемого подхода состоит в том, что 1) система должна быть автономной, а значит отсутствует "учитель"; 2) вообще говоря, a priori не известны все жизненно необходимые для системы образы. Но если мы обладаем априорной информацией об условиях существования системы (что почти всегда бывает), ее следует использовать при конструировании ФРО.
Можно иначе сформулировать задачу построения ФРО. Приведем пример с системой "Пилот" [Диссер, Жданов9]. В математической модели спутника используются величины углового положения спутника и его производной , следовательно, очевидно, что всевозможные сочетания возможных значений этих величин (т.е. некоторая область на фазовой плоскости) необходимы для нахождения законов управления системой. Действительно, допустим система в момент времени t находится в состоянии и УС выбирает некоторое управляющее воздействие (включение одного из двигателей, например). Мы знаем, что в момент времени система окажется в некотором состоянии, соответствующем точке на фазовой плоскости с некоторой вероятностью , где - точка на фазовой плоскости, таким образом, можно говорить о некотором вероятностном распределении , заданном в фазовом пространстве и характеризующем предсказание поведения системы через интервал при выборе воздействия в момент времени t. Если бы параметров было недостаточно для описания законов управления, то функция распределения зависела бы еще и от других параметров, и при одних и тех же величинах принимала бы другие значения в зависимости от значений неучтенных параметров. Следовательно, УС не смогла бы найти никакого закона управления, поскольку система ищет статистически достоверную корелляцию между наблюдаемым состоянием ОУ, выбранным действием и состоянием ОУ через некоторый интервал времени. Законом управления здесь мы назовем совокупность функций распределения для каждого управляющего воздействия , где находится в некотором диапазоне. Найденный УС закон управления отобразится в некотором внутреннем формате в БЗ, причем он может быть получен в процессе обучения системы в реальных условиях прямо во время работы, либо на тестовом стенде, "на земле". Следовательно, можно сказать, что задача построения ФРО состоит в конструировании образов, соответствующих необходимому набору параметров, описывающих состояние системы, и их комбинациям, необходимым для нахождения закона управления. Нахождению таких образов может помочь математическая модель объекта управления, если таковая имеется.
Распознавание пространственно-временных образов.
Определение 3.4.1. Всякую совокупность значений реализации входного процесса в некоторые выбранные интервалы времени будем называть пространственно-временным образом (ПВО).
Отметим, что один нейрон способен распознавать (т.е. способен обучиться выделять конкретный ПВО среди всех остальных) только те ПВО, у которых единичное значение сигнала для каждой выбранной компоненты входного процесса встречается не более одного раза (пример изображен на верхнем графике рис. 3.4.1). Сеть нейронов можно построить так, что в ней будут формироваться любые заданные ПВО (нижний график рис. 3.4.1).
База знаний.
Процесс накопления знаний БЗ в рамках методологии ААУ подробно рассмотрен в [Диссер], [Жданов4-8]. В данном разделе мы опишем лишь основные отличия от указанных источников.
Рассмотрим общий алгоритм формирования БЗ. Основная цель алгоритма состоит в накоплении статистической информации, помогающей установить связь между выбранными управляющей системой воздействиями на среду и реакцией среды на эти воздействия. Другая задача алгоритма состоит в приписывании оценок сформированным образам и их корректировки в соответствии с выходным сигналом блока оценки состояния.
Определение 4.1. Будем называть полным отсоединением ФРО от среды следующее условие: процессы и являются независимыми. Вообще говоря, в действующей системе, конечно же эти процессы зависимы, например, в простом случае без блока датчиков , но для введения некоторых понятий требуется мысленно "отсоединить" входной процесс и процесс среды.
Определение 4.2. Назовем временем реакции среды на воздействие число , где случайные величины и являются зависимыми при полном отсоединении ФРО от среды. Закономерностью или реакцией среды будем считать зависимость от .Другими словами, время реакции среды это время, через которое проявляется, т.е. может быть распознана блоком ФРО, реакция на воздействие.
Пример 4.1. = . Очевидно, что здесь .Определение 4.3. Назовем минимальной и максимальной инертностью среды минимальное и максимальное соответственно время реакции среды на воздействие для всех . Интервал будем называть интервалом чувствительности среды.
Заметим, что .Введем совокупность образов
Параметр n 0 назовем запасом на инертность среды. Смысл состоит в том, что если обучен, в текущий момент времени распознан образ и УС выберет воздействие то с некоторой вероятностью через n шагов распознается образ . Аналогично введем образ
смысл которого совпадает со смыслом , с тем лишь различием, что не распознается, а вытеснится. Поскольку в конечном итоге способом управления УС является вызов определенных образов и вытеснение других, то совокупность обученных образов является материалом, способствующим достижению цели управления, то есть вызову или вытеснению определенных образов посредством выбора воздействия из множества возможных воздействий Y на каждом шаге t. Как используется этот материал будет изложено в разделе "Блок принятия решений".
Запас на инертность введен из следующих соображений. Совершенно очевидно, что бесполезно пытаться уловить закономерность вида "был распознан образ , применили и через m шагов получили ", где , так как среда будет просто не успевать отреагировать. Таким образом, УС может уловить закономерности со временем реакции среды не большим чем n. Аналогично, нет смысла выбирать n слишком большим, т.е. гораздо большим, чем . С другой стороны, используя синаптические задержки входных сигналов в нейроне, мы можем отловить любую закономерность со временем реакции меньшим либо равным запасу на инертность. Действительно, мы можем построить ФРО так, чтобы образы и формировались с нужными задержками , где m - время реакции среды. Заметим, что a priori нам неизвестно время реакции среды m, поэтому имеет смысл лишь выбрать параметр n для всех образов одинаковым и "наверняка" большим чем (для этого необходимо воспользоваться априорной информацией о среде).
Теперь сопоставим каждому образу из ФРО некоторое число или оценку. Пусть - выход блока оценки состояния, а - оценка образа , получающаяся по следующему алгоритму:
где - некоторая "усредняющая" функция, - множество моментов времени, в которые образ был распознан. В качестве обычно берется просто среднее арифметическое
Теперь можно определить, что такое база знаний.
Определение 4.4. Назовем базой знаний совокупность сформированных образов и совокупность оценок для всех образов ФРО.
Определение 4.5. Обозначим объединение множеств всех образов (4.1) и (4.2) через , где F - множество образов ФРО, Y - множество возможных воздействий. Назовем B пространством образов БЗ.
Система построения и исследования нейронных сетей СПИНС.
Актуальность системы.
Для моделирования на ЭВМ компонентов УС, сконструированных из нейронов, была осознана необходимость в специальном инструменте, позволяющем с помощью удобного графического интерфейса создавать библиотеки шаблонов блоков, строить сети из блоков, построенных по шаблонам, и просчитывать сеть с возможностью просмотра промежуточных состояний сети, сбора и анализа статистики о работе сети в целях отладки. При создании (или выборе) инструмента использовались следующие критерии:
открытость, или спецификация и реализация (generic) интерфейса и (процедур обработки) форматов данных, позволяющие проводить модификацию и наращивание функциональности системы не затрагивая ядра системы и с минимальными затратами на модификацию связанных компонент, другими словами, минимизация связей между компонентами;
гибкость, возможности по конструированию как можно большего числа классов формальных моделей нейронов и сетей под самые различные приложения от моделей УС спутников и космических аппаратов до систем поддержки принятия решений и систем предсказания курса ценных бумаг;
многоплатформенность, максимальная независимость от операционной системы;
удобство и приспособленность к моделированию именно систем ААУ, простота в использовании и способность эффективно работать на относительно слабых ресурсах ЭВМ (класса персональных компьютеров), дешевизна.
Анализ имеющихся в наличии или доступных систем САПР и других систем (например, LabView или систем с классическими НС), тем или иным образом удовлетворяющих первым трем критериям, показал, что все они являются либо тяжеловесными, либо слишком дорогими, либо очень плохо приспособлены к моделированию систем ААУ и ОУ с формальной моделью нейрона, изложенной в разделе "Аппарат ФРО" или к работе с сетями, состоящими из тысяч нейронов. Таким образом, возникла необходимость в инструменте для научно-исследовательских целей, который бы позволял проверять идеи ААУ и создавать прототипы УС на НС.
Общая концепция системы.
Построение подсистемы формирования и распознавания образов на базе нейроподобных элементов

Приложенные файлы

  • docx 15396619
    Размер файла: 125 kB Загрузок: 0

Добавить комментарий