kupri-ov_chisl_methods


Чтобы посмотреть этот PDF файл с форматированием и разметкой, скачайте его и откройте на своем компьютере.
ºÐäÕÔàÐØÝäÞàÜÐæØÞÝÝëåáØáâÕÜØâÕåÝÞÛÞÓØÙ
http://chair36.msiu.ru
´.Î.ºãßàØïÝÞÒ
ÇØáÛÕÝÝëÕÜÕâÞÔë
1.ÇØáÛÕÝÝëÕÜÕâÞÔë
²ÔÐÝÝÞÜàÐ×ÔÕÛÕÞßØáëÒÐîâáïÜÕâÞÔëçØáÛÕÝÝÞÓÞØÝâÕÓàØàÞÒÐÝØïØ
çØáÛÕÝÝÞÓÞàÕèÕÝØïãàÐÒÝÕÝØÙ,ÝÕÞÑåÞÔØÜëÕÔÛïãáßÕèÝÞÓÞÝÐßØáÐÝØï
ÚãàáÞÒÞÙàÐÑÞâë.
ÇØáÛÕÝÝÞÕØÝâÕÓàØàÞÒÐÝØÕ.
ÇØáÛÕÝÝÞÕØÝâÕÓàØàÞÒÐÝØÕ

íâÞßàÞ

æÕááÒëçØáÛÕÝØïßàØÑÛØÖñÝÝÞÓÞ×ÝÐçÕÝØïÞßàÕÔÕÛñÝÝÞÓÞØÝâÕÓàÐÛÐ,ÚÞâÞ

àÞÕÞáÝÞÒÐÝÞÝÐâÞÜ,çâÞÒÕÛØçØÝÐØÝâÕÓàÐÛÐçØáÛÕÝÝÞàÐÒÝÐßÛÞéÐÔØ
ÚàØÒÞÛØÝÕÙÝÞÙâàÐßÕæØØ,ÞÓàÐÝØçÕÝÝÞÙÓàÐäØÚÞÜØÝâÕÓàØàãÕÜÞÙäãÝÚæØØ
f
(
x
),ÞáìîÐÑáæØáá,ÐâÐÚÖÕÞâàÕ×ÚÐÜØßàïÜëå
x
=
a
Ø
x
=
b
(àØá.1),ÓÔÕ
a
Ø
b

ßàÕÔÕÛëØÝâÕÓàØàÞÒÐÝØï
I
=
b
Z
a
f
(
x
)
dx
=
S
.(1.1)
ÀØá.1.
·ÝÐçÕÝØÕØÝâÕÓàÐÛÐÚÐÚßÛÞéÐÔìÚàØÒÞÛØÝÕÙÝÞÙâàÐßÕæØØ
½ÕÞÑåÞÔØÜÞáâìßàØÜÕÝÕÝØïçØáÛÕÝÝÞÓÞØÝâÕÓàØàÞÒÐÝØïçÐéÕÒáÕÓÞÜÞ

ÖÕâÑëâìÒë×ÒÐÝÐÞâáãâáâÒØÕÜãßÕàÒÞÞÑàÐ×ÝÞÙäãÝÚæØØßàÕÔáâÐÒÛÕÝØïÒ
íÛÕÜÕÝâÐàÝëåäãÝÚæØïåØ,áÛÕÔÞÒÐâÕÛìÝÞ,ÝÕÒÞ×ÜÞÖÝÞáâìîÐÝÐÛØâØçÕáÚÞ

ÓÞÒëçØáÛÕÝØï×ÝÐçÕÝØïÞßàÕÔÕÛñÝÝÞÓÞØÝâÕÓàÐÛÐßÞäÞàÜãÛÕ½ìîâÞÝÐ

»ÕÙÑÝØæÐ.ÂÐÚÖÕÒÞ×ÜÞÖÝÐáØâãÐæØï,ÚÞÓÔÐÒØÔßÕàÒÞÞÑàÐ×ÝÞÙÝÐáâÞÛìÚÞ
áÛÞÖÕÝ,çâÞÑëáâàÕÕÒëçØáÛØâì×ÝÐçÕÝØÕØÝâÕÓàÐÛÐçØáÛÕÝÝëÜÜÕâÞÔÞÜ.
ÇØáÛÕÝÝëÕÜÕâÞÔë3
¾áÝÞÒÝÐïØÔÕïÑÞÛìèØÝáâÒÐÜÕâÞÔÞÒçØáÛÕÝÝÞÓÞØÝâÕÓàØàÞÒÐÝØïáÞ

áâÞØâÒÛÞÚÐÛìÝÞÙ×ÐÜÕÝÕßÞÔëÝâÕÓàÐÛìÝÞÙäãÝÚæØØÝÐÑÞÛÕÕßàÞáâãî,
ØÝâÕÓàÐÛÞâÚÞâÞàÞÙÛÕÓÚÞÒëçØáÛïÕâáïÐÝÐÛØâØçÕáÚØ.¿àØíâÞÜÞâàÕ×ÞÚ,
ÝÐÚÞâÞàÞÜßàÞÒÞÔØâáïØÝâÕÓàØàÞÒÐÝØÕ,àÐ×ÑØÒÐÕâáïÝÐÞßàÕÔÕÛñÝÝÞÕÚÞÛØ

çÕáâÒÞÞâàÕ×ÚÞÒ,ßÞÔëÝâÕÓàÐÛìÝÐïäãÝÚæØïÝÐÚÐÖÔÞÜÞâàÕ×ÚÕ×ÐÜÕÝïÕâáï
ÑÞÛÕÕßàÞáâÞÙäãÝÚæØÕÙ,ÐØáÚÞÜÐïßÛÞéÐÔìÚàØÒÞÛØÝÕÙÝÞÙâàÐßÕæØØÒë

çØáÛïÕâáïÚÐÚáãÜÜÐßÛÞéÐÔÕÙÑÞÛÕÕßàÞáâëåäØÓãà,×ÝÐçÕÝØïÚÞâÞàëå
ÜÞÓãâÑëâìßÞÛãçÕÝëÐÝÐÛØâØçÕáÚØ.
¼ÕâÞÔßàïÜÞãÓÞÛìÝØÚÞÒ
¼ÕâÞÔßàïÜÞãÓÞÛìÝØÚÞÒ

íâÞÜÕâÞÔçØáÛÕÝÝÞÓÞØÝâÕÓàØàÞÒÐÝØï,ÚÞ

âÞàëÙßÞÛãçÐÕâáïßàØ×ÐÜÕÝÕßÞÔëÝâÕÓàÐÛìÝÞÙäãÝÚæØØÝÐÚãáÞçÝÞ
-
ßÞáâÞ

ïÝÝãî.¿ÞÛãçØÜÞáÝÞÒÝëÕáÞÞâÝÞèÕÝØïÔÛïÒëçØáÛÕÝØï×ÝÐçÕÝØïÞßàÕÔÕ

ÛñÝÝÞÓÞØÝâÕÓàÐÛÐ.´ÛïíâÞÓÞàÐ×ÞÑêÕÜÞâàÕ×ÞÚ
[
a
,
b
]
ÝÐ
n
àÐÒÝëåçÐáâÕÙ
ØÒëçØáÛØÜÔÛØÝãÚÐÖÔÞÓÞØ×ÞâàÕ×ÚÞÒàÐ×ÑØÕÝØï
=
(
b

a
)
/
n
.½ÐÚÐÖ

ÔÞÜØ×ßÞÛãçØÒèØåáïÞâàÕ×ÚÞÒ×ÐÜÕÝØÜ×ÐÔÐÝÝãîäãÝÚæØîÚÞÝáâÐÝâÞÙ.²
ÚÐçÕáâÒÕÚÞÝáâÐÝâëÜÞÖÝÞÒ×ïâì×ÝÐçÕÝØÕäãÝÚæØØ
f
(
x
)ÒÛîÑÞÙâÞçÚÕÞâ

àÕ×ÚÐ
[
x
i
,
x
i
+
1
]
.¾ÔÝÐÚÞÝÐØÑÞÛÕÕçÐáâÞØáßÞÛì×ãîâáï×ÝÐçÕÝØïäãÝÚæØØ
ÝÐÚÞÝæÐåÞâàÕ×ÚÐØÛØÒÕÓÞáÕàÕÔØÝÕ.ÁÞÞâÒÕâáâÒãîéØÕÜÞÔØäØÚÐæØØÝÞ

áïâÝÐ×ÒÐÝØïÜÕâÞÔÐÛÕÒëåßàïÜÞãÓÞÛìÝØÚÞÒ,ßàÐÒëåßàïÜÞãÓÞÛìÝØÚÞÒØ
áàÕÔÝØåßàïÜÞãÓÞÛìÝØÚÞÒ(àØá.2

4).
ÀØá.2.
ÇØáÛÕÝÝÞÕØÝâÕÓàØàÞÒÐÝØÕÜÕâÞÔÞÜÛÕÒëåßàïÜÞãÓÞÛìÝØÚÞÒ
4ÇØáÛÕÝÝëÕÜÕâÞÔë
ÀØá.3.
ÇØáÛÕÝÝÞÕØÝâÕÓàØàÞÒÐÝØÕÜÕâÞÔÞÜßàÐÒëåßàïÜÞãÓÞÛìÝØÚÞÒ
ÀØá.4.
ÇØáÛÕÝÝÞÕØÝâÕÓàØàÞÒÐÝØÕÜÕâÞÔÞÜáàÕÔÝØåßàïÜÞãÓÞÛìÝØÚÞÒ
ÇØáÛÕÝÝëÕÜÕâÞÔë5
¸×ÓÕÞÜÕâàØçÕáÚÞÓÞßÞáâÞàÕÝØïÒØÔÝÞ,çâÞ×ÝÐçÕÝØÕÞßàÕÔÕÛñÝÝÞÓÞØÝ

âÕÓàÐÛÐäãÝÚæØØ
f
(
x
)ÝÐÞâàÕ×ÚÕ
[
a
,
b
]
ÜÞÖÝÞáçØâÐâìßàØÜÕàÝÞàÐÒÝëÜ
áãÜÜÕßÛÞéÐÔÕÙ(áãçÕâÞÜ×ÝÐÚÐäãÝÚæØØ)ßÞÛãçØÒèØåáïßàïÜÞãÓÞÛìÝØ

ÚÞÒ
S

n
X
i
=
1
S
i
,(1.2)
ÓÔÕ
S
i

ßÛÞéÐÔì
i
-
ÞÓÞßàïÜÞãÓÞÛìÝØÚÐ.
¸áßÞÛì×ãïáâÐÝÔÐàâÝëÕáÞÞâÝÞèÕÝØïÔÛïÝÐåÞÖÔÕÝØïßÛÞéÐÔØßàïÜÞ

ãÓÞÛìÝØÚÐ,ßÞÛãçØÜÒëàÐÖÕÝØïÔÛïßàØÑÛØÖñÝÝÞÓÞÒëçØáÛÕÝØï×ÝÐçÕÝØï
ÞßàÕÔÕÛñÝÝÞÓÞØÝâÕÓàÐÛÐÜÕâÞÔÞÜßàïÜÞãÓÞÛìÝØÚÞÒ:
ˆ
ÔÛïÜÕâÞÔÐÛÕÒëåßàïÜÞãÓÞÛìÝØÚÞÒ
I

n

1
X
i
=
0
f
(
x
i
)
=
n

1
X
i
=
0
f
(
x
i
)
=
b

a
n
n

1
X
i
=
0
f
(
x
i
);(1.3)
ˆ
ÔÛïÜÕâÞÔÐßàÐÒëåßàïÜÞãÓÞÛìÝØÚÞÒ
I

n

1
X
i
=
0
f
(
x
i
+
1
)
=
b

a
n
n

1
X
i
=
0
f
(
x
i
+
1
);(1.4)
ˆ
ÔÛïÜÕâÞÔÐáàÕÔÝØåßàïÜÞãÓÞÛìÝØÚÞÒ
I

n

1
X
i
=
0
f

x
i
+
x
i
+
1
2

=
b

a
n
n

1
X
i
=
0
f

x
i
+
x
i
+
1
2

.(1.5)
½ÕÞÑåÞÔØÜÞÞâÜÕâØâì,çâÞâÞçÝÞáâìßÞÛãçÕÝÝÞÓÞ×ÝÐçÕÝØïÞßàÕÔÕÛñÝ

ÝÞÓÞØÝâÕÓàÐÛÐÝÐßàïÜãî×ÐÒØáØâÞâÚÞÛØçÕáâÒÐÞâàÕ×ÚÞÒ,ÝÐÚÞâÞàëÕàÐ×

ÑØÒÐÕâáïØáåÞÔÝëÙÞâàÕ×ÞÚ
[
a
,
b
]
.¿ÞíâÞÜãÔÛïßÞÛãçÕÝØïÑÞÛÕÕâÞçÝÞÓÞ
×ÝÐçÕÝØïØÝâÕÓàÐÛÐÝÕÞÑåÞÔØÜÞãÒÕÛØçØâìçØáÛÞ
n
.
¼ÕâÞÔâàÐßÕæØÙ
¼ÕâÞÔâàÐßÕæØÙÐÝÐÛÞÓØçÕÝÜÕâÞÔãßàïÜÞãÓÞÛìÝØÚÞÒØßÞÛãçÐÕâáïßàØ
×ÐÜÕÝÕßÞÔëÝâÕÓàÐÛìÝÞÙäãÝÚæØØÚãáÞçÝÞ
-
ÛØÝÕÙÝÞÙ.¾áÝÞÒÝÞÕÞâÛØçØÕ
íâÞÓÞÜÕâÞÔÐ×ÐÚÛîçÐÕâáïÒâÞÜ,çâÞÝÐÚÐÖÔÞÜÞâàÕ×ÚÕàÐ×ÑØÕÝØï×Ð

ÔÐÝÝÐïäãÝÚæØï×ÐÜÕÝïÕâáïÛØÝÕÙÝÞÙäãÝÚæØÕÙ,ßàØÝØÜÐîéÕÙÝÐÚÞÝæÐå
ÞâàÕ×ÚÐâÕÖÕ×ÝÐçÕÝØï,çâÞØäãÝÚæØï
f
(
x
).¿ÞÛãçØÒèØÕáïäØÓãàëïÒÛïîâ

áïâàÐßÕæØïÜØ,ØØåßÛÞéÐÔìÒëçØáÛïÕâáïÚÐÚßÞÛãáãÜÜÐÔÛØÝÞáÝÞÒÐÝØÙ
âàÐßÕæØØ,ãÜÝÞÖÕÝÝÐïÝÐÕñÒëáÞâã.
6ÇØáÛÕÝÝëÕÜÕâÞÔë
ÀØá.5.
ÇØáÛÕÝÝÞÕØÝâÕÓàØàÞÒÐÝØÕÜÕâÞÔÞÜâàÐßÕæØÙ
¸×ÓÕÞÜÕâàØçÕáÚØåáÞÞÑàÐÖÕÝØÙÛÕÓÚÞßÞÛãçØâì,çâÞ×ÝÐçÕÝØÕÞßàÕÔÕ

ÛñÝÝÞÓÞØÝâÕÓàÐÛÐäãÝÚæØØ
f
(
x
)ÝÐÞâàÕ×ÚÕ
[
a
,
b
]
,ÒëçØáÛÕÝÝÞÓÞáßÞÜÞéìî
ÜÕâÞÔÐâàÐßÕæØÙ,áãçÕâÞÜßÞÓàÕèÝÞáâØÜÕâÞÔÐÑãÔÕâßàØÑÛØ×ØâÕÛìÝÞàÐÒ

ÝÞ
I

n

1
X
i
=
0
f
(
x
i
)
+
f
(
x
i
+
1
)
2
=
b

a
n
n

1
X
i
=
0
f
(
x
i
)
+
f
(
x
i
+
1
)
2
.(1.6)
¼ÕâÞÔ¼ÞÝâÕ
-
ºÐàÛÞ
¼ÕâÞÔ¼ÞÝâÕ
-
ºÐàÛÞçÐáâÞßàØÜÕÝïÕâáïÔÛïÒëçØáÛÕÝØïßàÞáâëåØ
ÚàÐâÝëåØÝâÕÓàÐÛÞÒ.¿àÕÔßÞÛÞÖØÜ,çâÞÝÕÞÑåÞÔØÜÞÒ×ïâìØÝâÕÓàÐÛÞâ
ÝÕÚÞâÞàÞÙäãÝÚæØØ
f
(
x
).²ÞáßÞÛì×ãÕÜáïÓÕÞÜÕâàØçÕáÚØÜáÒÞÙáâÒÞÜÞßàÕ

ÔÕÛñÝÝÞÓÞØÝâÕÓàÐÛÐ,×ÝÐçÕÝØÕÚÞâÞàÞÓÞçØáÛÕÝÝÞàÐÒÝÞßÛÞéÐÔØßÞÔÓàÐ

äØÚÞÜäãÝÚæØØ.´ÛïÞßàÕÔÕÛÕÝØïíâÞÙßÛÞéÐÔØÜÞÖÝÞØáßÞÛì×ÞÒÐâìáÛÕ

ÔãîéØÙáâÞåÐáâØçÕáÚØÙÐÛÓÞàØâÜ(àØá.6):
ˆ
ÞÓàÐÝØçØÜáÒÕàåãäãÝÚæØî
f
(
x
)ßàïÜÞÙ
y
=
h
,âÐÚÞÙçâÞ
h

f
(
x
)
ÔÛïÛîÑÞÓÞ
x
2
[
a
,
b
];
ˆ
ØáßÞÛì×ãïáâÐÝÔÐàâÝãîäÞàÜãÛã,ÒëçØáÛØÜßÛÞéÐÔìÞÓàÐÝØçØÒÐ

îéÕÓÞßàïÜÞãÓÞÛìÝØÚÐ
S
ßà
=
(
b

a
)
h
;
ˆ
áÛãçÐÙÝëÜÞÑàÐ×ÞÜÒÝãâàìßÞÛãçÕÝÝÞÓÞßàïÜÞãÓÞÛìÝØÚÐ

ÒëÑàÞ

áØÜ

ÝÕÚÞâÞàÞÕÚÞÛØçÕáâÒÞâÞçÕÚ(
N
èâãÚ);
ÇØáÛÕÝÝëÕÜÕâÞÔë7
ˆ
ÞßàÕÔÕÛØÜçØáÛÞâÞçÕÚ(
K
èâãÚ),ÚÞâÞàëÕßÞßÐÔãâÒÝãâàìäØÓã

àë,ÞÓàÐÝØçÕÝÝÞÙÓàÐäØÚÞÜäãÝÚæØØ,Þáìî
x
,ÐâÐÚÖÕßàïÜëÜØ
x
=
a
Ø
x
=
b
;
ˆ
ÒëçØáÛØÜßÛÞéÐÔìßÞÔÓàÐäØÚÞÜ×ÐÔÐÝÝÞÙäãÝÚæØØ
S

K
N
S
ßà
=
K
N
(
b

a
)
h
.(1.7)
ÀØá.6.
ÇØáÛÕÝÝÞÕØÝâÕÓàØàÞÒÐÝØÕÜÕâÞÔÞܼÞÝâÕ
-
ºÐàÛÞ
ÁÜëáÛÒëàÐÖÕÝØï(1.7)×ÐÚÛîçÐÕâáïÒâÞÜ,çâÞßàØÔÞáâÐâÞçÝÞÑÞÛì

èÞÜçØáÛÕØáßëâÐÝØÙÞâÝÞèÕÝØÕçØáÛÐâÞçÕÚ,ßÞßÐÒèØåßÞÔÓàÐäØÚäãÝÚ

æØØ,ÚÞÑéÕÜãçØáÛãâÞçÕÚáâàÕÜØâáïÚÞâÝÞèÕÝØîßÛÞéÐÔÕÙÞÓàÐÝØçØÒÐ

îéÕÓÞßàïÜÞãÓÞÛìÝØÚÐØÚàØÒÞÛØÝÕÙÝÞÙâàÐßÕæØØ.ÍâÞÞ×ÝÐçÐÕâ,çâÞßàØ
n
!1
ØáÚÞÜÐïßÛÞéÐÔì
S
�!
K
N
S
ßà
.(1.8)
¿ÞíâÞÜãÔÛïãÒÕÛØçÕÝØïâÞçÝÞáâØÒëçØáÛÕÝØÙ×ÝÐçÕÝØïØÝâÕÓàÐÛÐ,ßàÞØ×

ÒÞÔØÜëåÔÐÝÝëÜÜÕâÞÔÞÜ,ÝÕÞÑåÞÔØÜÞ:
ˆ
ÜÐÚáØÜÐÛìÝÞßàØÑÛØ×ØâìàÐ×ÜÕàëÞÓàÐÝØçØÒÐîéÕÓÞßàïÜÞãÓÞÛì

ÝØÚÐÚÞÑÛÐáâØ,×ÐÔÐÝÝÞÙÓàÐäØÚÞÜäãÝÚæØØ;
ˆ
ãÒÕÛØçØâìàÐ×ÜÕàÒëÑÞàÚØ(ÚÞÛØçÕáâÒÐ

ÒëÑàÐáëÒÐÕÜëå

âÞçÕÚ).
8ÇØáÛÕÝÝëÕÜÕâÞÔë
ºÞÝÕçÝÞ,ßàØÔÞáâÐâÞçÝÞÜÐÛÞÜÚÞÛØçÕáâÒÕ

ÒëÑàÞèÕÝÝëå

âÞçÕÚâÞç

ÝÞáâìÜÕâÞÔмÞÝâÕ
-
ºÐàÛÞÓÞàÐ×ÔÞÝØÖÕâÞçÝÞáâØ,ßÞÛãçÐÕÜÞÙßàØØá

ßÞÛì×ÞÒÐÝØØÜÕâÞÔÞÒßàïÜÞãÓÞÛìÝØÚÞÒØâàÐßÕæØÙ.ÂÕÜÝÕÜÕÝÕÕ,ÒÝÕÚÞâÞ

àëåáÛãçÐïå,ÚÞÓÔÐØÝâÕÓàØàãÕÜÐïäãÝÚæØï×ÐÔÐÝÐÝÕïÒÝÞØÛØÖÕÞÑÛÐáâì
ØÝâÕÓàØàÞÒÐÝØï×ÐÔÐÝÐÒÒØÔÕáÛÞÖÝëåÝÕàÐÒÕÝáâÒ,áâÞåÐáâØçÕáÚØÙÜÕâÞÔ
ÜÞÖÕâÞÚÐ×ÐâìáïÝÐØÑÞÛÕÕßàÕÔßÞçâØâÕÛìÝëÜ.
ÇØáÛÕÝÝÞÕàÕèÕÝØÕÝÕÛØÝÕÙÝëåãàÐÒÝÕÝØÙ.
½ÕÛØÝÕÙÝëÜØ
ãàÐÒÝÕÝØïÜØÝÐ×ëÒÐîâãàÐÒÝÕÝØï,áÞÔÕàÖÐéØÕÐÛÓÕÑàÐØçÕáÚØÕäãÝÚæØØ:
æÕÛëÕ,àÐæØÞÝÐÛìÝëÕ,ØààÐæØÞÝÐÛìÝëÕ(
ÐÛÓÕÑàÐØçÕáÚØÕãàÐÒÝÕÝØï
),Ð
âÐÚÖÕâàØÓÞÝÞÜÕâàØçÕáÚØÕ,ßÞÚÐ×ÐâÕÛìÝëÕ,ÛÞÓÐàØäÜØçÕáÚØÕØÔàãÓØÕäãÝÚ

æØØ(
âàÐÝáæÕÝÔÕÝâÝëÕãàÐÒÝÕÝØï
).¼ÕâÞÔëàÕèÕÝØïÝÕÛØÝÕÙÝëåãàÐÒ

ÝÕÝØÙÔÕÛïâáïÝÐÔÒÕÓàãßßë:
ˆ
âÞçÝëÕÜÕâÞÔë;
ˆ
ØâÕàÐæØÞÝÝëÕÜÕâÞÔë.
ÂÞçÝëÕÜÕâÞÔë
ßÞ×ÒÞÛïîâ×ÐßØáÐâìÚÞàÝØãàÐÒÝÕÝØïÒÒØÔÕÝÕÚÞ

âÞàÞÓÞÚÞÝÕçÝÞÓÞáÞÞâÝÞèÕÝØï(äÞàÜãÛë).¸×èÚÞÛìÝÞÓÞÚãàáÐÐÛÓÕÑàë
âÐÚØÕÜÕâÞÔëØ×ÒÕáâÝëÔÛïàÕèÕÝØïÝÕÚÞâÞàëåâàØÓÞÝÞÜÕâàØçÕáÚØå,ÛÞÓÐ

àØäÜØçÕáÚØå,ßÞÚÐ×ÐâÕÛìÝëå,ÐâÐÚÖÕßàÞáâÕÙèØåÐÛÓÕÑàÐØçÕáÚØåãàÐÒÝÕ

ÝØÙ.¾ÔÝÐÚÞÜÝÞÓØÕãàÐÒÝÕÝØïÝÕØÜÕîâÐÝÐÛØâØçÕáÚØåàÕèÕÝØÙ.²ßÕàÒãî
ÞçÕàÕÔìíâÞÞâÝÞáØâáïÚÑÞÛìèØÝáâÒãâàÐÝáæÕÝÔÕÝâÝëåãàÐÒÝÕÝØÙØßàÞØ×

ÒÞÛìÝëÜÐÛÓÕÑàÐØçÕáÚØÜãàÐÒÝÕÝØïÜáâÕßÕÝØÒëèÕçÕâÒÕàâÞÙ.ºàÞÜÕâÞÓÞ,
ÒÝÕÚÞâÞàëåáÛãçÐïåãàÐÒÝÕÝØÕÜÞÖÕâáÞÔÕàÖÐâìÚÞíääØæØÕÝâë,Ø×ÒÕáâ

ÝëÕÛØèìßàØÑÛØ×ØâÕÛìÝÞ,Ø,áÛÕÔÞÒÐâÕÛìÝÞ,áÐÜÐ×ÐÔÐçÐÞâÞçÝÞÜÞßàÕ

ÔÕÛÕÝØØÚÞàÝÕÙãàÐÒÝÕÝØïâÕàïÕâáÜëáÛ.´ÛïØåàÕèÕÝØïØáßÞÛì×ãîâáï
ØâÕàÐæØÞÝÝëÕÜÕâÞÔë
.
ÀÕèØâìãàÐÒÝÕÝØÕ
f
(
x
)
=
0(1.9)
ØâÕàÐæØÞÝÝëÜÜÕâÞÔÞÜ

×ÝÐçØâãáâÐÝÞÒØâì,ØÜÕÕâÛØÞÝÞÚÞàÝØ,ÞßàÕÔÕ

ÛØâìÚÞÛØçÕáâÒÞÚÞàÝÕÙØÝÐÙâØ×ÝÐçÕÝØïÚÞàÝÕÙá×ÐÔÐÝÝÞÙâÞçÝÞáâìî.
¿ÞíâÞÜã×ÐÔÐçÐÝÐåÞÖÔÕÝØïÚÞàÝÕÙãàÐÒÝÕÝØïØâÕàÐæØÞÝÝëÜÜÕâÞÔÞÜáÞ

áâÞØâØ×ÔÒãåíâÐßÞÒ:
ˆ
ÞâÔÕÛÕÝØÕÚÞàÝÕÙ

ÝÐåÞÖÔÕÝØÕÞâàÕ×ÚÞÒ,áÞÔÕàÖÐéØåâÞÛìÚÞ
ÞÔØÝÚÞàÕÝìãàÐÒÝÕÝØï,Ø,ÕáÛØíâÞÝÕÞÑåÞÔØÜÞ,ÒëÑÞàÝÐçÐÛì

ÝÞÓÞßàØÑÛØÖÕÝØï(ßÕàÒÞÓÞßàØÑÛØÖñÝÝÞÓÞ×ÝÐçÕÝØïÚÞàÝï)ÔÛï
ÚÐÖÔÞÓÞØ×íâØåÞâàÕ×ÚÞÒ;
ˆ
ãâÞçÝÕÝØÕßàØÑÛØÖñÝÝëå×ÝÐçÕÝØÙÚÞàÝÕÙ
ÔÞ×ÐÔÐÝÝÞÙáâÕ

ßÕÝØâÞçÝÞáâØ.
¿àÞæÕááÞâÔÕÛÕÝØïÚÞàÝÕÙÝÐçØÝÐÕâáïáãáâÐÝÞÒÛÕÝØï×ÝÐÚÞÒäãÝÚæØØ
f
(
x
)ÒÓàÐÝØçÝëåâÞçÚÐåÞÑÛÐáâØÕÕáãéÕáâÒÞÒÐÝØï
x
=
a
Ø
x
=
b
.¿àØÑÛØ

ÇØáÛÕÝÝëÕÜÕâÞÔë9
ÖñÝÝëÕ×ÝÐçÕÝØïÚÞàÝÕÙ(
ÝÐçÐÛìÝëÕßàØÑÛØÖÕÝØï
)ÜÞÓãâÑëâìØ×ÒÕáâÝë
Ø×äØ×ØçÕáÚÞÓÞáÜëáÛÐ×ÐÔÐçØ,Ø×àÕèÕÝØïÐÝÐÛÞÓØçÝÞÙ×ÐÔÐçØßàØÔàãÓØå
ØáåÞÔÝëåÔÐÝÝëåØÛØÜÞÓãâÑëâìÝÐÙÔÕÝëÓàÐäØçÕáÚØÜáßÞáÞÑÞÜ.
²ØÝÖÕÝÕàÝÞÙßàÐÚâØÚÕÝÐØÑÞÛÕÕàÐáßàÞáâàÐÝÕÝÓàÐäØçÕáÚØÙáßÞáÞÑ
ÞßàÕÔÕÛÕÝØïßàØÑÛØÖñÝÝÞÓÞ×ÝÐçÕÝØïÚÞàÝÕÙ.¿àØÝØÜÐïÒÞÒÝØÜÐÝØÕ,çâÞ
ÔÕÙáâÒØâÕÛìÝëÕÚÞàÝØãàÐÒÝÕÝØï

íâÞâÞçÚØßÕàÕáÕçÕÝØïÓàÐäØÚÐäãÝÚ

æØØ
f
(
x
)áÞáìîÐÑáæØáá,ÔÞáâÐâÞçÝÞßÞáâàÞØâìÓàÐäØÚíâÞÙäãÝÚæØØØ
ÞâÜÕâØâìâÞçÚØÕñßÕàÕáÕçÕÝØïáÞáìî
¾å
ØÛØÞâÜÕâØâìÝÐÞáØ
¾å
ÞâàÕ×

ÚØ,áÞÔÕàÖÐéØÕßÞÞÔÝÞÜãÚÞàÝî.
¾ßàÕÔÕÛïâìßàØÑÛØÖñÝÝëÕ×ÝÐçÕÝØïÚÞàÝÕÙãàÐÒÝÕÝØïÓàÐäØçÕáÚØÜ
áßÞáÞÑÞÜãÔÞÑÝÞáßÞÜÞéìîáØáâÕÜÚÞÜßìîâÕàÝÞÙÐÛÓÕÑàëØÛØÓàÐäÞ

ßÞáâàÞØâÕÛÕÙ.²ÞáßÞÛì×ÞÒÐÒèØáìáÞÞâÒÕâáâÒãîéÕÙäãÝæØÕÙßÞáâàÞÕÝØï
ÓàÐäØÚÞÒ,ÜÞÖÝÞÞßàÕÔÕÛØâìÞÑéØÙÒØÔäãÝÚæØØ,ÐâÐÚÖÕßãâñÜßÞáÛÕÔÞ

ÒÐâÕÛìÝëåßàØÑÛØÖÕÝØÙ(ÒëÑØàÐïàÐ×ÝëÕÞâàÕ×ÚØÔÛïßÞáâàÞÕÝØï)ÝÐÙâØ
ÝãÖÝëÙÞâàÕ×ÞÚ,áÞÔÕàÖÐéØÙÚÞàÕÝìãàÐÒÝÕÝØïØãÔÞÒÛÕâÒÞàïîéØÙãáÛÞ

ÒØïÜßÞáâÐÝÞÒÚØ×ÐÔÐçØ.
¸âÕàÐæØÞÝÝëÙßàÞæÕááßÞÛãçÕÝØïßàØÑÛØÖñÝÝÞÓÞ×ÝÐçÕÝØïÚÞàÝïãàÐÒ

ÝÕÝØï×ÐÔÐÝÝÞÙâÞçÝÞáâØáÞáâÞØâÒßÞáÛÕÔÞÒÐâÕÛìÝÞÜãâÞçÝÕÝØØÝÐçÐÛìÝÞ

ÓÞßàØÑÛØÖÕÝØï
å
0
ØÛØÖÕãÜÕÝìèÕÝØïáÞÔÕàÖÐéÕÓÞÕÓÞÞâàÕ×ÚÐ.ºÐÖ

ÔëÙâÐÚÞÙèÐÓÝÐ×ëÒÐÕâáï
ØâÕàÐæØÕÙ
.²àÕ×ãÛìâÐâÕÒëßÞÛÝÕÝØïØâÕàÐæØ

ÞÝÝÞÓÞßàÞæÕááÐßÞÛãçÐÕâáïßÞáÛÕÔÞÒÐâÕÛìÝÞáâìßàØÑÛØÖñÝÝëå×ÝÐçÕÝØÙ
ÚÞàÝï
å
1
,
å
2
,...,
å
n
.µáÛØíâØ×ÝÐçÕÝØïáãÒÕÛØçÕÝØÕÜçØáÛÐØâÕàÐæØÙ
n
ßàØÑÛØÖÐîâáïÚØáâØÝÝÞÜã×ÝÐçÕÝØîÚÞàÝï,âÞÓÞÒÞàïâ,çâÞØâÕàÐæØÞÝÝëÙ
ßàÞæÕáááåÞÔØâáï.
¼ÕâÞÔÔÕÛÕÝØïÞâàÕ×ÚÐßÞßÞÛÐÜ(ÔØåÞâÞÜØØ)
ÁÐÜëÜßàÞáâëÜáàÕÔØÜÕâÞÔÞÒãâÞçÝÕÝØïÚÞàÝÕÙïÒÛïÕâáïÜÕâÞÔÔÕÛÕ

ÝØïÞâàÕ×ÚÐßÞßÞÛÐÜ(ÜÕâÞÔÔØåÞâÞÜØØ).¸áßÞÛì×ÞÒÐÝØÕíâÞÓÞÜÕâÞÔÐÔÛï
àÕèÕÝØïãàÐÒÝÕÝØï(1.9)ÒÞ×ÜÞÖÝÞÛØèìÒâÞÜáÛãçÐÕ,ÚÞÓÔÐäãÝÚæØï
f
(
x
)
ãÔÞÒÛÕâÒÞàïÕâáÛÕÔãîéØÜãáÛÞÒØïÜ:
ˆ
äãÝÚæØï
f
(
x
)ÝÕßàÕàëÒÝÐÝÐÞâàÕ×ÚÕ[
a
,
b
];
ˆ
×ÝÐçÕÝØïäãÝÚæØØ
f
(
x
)ÝÐÚÞÝæÐåÞâàÕ×ÚÐØÜÕîâàÐ×ÝëÕ×ÝÐÚØ
(
f
(
a
)

f
(
b
)

0);
ˆ
ÞâàÕ×ÞÚ[
a
,
b
]áÞÔÕàÖØââÞÛìÚÞÞÔØÝÚÞàÕÝìãàÐÒÝÕÝØï.
¼ÕâÞÔÔØåÞâÞÜØØ×ÐÚÛîçÐÕâáïÒßÞáÛÕÔÞÒÐâÕÛìÝÞÜãÜÕÝìèÕÝØØÞâàÕ×

ÚÐ,áÞÔÕàÖÐéÕÓÞÚÞàÕÝìãàÐÒÝÕÝØï,ßãâÕÜÕÓÞÔÕÛÕÝØïßÞßÞÛÐÜ.¿ãáâìâÞç

ÚÐ
c
ïÒÛïÕâáïáÕàÕÔØÝÞÙÞâàÕ×ÚÐ[
a
,
b
],âÞÓÔÐÕÕ×ÝÐçÕÝØÕÜÞÖÝÞÒëçØáÛØâì
ßÞäÞàÜãÛÕ
c
=
a
+
b
2
.(1.10)
10ÇØáÛÕÝÝëÕÜÕâÞÔë
²ÞÑéÕÜáÛãçÐÕâÞçÚÐ
á
ÜÞÖÕâáÞÒßÐáâìáÚÞàÝÕÜàÐááÜÐâàØÒÐÕÜÞÓÞ
ãàÐÒÝÕÝØï(ßàØíâÞÜ×ÝÐçÕÝØÕäãÝÚæØØ
f
(
x
)ÒâÞçÚÕ
c
àÐÒÝÞÝãÛî),ØÛØÖÕ
ÚÞàÕÝìãàÐÒÝÕÝØïÑãÔÕâßàØÝÐÔÛÕÖÐâìÞÔÝÞÜãØ×ÞâàÕ×ÚÞÒ[
a
,
c
]ØÛØ[
c
,
b
].
ÁÔÕÛÐâìÒëÑÞàÞâàÕ×ÚÐÜÞÖÝÞ,àÐááÜÞâàÕÒ×ÝÐÚØäãÝÚæØØ
f
(
x
)ÝÐÚÞÝæÐå
ÚÐÖÔÞÓÞØ×ÝØå.½ÕâàãÔÝÞßÞÚÐ×Ðâì,çâÞÚÞàÕÝìãàÐÒÝÕÝØïßàØÝÐÔÛÕÖØââÞ

ÜãÞâàÕ×Úã,ÝÐÚÞâÞàÞÜäãÝÚæØïÜÕÝïÕâ×ÝÐÚ(ßÕàÕáÕÚÐÕâÞáì
Ox
).¿ÞíâÞÜã
ÒëÑÞàÞâàÕ×ÚÐÞßàÕÔÕÛØÜáÛÕÔãîéØÜÞÑàÐ×ÞÜ.µáÛØ
f
(
a
)

f
(
c
)

0,âÞÒëÑØàÐÕâáïÞâàÕ×ÞÚ[
a
,
c
].²ßàÞâØÒÝÞÜáÛãçÐÕÒëÑØàÐ

ÕâáïÞâàÕ×ÞÚ[
c
,
b
].
´ÐÛÕÕØâÕàÐæØÞÝÝëÙßàÞæÕááßàÞÔÞÛÖÐÕâáïßãâÕÜÔÕÛÕÝØïÝÞÒÞÓÞÞâ

àÕ×ÚÐ,ßÞáÛÕçÕÓÞÞÔÝÐØ×ÕÓÞßÞÛÞÒØÝÒëÑØàÐÕâáïÝÐÞáÝÞÒÕÞßØáÐÝÝëå
ÒëèÕãáÛÞÒØÙ(àØá.7).ÂÐÚØÜÞÑàÐ×ÞÜ,ßÞÛãçÐÕâáïáØáâÕÜÐÞâàÕ×ÚÞÒ,áåÞ

ÔïéØåáïÚÞÔÝÞÙâÞçÚÕ

âÞçÝÞÜã×ÝÐçÕÝØîÚÞàÝïãàÐÒÝÕÝØï.·ÐÒÕàèØâì
ØâÕàÐæØÞÝÝëÙßàÞæÕáááÛÕÔãÕââÞÓÔÐ,ÚÞÓÔÐàÐááâÞïÝØÕÜÕÖÔãÓàÐÝØçÝëÜØ
âÞçÚÐÜØÝÞÒÞÓÞÞâàÕ×ÚÐ
a
Ø
b
áâÐÝÕâÜÕÝìèÕ×ÐÔÐÝÝÞÙâÞçÝÞáâØ
"
:
(
b

a
)
"
.(1.11)
¿àØíâÞÜßÞáÛÕÔÝÕÕ×ÝÐçÕÝØÕâÞçÚØ
c
ÜÞÖÝÞáçØâÐâìßàØÑÛØÖñÝÝëÜ×ÝÐ

çÕÝØÕÜÚÞàÝïãàÐÒÝÕÝØï,ÝÐÙÔÕÝÝëÜáßÞÓàÕèÝÞáâìî
"
.
ÀØá.7.
ÇØáÛÕÝÝÞÕàÕèÕÝØÕãàÐÒÝÕÝØïÜÕâÞÔÞÜÔØåÞâÞÜØØ
ÇØáÛÕÝÝëÕÜÕâÞÔë11
¼ÕâÞÔåÞàÔ
¼ÕâÞÔåÞàÔ

ØâÕàÐæØÞÝÝëÙßàÞæÕáá,ÒÚÞâÞàÞÜáâàÞØâáïáØáâÕÜÐ
ßÞáÛÕÔÞÒÐâÕÛìÝëåßàØÑÛØÖÕÝØÙ(âÞçÕÚ,áâàÕÜïéØåáïÚÚÞàÝîØáåÞÔÝÞÓÞ
ãàÐÒÝÕÝØï),ÚÞâÞàëÕßÞÛãçÐîâáïßàØßÕàÕáÕçÕÝØØáâàÞïéØåáïåÞàÔáÞáìî
ÐÑáæØáá.ºÐÖÔÐïÝÞÒÐïåÞàÔÐßàÞåÞÔØâçÕàÕ××ÝÐçÕÝØÕäãÝÚæØØÝÐÞÔÝÞÜ
Ø×ÚÞÝæÞÒÞâàÕ×ÚÐ[
a
,
b
](×ÐÒØáØâÞâÒØÔÐäãÝÚæØØ)Ø×ÝÐçÕÝØÕäãÝÚæØØÒ
âÞçÚÕßàÕÔëÔãéÕÓÞßàØÑÛØÖÕÝØï(àØá.8).
¸âÐÚ,ßãáâìÔÛïäãÝÚæØØ
f
(
x
)Ø×ãàÐÒÝÕÝØï(1.9)ÒëßÞÛÝïîâáïáÛÕÔãî

éØÕãáÛÞÒØï:
ˆ
äãÝÚæØï
f
(
x
)ÝÕßàÕàëÒÝÐÝÐÞâàÕ×ÚÕ[
a
,
b
];
ˆ
×ÝÐçÕÝØïäãÝÚæØØ
f
(
x
)ÝÐÚÞÝæÐåÞâàÕ×ÚÐØÜÕîâàÐ×ÝëÕ×ÝÐÚØ
(
f
(
a
)

f
(
b
)

0);
ˆ
ÞâàÕ×ÞÚ[
a
,
b
]áÞÔÕàÖØââÞÛìÚÞÞÔØÝÚÞàÕÝìãàÐÒÝÕÝØï.
²ÜÕâÞÔÕåÞàÔ,âÐÚÖÕ,ÚÐÚØÒÜÕâÞÔÕÔØåÞâÞÜØØ,ØáßÞÛì×ãÕâáïÜÕ

åÐÝØ×ÜÔÕÛÕÝØïÞâàÕ×ÚÐ.½ÞÕáÛØÒÜÕâÞÔÕÔØåÞâÞÜØØàÐ×ÑØÕÝØÕÞâàÕ×ÚÐ
ßàÞØ×ÒÞÔØâáïÝÐÔÒÕàÐÒÝëÕçÐáâØ,âÞÒÜÕâÞÔÕåÞàÔØáßÞÛì×ãÕâáïÔÕÛÕÝØÕ,
ßàÞßÞàæØÞÝÐÛìÝÞÕ×ÝÐçÕÝØïÜäãÝÚæØØ,ÚÞâÞàëÕÞÝÐßàØÝØÜÐÕâÝÐáÒÞØå
ÚÞÝæÐå.¾ÑÞ×ÝÐçØÜçÕàÕ×
x
1
,
x
2
,...,
x
n
âÞçÚØàÐ×ÑØÕÝØïÞâàÕ×ÚÐ,çÕàÕ×ÚÞ

âÞàëÕßàÞåÞÔïâáâàÞïéØÕáïåÞàÔë.½Ð×ÞÒÕÜíâØâÞçÚØßÞáÛÕÔÞÒÐâÕÛìÝëÜØ
ßàØÑÛØÖÕÝØïÜØÚÞàÝïãàÐÒÝÕÝØïØßÞÛãçØÜáÞÞâÝÞèÕÝØïÔÛïÒëçØáÛÕÝØï
Øå×ÝÐçÕÝØÙ.´ÛïíâÞÓÞÝÐßØèÕÜãàÐÒÝÕÝØÕåÞàÔë
y

f
(
a
)
f
(
b
)

f
(
a
)
=
x

a
b

a
.(1.12)
²âÞçÚÕßÕàÕáÕçÕÝØïåÞàÔëáÞáìîÐÑáæØáá
x
=
x
1

y
=
0.¿ÞÔáâÐ

ÒØÜíâØ×ÝÐçÕÝØÕÒãàÐÒÝÕÝØÕ(1.12)ØßÞÛãçØÜÝÞÒÞÕáÞÞâÝÞèÕÝØÕÔÛï
ÒëçØáÛÕÝØï×ÝÐçÕÝØï
x
1
:
x
1
=
a

f
(
a
)
f
(
b
)

f
(
a
)
(
b

a
).(1.13)
·ÐÜÕâØÜ,çâÞ×ÔÕáì,âÐÚÖÕ,ÚÐÚØÒÜÕâÞÔÕÔØåÞâÞÜØØ,ÒÞ×ÜÞÖÝëÔÒÕ
áØâãÐæØØ,ÚÞÓÔÐØáÚÞÜëÙÚÞàÕÝìãàÐÒÝÕÝØïßàØÝÐÔÛÕÖØâÞâàÕ×Úã[
a
,
x
1
]
ØÛØ[
x
1
,
b
].¿ÞíâÞÜãÒëÑÞàÞâàÕ×ÚÐÞßàÕÔÕÛØÜâÐÚØÜÖÕÞÑàÐ×ÞÜ.µáÛØ
f
(
a
)

f
(
x
1
)

0,âÞÒëÑØàÐÕâáïÞâàÕ×ÞÚ[
a
,
x
1
].²ßàÞâØÒÝÞÜáÛãçÐÕÒëÑØ

àÐÕâáïÞâàÕ×ÞÚ[
x
1
,
b
].
´ÐÛÕÕØâÕàÐæØÞÝÝëÙßàÞæÕááßàÞÔÞÛÖÐÕâáïßãâÕÜÔÕÛÕÝØïÝÞÒÞÓÞÞâ

àÕ×ÚÐ[
a
,
b
],ßÞáÛÕçÕÓÞÞÔÝÐØ×ÕÓÞçÐáâÕÙÒëÑØàÐÕâáïÝÐÞáÝÞÒÕÞßØáÐÝÝëå
ÒëèÕãáÛÞÒØÙ(àØá.8).·ÝÐçÕÝØÕÝÞÒÞÓÞßàØÑÛØÖÕÝØïÚÞàÝïßÞáÛÕØ×ÜÕ

12ÇØáÛÕÝÝëÕÜÕâÞÔë
ÀØá.8.
ÇØáÛÕÝÝÞÕàÕèÕÝØÕãàÐÒÝÕÝØïÜÕâÞÔÞÜåÞàÔ
ÝÕÝØïÓàÐÝØæÞâàÕ×ÚÐÒëçØáÛïÕâáïÐÝÐÛÞÓØçÝÞ:
x
i
=
a

f
(
a
)
f
(
b
)

f
(
a
)
(
b

a
).(1.14)
ÂÐÚØÜÞÑàÐ×ÞÜ,ßÞÛãçÐÕâáïßÞáÛÕÔÞÒÐâÕÛìÝÞáâìßàØÑÛØÖÕÝØÙ
x
1
,
x
2
,...,
x
n
,
áåÞÔïéØåáïÚØáÚÞÜÞÙâÞçÚÕ

âÞçÝÞÜã×ÝÐçÕÝØîÚÞàÝïãàÐÒÝÕÝØï.
´ÛïäãÝÚæØØÞÑéÕÓÞÒØÔÐÝÐßØáÐÝØÕÚàØâÕàØï×ÐÒÕàèÕÝØïØâÕàÐæØ

ÞÝÝÞÓÞßàÞæÕááÐïÒÛïÕâáïÔÞáâÐâÞçÝÞáÛÞÖÝÞÙØÝÕÞÔÝÞ×ÝÐçÝÞÙ×ÐÔÐçÕÙ,
ßÞíâÞÜãÒÔÐÛìÝÕÙèÕÜÑãÔÕÜáçØâÐâì,çâÞÔÛïàÐááÜÐâàØÒÐÕÜëåäãÝÚæØÙ
ÔÞáâÐâÞçÝëÜãáÛÞÒØÕÜ,ÞßàÕÔÕÛïîéØÜÑÛØ×ÞáâìßàØÑÛØÖÕÝØïÚâÞçÝÞÜã
×ÝÐçÕÝØîÚÞàÝïãàÐÒÝÕÝØï,ÑãÔÕâãáÛÞÒØÕ
j
x
i
+
1

x
i
j
"
,(1.15)
ÓÔÕ
"

×ÐÔÐÝÝÐïßÞÓàÕèÝÞáâìÒëçØáÛÕÝØÙ.
¿àØíâÞÜßÞÛãçÕÝÝÐïÒàÕ×ãÛìâÐâÕÒëçØáÛÕÝØÙßÞáÛÕÔÝïïâÞçÚÐ
x
n
ÝÐ

×ëÒÐÕâáïßàØÑÛØÖñÝÝëÜ×ÝÐçÕÝØÕÜÚÞàÝïãàÐÒÝÕÝØï,ÝÐÙÔÕÝÝëÜáßÞÓàÕè

ÝÞáâìî
"
.´ÐÛÕÕ,ÝÐàØáãÝÚÕ9,ßàØÒÕÔÕÝëßàØÜÕàëâÞÓÞ,ÚÐÚØ×ÜÕÝïîâáï
ÓàÐÝØæëÞâàÕ×ÚÐ[
a
,
b
]ÒáÛãçÐïå,ÚÞÓÔÐßÕàÒÐïØÒâÞàÐïßàÞØ×ÒÞÔÝëÕäãÝÚ

æØØ
f
(
x
)ÝÐÒáñÜÞâàÕ×ÚÕáÞåàÐÝïîâßÞáâÞïÝÝëÙ×ÝÐÚ.
ÇØáÛÕÝÝëÕÜÕâÞÔë13
ÀØá.9.
¸×ÜÕÝÕÝØÕÓàÐÝØæÞâàÕ×ÚÐÒÜÕâÞÔÕåÞàÔÒáÛãçÐïå,ÚÞÓÔÐßÕàÒÐïØ
ÒâÞàÐïßàÞØ×ÒÞÔÝëÕäãÝÚæØØÝÐÒáñÜÞâàÕ×ÚÕáÞåàÐÝïîâßÞáâÞïÝÝëÙ×ÝÐÚ
¼ÕâÞÔÚÐáÐâÕÛìÝëå(½ìîâÞÝÐ)
¼ÕâÞÔÚÐáÐâÕÛìÝëå

ØâÕàÐæØÞÝÝëÙßàÞæÕáá,ÒÚÞâÞàÞÜáâàÞØâáïáØ

áâÕÜÐßÞáÛÕÔÞÒÐâÕÛìÝëåßàØÑÛØÖÕÝØÙ,ßÞÛãçÐîéØåáïßàØßÕàÕáÕçÕÝØØÝÞ

ÒÞÙÚÐáÐâÕÛìÝÞÙáÞáìîÐÑáæØáá.ºÐÖÔÐïÝÞÒÐïÚÐáÐâÕÛìÝÐïÚäãÝÚæØØ
áâàÞØâáïÒâÞçÚÕßàÕÔëÔãéÕÓÞßàØÑÛØÖÕÝØï(àØá.10).
²ÞâÛØçØÕÞâÜÕâÞÔÞÒÔØåÞâÞÜØØØåÞàÔ,ÒÜÕâÞÔÕ½ìîâÞÝÐÚäãÝÚæØØ
f
(
x
)ßàÕÔêïÒÛïîâáïÑÞÛÕÕáâàÞÓØÕâàÕÑÞÒÐÝØï,ÐØÜÕÝÝÞ:
ˆ
äãÝÚæØï
f
(
x
)ÔÞÛÖÝÐÑëâìÝÕßàÕàëÒÝÐÝÐÞâàÕ×ÚÕ[
a
,
b
]ÒÜÕáâÕáÞ
áÒÞØÜØßàÞØ×ÒÞÔÝëÜØ1
-
ÓÞØ2
-
ÓÞßÞàïÔÚÐ;
ˆ
×ÝÐçÕÝØïäãÝÚæØØ
f
(
x
)ÝÐÚÞÝæÐåÞâàÕ×ÚÐÔÞÛÖÝëØÜÕâìàÐ×ÝëÕ
×ÝÐÚØ(
f
(
a
)

f
(
b
)

0);
ˆ
ßÕàÒÐïØÒâÞàÐïßàÞØ×ÒÞÔÝëÕäãÝÚæØØ
f
0
(
x

f
00
(
x
)ÔÞÛÖÝëáÞ

åàÐÝïâìßÞáâÞïÝÝëÙ×ÝÐÚÝÐÒáñÜÞâàÕ×ÚÕ.
¿ÕàÒëÕÔÒÐãáÛÞÒØïÓÐàÐÝâØàãîâ,çâÞÝÐÞâàÕ×ÚÕ[
a
,
b
]ÝÐÙÔñâáïåÞâïÑë
ÞÔØÝÚÞàÕÝìãàÐÒÝÕÝØï,ÐØ×ÜÞÝÞâÞÝÝÞáâØßÕàÒÞÙßàÞØ×ÒÞÔÝÞÙÒâàÕâìÕÜ
ãáÛÞÒØØáÛÕÔãÕâ,çâÞäãÝÚæØï
f
(
x
)ÝÐÔÐÝÝÞÜÞâàÕ×ÚÕÑãÔÕâØÜÕâìÕÔØÝ

áâÒÕÝÝëÙÚÞàÕÝì.
·ÐÜÕçÐÝØÕ
.ÂÐÚÚÐÚßÞáâàÞÕÝØÕÚÐáÐâÕÛìÝëåâàÕÑãÕââÞÛìÚÞÞÔÝÞÙâÞç

ÚØ,âÞÒíâÞÜÜÕâÞÔÕÝÕâàÕÑãÕâáïæÕÛØÚÞÜ×ÐÔÐÒÐâìÞâàÕ×ÞÚ,áÞÔÕàÖÐéØÙ
ÚÞàÕÝìãàÐÒÝÕÝØï(1.9),ÐÔÞáâÐâÞçÝÞÝÐÙâØÛØèìÝÕÚÞâÞàÞÕÝÐçÐÛìÝÞÕßàØ

ÑÛØÖÕÝØÕÚÞàÝï
x
=
å
0
.
14ÇØáÛÕÝÝëÕÜÕâÞÔë
ÀØá.10.
ÇØáÛÕÝÝÞÕàÕèÕÝØÕãàÐÒÝÕÝØïÜÕâÞÔÞÜÚÐáÐâÕÛìÝëå
²ëÑÞàÝÐçÐÛìÝÞÓÞßàØÑÛØÖÕÝØï
x
0
×ÐÒØáØâÞâÒØÔÐäãÝÚæØØ
f
(
x
).½Ð
àØáãÝÚÕ11ßàÕÔáâÐÒÛÕÝëçÕâëàÕÒÞ×ÜÞÖÝëåáØâãÐæØØ.²ßÕàÒëåÔÒãåáÛã

çÐïå(aØÑ)ÒÚÐçÕáâÒÕÝÐçÐÛìÝÞÓÞßàØÑÛØÖÕÝØï
x
0
ÒëÑØàÐÕâáïâÞçÚÐ
Ð

ßÞáÛÕÔÞÒÐâÕÛìÝëÕßàØÑÛØÖÕÝØï:
x
0
=
a
,
x
1
,
x
2
,...,
x
n
ÞÑàÐ×ãîâÞÓàÐÝØ

çÕÝÝãîÜÞÝÞâÞÝÝÞÒÞ×àÐáâÐîéãîßÞáÛÕÔÞÒÐâÕÛìÝÞáâì,ßàØçÕÜ
x
0

x
1
:::
x
i

x
i
+
1
:::
x


b
.(1.16)
²ÞáâÐÛìÝëåáÛãçÐïå(ÒØÓ)ÒÚÐçÕáâÒÕ
x
0
ÒëÑØàÐÕâáïâÞçÚÐ
b
,ØßÞáÛÕ

ÔÞÒÐâÕÛìÝëÕßàØÑÛØÖÕÝØï:
x
0
=
b
,
x
1
,
x
2
,...,
x
n
ÞÑàÐ×ãîâÞÓàÐÝØçÕÝÝãî
ÜÞÝÞâÞÝÝÞãÑëÒÐîéãîßÞáÛÕÔÞÒÐâÕÛìÝÞáâì,ßàØçÕÜ
a

x

:::
x
i
+
1

x
i
:::
x
1

x
0
.(1.17)
»ÕÓÚÞ×ÐÜÕâØâì,çâÞÒëÑÞàÞÔÝÞÓÞØ×ÞßØáÐÝÝëåáÛãçÐÕÒ×ÐÒØáØâÞâ
×ÝÐÚÞÒßÕàÒÞÙØÒâÞàÞÙßàÞØ×ÒÞÔÝëåäãÝÚæØØ
f
(
x
).ÁÞáâÐÒØÜâÐÑÛØæãØå
×ÝÐçÕÝØÙÔÛïÚÐÖÔÞÓÞáÛãçÐï.
Ð
Ñ
Ò
Ó
f
0
(
x
)
+

+

f
00
(
x
)

+
+

¸×âÐÑÛØæëÒØÔÝÞ,çâÞÒßÕàÒÞÜáÛãçÐÕ×ÝÐÚØßàÞØ×ÒÞÔÝëåÞâÛØçÝëÔàãÓÞâ
ÔàãÓÐ,ÐÒÒÞÒâÞàÞÜáÛãçÐÕ

ÞÔØÝÐÚÞÒë.ÂÐÚØÜÞÑàÐ×ÞÜ,ÕáÛØ
f
0
(
x
)

f
00
(
x
)

0,âÞÒÚÐçÕáâÒÕ
x
0
ÒëÑØàÐÕâáïâÞçÚÐ
a
,ØÝÐçÕ

âÞçÚÐ
b
.
ÇØáÛÕÝÝëÕÜÕâÞÔë15
Ð)
Ñ)
Ò)
Ó)
ÀØá.11.
²ëÑÞàÝÐçÐÛìÝÞÓÞßàØÑÛØÖÕÝØïÒÜÕâÞÔÕÚÐáÐâÕÛìÝëå
¿ÞÛãçØÜáÞÞâÝÞèÕÝØïÔÛïßÞáÛÕÔÞÒÐâÕÛìÝÞÓÞÒëçØáÛÕÝØïßàØÑÛØÖñÝ

Ýëå×ÝÐçÕÝØÙÚÞàÝïãàÐÒÝÕÝØï
x
1
,
x
2
,...,
x
n
.´ÛïíâÞÓÞÝÐßØèÕÜãàÐÒÝÕÝØÕ
ÚÐáÐâÕÛìÝÞÙ,ßàÞÒÕÔÕÝÝÞÙÚÚàØÒÞÙ
y
=
f
(
x
)çÕàÕ×âÞçÚãáÚÞÞàÔØÝÐâÐÜØ
å
0
Ø
f
(
å
0
):
y

f
(
x
0
)
=
f
0
(
x
0
)(
x

x
0
).(1.18)
²âÞçÚÕßÕàÕáÕçÕÝØïÚÐáÐâÕÛìÝÞÙáÞáìîÐÑáæØáá
x
=
x
1

y
=
0.
¿ÞÔáâÐÒØÜíâØ×ÝÐçÕÝØïÒãàÐÒÝÕÝØÕ(1.18)ØßÞÛãçØÜÝÞÒÞÕáÞÞâÝÞèÕÝØÕ
ÔÛïÒëçØáÛÕÝØï×ÝÐçÕÝØïßÕàÒÞÓÞßàØÑÛØÖÕÝØï
x
1
:
x
1
=
x
0

f
(
x
0
)
f
0
(
x
0
)
.(1.19)
°ÝÐÛÞÓØçÝÞÜÞÓãâÑëâìßÞÛãçÕÝëáÞÞâÝÞèÕÝØïÔÛïßÞáÛÕÔãîéØåßàØ

ÑÛØÖÕÝØÙ,ÚÞâÞàëÕßÞÛãçÐîâáïÒàÕ×ãÛìâÐâÕßÕàÕáÕçÕÝØïáÞáìîÐÑáæØáá
ÚÐáÐâÕÛìÝëå,ßàÞÒÕÔÕÝÝëåÒâÞçÚÐå(
x
1
,
f
(
x
1
)),(
x
2
,
f
(
x
2
))Øâ.Ô.ÄÞàÜãÛÐ
ÔÛï
i
+
1ßàØÑÛØÖÕÝØïØÜÕÕâÒØÔ:
x
i
+
1
=
x
i

f
(
x
i
)
f
0
(
x
i
)
.(1.20)
16ÇØáÛÕÝÝëÕÜÕâÞÔë
·ÔÕáì,âÐÚÖÕ,ÚÐÚØÒÜÕâÞÔÕåÞàÔ,ÑãÔÕÜàÐááÜÐâàØÒÐâìâÞÛìÚÞâÐÚØÕ
äãÝÚæØØ,ÔÛïÚÞâÞàëåØâÕàÐæØÞÝÝëÙßàÞæÕááÝÕÞÑåÞÔØÜÞÒëßÞÛÝïâìÔÞ
âÕåßÞà,ßÞÚÐÝÕÑãÔÕâÞÑÝÐàãÖÕÝÞ,çâÞ
j
x
i
+
1

x
i
j
"
,(1.21)
ÓÔÕ
"

×ÐÔÐÝÝÐïßÞÓàÕèÝÞáâìÒëçØáÛÕÝØÙ.¿àØíâÞÜßÞÛãçÕÝÝÐïÒàÕ×ãÛì

âÐâÕÒëçØáÛÕÝØÙßÞáÛÕÔÝïïâÞçÚÐ
x
n
ÝÐ×ëÒÐÕâáïßàØÑÛØÖñÝÝëÜ×ÝÐçÕÝØÕÜ
ÚÞàÝïãàÐÒÝÕÝØï,ÝÐÙÔÕÝÝëÜáßÞÓàÕèÝÞáâìî
"
.
´ÐÛÕÕÝÐàØáãÝÚÕ12ßàÕÔáâÐÒÛÕÝßàØÜÕàäãÝÚæØØ
f
(
x
),ÔÛïÚÞâÞàÞÙÝÕ
ÒëßÞÛÝïÕâáïâàÕÑÞÒÐÝØÕ,ÝÐÚÛÐÔëÒÐÕÜÞÕÝÐÕñßàÞØ×ÒÞÔÝëÕ.ºÐÚÒØÔÝÞØ×
ßàØÜÕàÐ,ÒâÐÚÞÜáÛãçÐÕÜÕâÞÔ½ìîâÞÝÐÜÞÖÕâßàØÒÕáâØÚÝÕÚÞààÕÚâÝÞ

ÜãàÕèÕÝØî,ÝÐßàØÜÕà,ÞçÕàÕÔÝÞÕßàØÑÛØÖÕÝØÕÜÞÖÕâÒëÙâØ×ÐßàÕÔÕÛë
ÞâàÕ×ÚÐ[
a
,
b
],ÓÔÕäãÝÚæØïÜÞÖÕâÑëâìÝÕÞßàÕÔÕÛÕÝÐØÛØØÜÕâìÞáÞÑÕÝ

ÝÞáâØ.
ÀØá.12.
¿àØÜÕàÒëßÞÛÝÕÝØïÜÕâÞÔнìîâÞÝÐÔÛïäãÝÚæØØ,ÜÕÝïîéÕÙ×ÝÐ

ÚØáÒÞØåßàÞØ×ÒÞÔÝëåÝÐ×ÐÔÐÝÝÞÜÞâàÕ×ÚÕ

Приложенные файлы

  • pdf 15337853
    Размер файла: 236 kB Загрузок: 0

Добавить комментарий