Қазақстан Республикасының Білім және Ғылым министрлігі


Қазақстан Республикасының Білім және Ғылым министрлігі
Орталық Азия университеті
Факультет: ИТФ
Мамандығы: Биотехнология

205740170815СӨЖ
00СӨЖ


Тақырыбы: «Ферметтер»

Орындаған: Азаматова Г.
Тексерген: Сержанова Д.
Алматы 2015
Ферменттер

Жоспар:
І. Кіріспе
ІІ. Негізгі бөлім
2.1 Ферменттердің жалпы сипаттамасы
2.2 Ферменттердің жалпы қасиеттері
2.3 Ферменттердің атауы және жіктелуі
2.4 Ферменттердің химиялық табиғаты және құрылысы. Коферменттер
ІІІ. Қорытынды
ІV. Пайдаланылған әдебиеттер тізімі



Кіріспe
ХХ ғасырдың екінші жартысынан бастап адамзат қоғамы өте күрделі мəселелерді шешу қажеттілігі алдында бетпе-бет қалды. Олардың қатарында халық санының күрт өсуіне байланысты туындаған азық-түлік тапшылығы, энергия көздерінің жəне табиғи байлықтардың азаюы, адамдардың арасындағы əр түрлі аурулардың көбеюі, қоршаған ортаның ластануы сияқты көптеген өзекті мəселелер еді. Бұл мəселелерді шешу үшін оған жаңа қырынан қарап, ерекше ғылыми шешімдер табу қажет болды. Осындай заман ағымынан туындаған өзекті мəселелердің бірталайын, қазіргі кездің өзінде биотехнология ғылымы ұсынған əдістер арқылы шешу мүмкін болып отыр.
Ғылым мен техника, технологияның қарқынды түрде дамуы
биотехнология саласының да мүмкіндіктерін арттырды. Соның нəтижесінде азық-түліктердің жаңа түрлерін, əртүрлі ауруларға қарсы медициналық дəрі-дəрмектер, альтернативті энергия көздерін алу, ауылшаруашылығында өсімдіктердің зиянкестерімен күресу мен жаңа сұрыптарын шығару, мал өнімділіктерін арттыру жəне экологиялық апат салдарларымен тиімді күресу əдістеріне қол жеткізілді. Мысалы, келешекте көмір, мұнай қорларының азая бастауына байланысты, автомобилдерге қажетті жанар- жағар май ретінде өсімдіктерден алынатын биоэтанолдың маңызы зор болатын болса, медицина мен ветеринария салаларындағы жаңа технологиялар əртүрлі вакциналар, рекомбинантты ДНҚ өнімдері болып табылатын медициналық дəрі- дəрмектерін, атап айтқанда ДНҚ-сынамаларын зерттеу, ДНҚ-дарының бегілі ретпен орналасуын білу арқылы, гендік деңгейде кездесетін мутацияларды анықтау сияқты мүмкіндіктерге қол жеткіздірді.
Биотехнология сөзі гректің үш сөз тіркесінен құралған, яғни «bios – тіршілік, techne – шеберлік, logos – ілім» деген мағынаны білдіреді. Биотехнология ғылымы тірі ағзалардағы жəне олардың тіршілік əрекеттерін техникада кеңінен қолдануға негізделген. Алғаш рет 1917 ж. венгр нженері Карл Эрике биотехнология терминін тірі организмдерден алынатын өнімдерді белгілеу үшін қолданды. К. Эрикенің пайымдауынша «биотехнология дегеніміз – тірі ағзалар арқылы өнім өндірілетін жұмыстардың барлығы» деп түсінген. Бірақта, биотехнологияның ғылым ретінде арнайы мойындалған мерзімі, 1961 жылы шведтік ғалым-микробиолог Карл Геран Хэден, сол кезде шығарылатын «Микробиология, биохимиялық инженерия жəне технология» атты журналды, «Биотехнология жəне биоинженерия» деп атауды ұсынған кезден бастап есептелінеді.Биотехнология ғылымы өз алдына жеке ғылым саласы болып ХХ ғасырдың орта кезеңінен бастап қалыптасты. Қазіргі кезде биотехнология ғылымы биологияның іргелі салаларының біріне айналып отыр. Биотехнологияның кейбір қарапайым əдістерін адам баласы ерте кездерден бастап-ақ күнделікті тұрмыс тіршілігінде пайдалана білген. Биотехнология адамның өміріне маңызды əртүрлі қажетті өнімдерді, микроорганизмдердің, өсімдіктер мен жануарлардың жасушаларын өсіріп-трансплантациялауды техникалық жолмен жүзеге асыратын ғылым.
Ферменттер — барлық тірі организмдер құрамына кіретін арнайы ақуыздар. Химиялық реакциялардьі жеделдетеді. Реакция түрлеріне сай ферменттер 6 топқа бөлінеді:
1.оксидоредуктазалар;
2.трансферазалар;
3.гидролазалар;
4.лиазалар;
5.изомеразалар;
6.лигазалар.
Ферменттер жасушаларда синтезделіп, биохимиялық реакцияларға қатысатын ақуыздық табиғаттағы биокатализатор болып табылады. Фермент немесе энзим (лат. fermentum – ашу; грек. en – ішінде, zim – ашытқы; 19 ғ. Ван Гельмонт ұсынған) алғашқыда ашыту үдерістерінде анықталған зат. Энзимология, ферментология – ферменттерді зерттейтін ғылым саласы. Ол басқа ғылымдармен: биология, генетика, фармакология, химиямен тығыз байланысты. Ферменттердің қызметі туралы алғашқы ғылыми еңбекті Кирхгофф (1814) жариялады. Кейін ашу үдерісі ашытқы жасушаларында ғана өтеді деген ұйғарым жасаған Л. Пастерге (1871), Либих ферменттер жасушалардың өмір сүруіндегі пайда болған өнім, ол жасушада да, олардан бөлек те қызмет атқарады деген қарсы пікір білдірді. Либихтің ғылыми көзқарасы М. Манассейна (1871), Бухнер (1897) зерттеулерінде эксперимент жүзінде дәлелденді. Жасушаларда синтезделген ферменттер өзіне тән арнайы қызметтерін организмнің барлық мүшелерінде атқарады. Ферменттік қасиет, негізінен глобулалық құрылымдағы ақуыздарға тән екені белгілі. Бірақ, қазіргі кезде кейбір фибриллалық ақуыздар да (актин, миозин) катализдік белсенділік көрсететіні анықталды.
Ферменттердің жалпы қасиеттері
Фермент - катализатор қызметін атқаратын ақуыздардың ерекше түрі айтылатыны белгілі. Катализатор дегеніміз – ағзада жүретін химиялық реакциялардың бағытын өзгертетін немесе жүру қарқындылығын арттыратын арнайы молекулалар. Сонымен, ферменттер қатарына бөтен ақуыздарды ыдыратып, немесе реакцияны басқа бағытқа аудара алатын катализаторлар кіреді. Бұл дегеніміз адам үшін өте қажетті заттар түзілетін қажетті реакциялардың бастамасы.
Ферменттердің аса тұрақсыздығына байланысты әсері де көптеген факторларға тәуелді келеді.
Температураның әсері. Ферменттің жоғары активтігі 36-40ºС байқалады. Папаин бұған жатпайды. Оның активтігі 80º та да білінеді, ал каталазаға деген қолайлы температура 0 және 10ºС арасында жатыр. Температура 80-100ºС қа жеткенде фермент өзінің катализдік қабілетін жоғалтады (инактивацияланады) , денатурацияға ұшырайды. Инактивация реакцияның ұзақтығына және табиғатына байланысты.
Кебір ферменттер құрғақ күйінде 120-190ºС салқындыққа дейінгі температураға төзімді келеді. Температураны біртіндеп 37ºС қа дейін жоғарылатса, олардың активтігі қалпына келеді. Ферменттің бұл қасиетін малды қолдан ұрықтандыруға арналған ұрық сұйығын (сперма) сақтау үшін пайдаланады.
Ортаның рН ның әсері.әрбір ферменттің өте жоғары активтік көрсететін қолайлы рН аймағы бар. Мысалы, пепсин рН 1,5-2,5; трипсин рН 8-9; сілекей амилазасы рН 6,9-7; уреаза pH 7,2-8; болғанда ең жоғары активтік көрсетеді.
Талғампаздығы (іріктеушілігі). Әрбір фермент, құылысы жағынан ұқсас тек белгілі бір субстратқа, немесе заттар тоына ғана әсер етеді. Яғни, қайдай да бір басқа заттарға емес, тап сол берілген затқа әсе етуге бейімділігін айтды. Әрбір фермент тек белгілі бір реакцияны ғана катализдейді. Мәселен, уреаза ферменті бір ғана несеп нәрінің ыдырау реакциясын катализдейді. Сахараза тек сахарозаны ыдыратады.
Талғаушылықтың үш негізгі түрін айырады:
Топтық талғаушылық деп ферменттің белгілі бір химиялық байланыстарды үзе отырып заттар тобына әсер етуін айтады. Мысалы, пепсин, трипсин белоктардағы пептидтік байланыстарды гидролиздейді:
Жекелеген талғаушылық деп фрмент тек белгілі бір затқа ғана әсер етеді. Мәселен, каталаза сутек асқын оксидін суға жән оттегіне ыдыратады.
Құрылымдық талғаушылық деп ферменттің тек бір ғана кеңістік изомеріне әсер етіп, оның оптикалық антиподтарын катализдемеуін айтады. Мәселен, фермент моносахаридтердің Д қатарын, табиғи амин қышқылдарының қатарын ғана ыдырата алады.
Ферменттің тағаушылық қасиетінің биологиялық маңызы өте зор, өйткені ферменттер осындай қасиетінің арасында зат алмасу процесін реттеп отырады. Олар рекцияның жылдамдығын қай заттар, қандай бағытта өзгертетінін, өзгеру жолдары белгілейді.
Ферменттердің атауы және жіктелуі
Ферменттердің қазірні атаулары мен жіктеуін 1961 ж. Халықаралық биохимиялық Одақтың Комиссиясы бекіткен.
Ферменттерді екі жолын атайды: жүйелі (рациональдық) және трививальдық (жұмысшы).
Жүйелі бойынша әрбір фермент атауының аодына оның шифры қойылады. Шифр төрт цифрдан құралады. Біріші цифр ферменттің қай класқа жататынын көрсетеді. Екінші цифр оның класс тармағын білдіреді. Үшінші цифр класстармағының түрін аңықтай түседі. Төртінші сан ферменттің осы класс тармағындағы рет нөмерін білдіреді. Ферменттің цифрындағы әрбір цифр бір бірінен нүктемен бөлінеді.
Өте қысқа, әрі пайдануға қолайлы тривиальды атау болып саналады. Ол екі жолмен пайда болады:
1 фермент әсер ететін субстраттың латынша түбіріне «аза» суффиксін жалғау арқылы. Мыс. крахмалды (аmylum) ыдыратушы фермент амилаза.
2 фермент активтендіретін реакцияның атауы «аза» суффиксімен үстеу арқылы. Мыс. гидролаза субстратты судың көмегімен ыдратады. Кейбір ферменттердің тарихи атаулары (пепсин, трипсин және т.б.) қолданылады.
Жаңа жіктеу бойынша белгілі ферменттердің барлығы алты класқа бөінеді.
Оксидоредуктаза сутегінің атомдарын немесе электрондарды бөліп және қосып алу арқылы субстарттың тотығу тотықсыздану процесін үдететін фермент.
Трансфераза атомдардың түрліше оптарының тасымалдану реакциясын катализдейтін фермент. Тасымалдайтын тобының атауына сәйкес метилтрасфераза, аминотрансфераза және т.б. деп аталады.
Гидролаза заттардың түрліше топтарының гидролизіне қатысатын фермент:
а) эстеразалар күрделі эфирлі байланыстарды гидролиздейді.
ә) липаза триглицеридтерді глицерин және май қышқылына ыдыратады.
б) гликозидазалар көмірсулардағы глюкозидтік байланыстарды гидролиздейді. Оларға амилаза, лактаза, мальтаза және т.б. жатады.
в) протеиназалар белоктардағы, полипептидтердегі пептидтік байланыстарды гидролиздейді:
Лиаза еселенген байланысты түзе немесе бұза отырып, түрлі атомдар тобы қосып немесе ажыратып алу реакциясын катализдейтін фермент.
Изомераза изомеризация реакциясын катализдейтін фермент.
Лигаза (синтетаза) АТФ энергиясының есебінен түрлі заттардың синтезделу реакциясын шапшаңдататын фермент.
Тіршілік процестерінің қалыпты өтуі ферменттердің әрекетіне байланысты. Ферментативтік реакциялардың бұзылуы әр түрлі ауруға шалдықтырады.
Сондықтан да, кез келген ферменттің клеткадағы немесе биологиялық сұйықтардағы активтігін анықтау арқылы әр түрлі органлармен тканьдердегі өтіп жатқан өзгерістер жайында мағлұматтар алуға болады.
Ферменттердің химиялық табиғаты және құрылысы. Коферменттер
Ферменттер химиялық табиғаты жағынан белоктық заттар. Ферменттің тездеткіштік қызметі оның малекуласында белок барлығына байланысты. Совет ғалымдары көптеген белоктардың ферментативтік қасиетке ие екендігін дәлеледеді. Мысалы, бұлшық өттердің миозині (В.А.Энгельгардт). Бұл жөнінде К.А.Тимирязевтің өзі былай деп айтқан болатын: «Белок затының бір шеңгелінде бүкіл тірі дененің механизмі берілген». Олай болса ферменттер де, молекуласының құрлысына қарай, белоктар сияқты қарапайым және күрделі болып екі топқа бөліпнеді.
Қарапайым ферменттердің молекуласы тек қана белоктардан тұратын бір компонентті ферменттер болып келеді. Яғни, қарапайым ферменттер дегеніміз бұл қарапайым белоктар. Гидролиздегенде тек амин қышқылдарына ғана ыдырайды. Оған жататындар: рибонуклеаза,пепсин, химотрипсин, папаин, амилалар және т.б. гидролазалар.
Күрделі ферменттер деп күрделі белоктарды айтады.олардың молекуласы белоктық жәнк белосыз заттаодан тұратын екі компоненті ферментер. Белоктың бөлігін апофермент, ал белоксыз бөлігін кофермент немесе простетикалық топ деп атайды. Диализ кезінде белоктық бөлігі диализаторда қалады да, ал белок емес бөлігі емес бөлігі жартылай өткізгіш мембранадан өтіп кетеді. Апоферментсіз коферменсіз активсіз, дәл солай кофермент апоферментсіз активсіз. Металдардың иондары немесе белок емес органикалық заттар күрделі ферменттердің кофакторлары болып келеді. Көптеген ферменттер өзінің активтігін демеуге екі кофактордың да қатысуын керек етеді. Көптеген металдрдың иондары ферменттердің жақсы активаторлары:
Na+, K+, Ca2+,Mg2+, Zn2+, Cu2+, Mn2+, Fe2+ т.т.
Кофакторды (протетикалық топ) әдетте кофермент деп атайды.
Кофферменттер (латын сөзінен «ко» бірге және ферменттер) ферменттің белокты бөлігімен әлсіз байланысқан белок емес органикалық қосылыстардан тұратын бөлігі. Бұған дегидрогеназалар мысал бола алады.
Простетикалық топ деп ферменттің белокты бөлігмен берік байланысқан кофакторын айтады. Мәселен, гемоглобиндегі темірпорфирин комплексі (гем) белокпен берік байланысқан.
Биохимиялық реакцияларда коферментін 2 міндет атқарады: олар күрделі ферменттің активтік орталығын қалыптастыра отырып, ферментті субстрат малекуласымен түйістіреді. Сөйтіп, соңғысының катализдік өзгеруін іске асырады.
Коферменттер катализдік процестің барысында электрондарды, протондары, жекелеген атомдары және олардың топтарын бір субстраттан екіншісіне тасымалдауға қатысады.
Жалпы айтқанда, катализдік процесті фермент өзінің бүкіл молекуласымен жүзеге асырады. Оның белоктық бөлігі ферменттің талдаушылық (іріктеушілік) қасиетін және реакцияның жылдамдығын аңықтайды.
Апофермент субстратты уақытша қосып алады, ал коферменттерді, олардың қызметтері бойынша үш топқа бөлуге болады:
оксидоредуктаза коферменті сутегін және электрондарды тасымалдаушылыр.
трансфераза коферменттері атомдар тобының тасымалдаушылары.
изомераза, лиаза және легаза (синтетаза) коферменттері. Коферменттердің тізімі үш кестеде көрсетілген.
Бұл кестеден көптеген коферменттердің құрамына витаминдер немесе олардың туындылары кіретіндігін байқап отырмыз. Бұдан, витаминдердің жетіспеуі коферменттің түзілуін тежейтіндігін, яғни фермент синтезінің бұзылуына алып келетінін түсінуге болады. Осыдан барып организмде зат алмасуының бұзылуы пайда болады.

Қорытынды
Микроорганиздер ағзаға өте қажетті құрамында көміртекті заттары бар көптеген қосылыстарды синтездей алады. Жануарлар мен өсімдіктермен салыстырғанда, микроорганизмдер арқылы ферменттер алу өте тиімді келеді. Микробтық жасушалары өсіп-даму, тыныс алу жəне өнім түзілуге жауапты түрлі биохимиялық реакцияларға катализаторлық қызмет атқаратын 2 мыңнан астам ферменттерді синтездейді. Осы ферменттер ішіндегі көптеген бөлігін бөліп алуға болады жəне олар жасушадан тыс та өз белсенділіктерін таныта біледі. Ферментті дəрмектерін алу мақсатында микроскопиялық саңырауқұлақтармен қатар, бактериялар мен ашытқылар да пайдаланылады. Культуралдық сұйықтығындағы ферменттер белсенділігі тез басылып қалатындықтан, өндірісте құрғақ техникалық фермент дəрмектерін дайындау кеңінен қолданылады. Дүние жүзі бойынша қажетті деп танылатын 20 фермент түрі (ғалымдардың айтуынша табиғатта 2500-дей фермент бар) 65 мың тонна көлемінде өндіріледі. Мысалы, өндірістік деңгейде көп өндірілетін ферменттер қатарына амилаза, глюкоамилаза, протеаза, инвертаза, пектиназа, каталаза, стрептокиназа, целлюлаза жəне басқаларын жатқызуға болады. Қазіргі кезде мұнай өнімі салыстырмалы түрде арзан болғандықтан, біздер қажетті органикалық қосылыстарды солардан аламыз. Болашақта биоөндіріс адамзатқа қажетті органикалық заттарды өндірудің экономикалық тиімді жолдары арқылы, мұнайдан химиялық жолмен алынатын өнімдермен бəсекелес бола алады. Жасушаны, бейнелеп айтатын болсақ, құрастыру мен бұзу қабілеттіліктері бойынша, жұмыс істеп тұрған қандай да бір фабрикаға теңестіруге болады. Жасуша өндірісінің мақсаты – қоршаған ортасынан энергия алып, оны өзінің тіршілігі мен көбеюіне пайдалану. Қарапайым антибиотиктердің көптеген бөлігі, жасушалық ферменттердің қатысуымен жасалады. Тамақ өнеркəсібіндегі ферменттік катализ 101 арқылы алынатын өнім қатарында, құрамы фруктозаға өте бай келетін астық сиропын айтуға болады. Голландиялық Holland Sweetener компаниясының өнімі болып табылатын, төмен калориялы аспартам атты дəмдегіші, термолизин атты протеолетикалық ферменттің қатысуымен алынады. Ферментті өндірістік масштабта қолдану арқылы шығарылатын өнімдер қатарында фенолдық смола, акриламид, табиғи энзимдер жəне басқа да көптеген инсектицидтерді айтуға болады. Ферменттер ерте кезден бастап адамның тұрмыс-тіршілігінде кеңінен қолданылып келеді. Мысалы: Қытайда, Кореяда жəне Жапонияда бірнеше мыңдаған жылдардан бері крахмалды өнімдерді қанттау үшін жəне спирт алу мақсатында саңырауқұлақ дақылдарын қолданып келеді. Қазіргі кезде микробиологиялық синтез арқылы гидролаза класына жататын ферментін алады, олар гликозидті, пептидті жəне эфирлі байланысады. Судың қатысуымен ыдыратушы реакцияларды катализдеу келесі реакция бойынша жүргізіледі: ХУ + НОН → ХН + УОН Микробиологиялық гидролаза ферментінің көбісі, жасуша сыртына бөлінетін экзоферменттерге жататынына байланысты, мұндай ферменттерді алу жеңіл жəне арзан болып келеді. Биологиялық обьектілерде ферменттер көбінесе əртүрлі жасушалық құрылымдарының беткі қабатында, көбінесе мембраналарында бекітіліп тұрады. Сол себепті ферменттер өз белсенділіктерін көптеген уақыт бойынша сақтай алады. Өндіріс технологиясында көп уақыт бойына бос фермент дəрмектері пайдаланылып келінді жəне олардың қолданылу мерзімі өте қысқа – бір өндірістік цикл ғана болатын. Сондықтан қолданылатын ферменттердің тұрақтылығын арттыру мақсатында иммобилизациялау техникасы, яғни суда ерімейтін, атап айтқанда – органикалық полимерлер, шынылар, минералды тұздар, силикат сияқты заттардың бетіне бекіту əдісі қолданыла бастады. Мұндай иммобилизацияланған ферменттерді биохимиялық реакторларының үздіксіз циклында ұзақ пайдалануға мүмкіндік туылды. Иммобилизация арқылы бекітілген ферментті дəрмектерін алу мүмкіндігіне, олардың құрылымдарын мұқият зерттегеннен кейін қол жеткізілді. Соның арқасында бірталай ферменттердің амин қышқылдық құрылымы, олардың орналасу конфигурациясы, белсенді орталықтары, каталикалық қызмет атқарудағы əртүрлі функцияналды топтарының маңызы сияқты көптеген ерекшеліктерін анықтау мүмкін болды. Иммобилизацияланған ферменттердің қолданылу мысалы ретінде – глюкозаны фруктозаға изомеризациялау, ақуыз гидролизі, стероидтар, гармондар трансформациясы жəне т.б. келтіруге болады. Иммобилизацияланған ферменттерді қолданудың жаңа аясы ретінде – күмістелмеген фотоматериалдарының пайда болуын да айтуға болады. Жоғары сезімділік пен абсолютті спецификалық қасиетке ие биолюминесцентті жəне иммуноферментті сараптау əдісінің негізінде де, ферменттер əрекеті жатыр. Қазіргі кезде иммобилизациялау əдісі арқылы жасалатын, «контейнер» деген атпен белгілі дəрмектерді пайдалану медицинада жаңа бағыт ретінде танылады. Бұл 102 дəрмектер сырт жағы қатқылданып келетін, белгілі дəрежеде өткізгіштік қабілеті бар, микросфералар болып табылады. Бұлардың қолданылу ауқымдары өте кең. Осындай жолмен жасалынған «жасанды жасушалар» ретінде микрокапсулаларды айтса болады. Мұндай капсулалардың ішінде орналасқан ферменттер ағзадаға сұйықтықтар мен ұлпалармен тікелей əрекетке түспейді жəне протеиназалармен ыдыратылмайды, сондықтан иммундық жауап реакциясын да қоздырмайды. Бұлардың негізгі артықшылықтары ретінде оларды қажетті жерге, мысалы ісіктің қасына апарып орнату мүмкіндігін айтуға болады. Ішінде қажетті заттары бар ісік жанына егілген микрокапсула, ісік ұлпаларының өсуіне қажетті метаболиттерді пайдаланады, сөйтіп оларды қорек көзінен ажыратуы арқылы өсуіне кедергі келтіреді. Капсулалар құрамында ұлпалардың микроскопиялық бөліктері болуы мүмкін. Мысалы, көкбауырдағы инсулин синтездейтін Лангерганс аралшықтарын микрокапсулаға орнатып, ағзаға имплантация жасау арқылы, тұрақты түрде инсулин бөліп тұратын «депо» жасау жөнінде тəжірибелік жұмыстар өз жалғасын табуда. Осының арқасында сусамырмен науқас адамдар күнделікті инсулин гормонын егу қажеттілігінен құтылар еді. Микрокапсуланың ішіне магнитті заттардың бөлшектері ендірілуі мүмкін. Сөйтіп, ағзаға ендірілген микрокапсуланың сырт жағынан (ағзадан тыс) магнит өрісін жақындату арқылы, оны қажет болған нысаналы жерде ұстап тұру мүмкіндігі туылады. Кейбір жағдайларда капсулалардың қажетті ортада еріп, қажетсіз ортада қапшығын сол күйінде сақтай алуы үшін, құрамына жоғары молекулалы заттар ендіріледі. Мысалы, асқазан сөлінде бұзылмай тек қана тоқ ішекте ыдырай бастайтын ацетилфталилцеллюлоза дəрмегінің микрокапсуласы осындай қабілетке ие. Қазіргі кезде қапшық құрамы эритроцит қабықтарынан тұратын микрокапсулаларды пайдалану жолдары зерттелуде. Мұндай жағдайда эритроциттер ішіндегі заттардан босатылып, босаған жерлері ферменттермен толтырылады.

Пайдаланылған әдебиеттер тізімі:

Аубакиров Х. Ə. «Биотехнология»: Оқулық. Алматы 2011.
Әлмағамбетов Қ.Х «Биотехнология негіздері»: Оқулық. Астана 2006
Әлмағамбетов Қ.Х. Микроорганизмдер биотехнологиясы. Астана 2008
http://biotechnolog.ru/

Приложенные файлы

  • docx 15305717
    Размер файла: 39 kB Загрузок: 0

Добавить комментарий