Biohimia_Iz_punkta_Aaaad_1

Ответы на экзаменационные вопросы по биохимии.

I.Строение и свойства белков

1. Белки как особый класс биополимеров: их классификация, биологические функции белков. Аминокислотный состав белков.
Белки - высокомолекулярные азотосодержащие органические вещества молекулы которых построены из остатков аминокислот. Простые белки построены из аминокислот и при гидролизе распадаются соответственно только на аминокислоты. Сложные белки - это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождаются небелковая часть или продукты ее распада. Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: протамины, гистоны, альбумины, глобулины, проламины, глютелины и др.
Классификация сложных белков основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают: фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), нуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы).
Уже первые химические анализы белков показали, что, независимо от источника получения, белковые вещества содержат, кроме С, О и Н, обязательно N и обычно некоторое количество S.
Все эти элементы содержатся в белках в определенных пропорциях Элементарный анализ различных
белков при пересчете на сухое вещество дает в среднем (в процентах) углерода 50,654,5 кислорода 21,523,5
водорода 6,57,3, азота 15,017,6, серы 0,32,5.
Ф-ции белков:1)ферментативная функция 2) Транспортная функция белков3) Рецепторная функция4) Защитная функция5) Структурная функция.
Незаменимые аминокислоты, их еще называют "эссенциальные". Они не могут синтезироваться в организме человека и должны обязательно поступать с пищей.Незаменимые: метионин, треонин, лизин, лейцин, изолейцин, валин, триптофан, фенилаланин.
Заменимые (могут синтезироваться в организме человека). Их 10: глутаминовая кислота, глутамин, пролин, аланин, аспарагиновая кислота, аспарагин, тирозин, цистеин, серин и глицин.

2. Современные представления о структурной организации белковых молекул. Первичная, вторичная, третичная, четвертичная структура белков. Виды связей и взаимодействий, стабилизирующих различные уровни структурной организации белков и надмолекулярных белковых комплексов.
Последовательность расположения аминокислотных остатков в полипептидной цепи белковой молекулы получила название первичной структуры белка. Многократно повторяющаяся пептидная связь (-СО-NH) является типичной ковалентной связью, которая определяет первичную структуру белка. Первичная структура белка, помимо большого числа пептидных связей, обычно содержит также небольшое число дисульфидных (-S-S-) связей. Пространственная конфигурация полипептидной цепи, точнее тип полипептидной спирали, определяет вторичную структуру белка, она представлена в основном
·-спиралью, которая фиксирована водородными связями. Однако оказалось, что в растворах белка спирализованная полипептидная цепочка может принимать ту или иную конфигурацию. Эта конфигурация полипептидной спирали в пространстве определяет ее третичную структуру. Другими словами, третичная структура показывает, как полипептидная цепь, свернутая целиком или частично в спираль, расположена или упакована в пространстве (в глобуле).
Известная стабильность третичной структуры белка обеспечивается за счет водородных связей, межмолекулярных ван-дер-ваальсовых сил, электростатического взаимодействия заряженных групп и т д. Молекулы некоторых белков (например, гемоглобина) состоят из нескольких симметрично построенных частиц (одинаковых полипептидных цепей), обладающих одинаковой первичной, вторичной и третичной структурой. Совокупность таких одинаковых частиц (субъединиц), представляющая единое молекулярное образование в структурном и функциональном отношении, получила название четвертичной структуры белка.
Типы связей между аминокислотами в молекуле белка.
2 группы:
1. Ковалентные связи - обычные прочные химические связи.
а)пептидная связь (Формируется за счет COOH-группы одной аминокислоты и NH2-группы соседней аминокислоты).
б)дисульфидная связь (Цистеин - аминокислота, которая в радикале имеет SH-группу, за счет которой и образуются дисульфидные связи. Дисульфидная связь может возникать между разными участками одной и той же полипептидной цепи, тогда она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь возникает между двумя полипептидами, то она объединяет их в одну молекулу).

2. Нековалентные (слабые) типы связей - физико-химические взаимодействия родственных структур. В десятки раз слабее обычной химической связи.
а) Водородная связь - это связь, возникающая между двумя электроотрицательными атомами за счет атома водорода, который соединен с одним из электроотрицательных атомов ковалентно.
б) Ионная связь - возникает между положительно и отрицательно заряженными группировками (дополнительные карбоксильные и аминогруппы), которые встречаются в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот.
в) Гидрофобное взаимодействие - неспецифическое притяжение, возникающее в молекуле белка между радикалами гидрофобных аминокислот - вызывается силами Ван-дер-Ваальса и дополняется выталкивающей силой воды.

3. Физико-химические свойства белков: растворимость, ионизация и гидратация. Денатурация и высаливание белков, практическое значение. Обнаружение белков в растворах.
Белки, как и аминокислоты, амфотерны благодаря наличию свободных NH2-и СООН-групп и характеризуются соответственно всеми св-вами кислот и оснований.
Белки обладают явно выраженными гидрофильными свойствами. Их растворы обладают очень низким осмотическим давлением, высокой вязкостью и незначительной способностью к диффузии. Белки способны к набуханию в очень больших пределах. С коллоидным состоянием белков связан рад характерных свойств, в частности явление светорассеяния, лежащее в основе количественного определения белков методом нефелометрии.
Гидратная оболочка - это слой молекул воды, определенным образом ориентированных на поверхности белковой молекулы. Поверхность большинства белковых молекул заряжена отрицательно, и диполи молекул воды притягиваются к ней своими положительно заряженными полюсами.
Поверхность большинства белковых молекул заряжена потому, что в каждой молекуле белка есть свободные заряженные СОО- и NH3+ группы. Изоэлектрическая точка (ИЭТ) большинства белков организма находится в слабокислой среде. Это означает, что у таких белков количество кислотных (СООН) групп больше количества основных групп (NH3).
Денатурация - это лишение белка его природных, нативных свойств, сопровождающееся разрушением четвертичной (если она была), третичной, а иногда и вторичной структуры белковой молекулы, которое возникает при разрушении дисульфидных и слабых типов связей, участвующих в образовании этих структур. Первичная структура при этом сохраняется, потому что она сформирована прочными ковалентными связями. Разрушение первичной структуры может произойти только в результате гидролиза белковой молекулы длительным кипячением в растворе кислоты или щелочи.
Высаливание - это осаждение белков высокими концентрациями нейтральных солей щелочных и щелочноземельных металлов, поскольку такие соли очень гидрофильны и обладают водоотнимающими свойствами.
Белки менее гидрофильные, которые плохо удерживают воду гидратной оболочки.с помощью высаливания можно разделить белки с разной степенью гидрофильности. Таким способом, например, можно разделить альбумины и глобулины плазмы крови.

4. Альбумины, глобулины плазмы крови: особенности структуры и их свойства, роль в организме.

5. Фибриллярные белки и их свойства. Структура и свойства коллагеновых белков.
Характерная структурная особенность фибриллярных белков - вытянутая, нитевидная форма молекул. Эти молекулы образуют многомолекулярные нитевидные комплексы - фибриллы.
Фибриллярный белок коллаген - самый распространенный белок в мире животных; в организме человека на его долю приходится примерно 1/3 от общего количества белков. Молекула коллагена (тропоколлагена) построена из трех пептидных цепей, каждая пептидная цепь содержит около 1000 аминокислотных остатков. аминокислотный состав коллагена: каждая третья аминокислота - это глицин, 20% составляют остатки пролина и гидроксипролина, 10% - аланина, остальные 40% представлены другими аминокислотами. Коллаген - единственный белок, в котором содержится гидроксипролин. Пептидные цепи коллагена представляют собой последовательность триплетов глу - пролин - гидроксипролин, Каждая из пептидных цепей коллагена имеет конформацию спирали; в молекуле коллагена все три спирали, в свою очередь, перевиты друг с другом, образуя плотный жгут Между спиралями за счет пептидных групп образуются водородные связи (С=О...Н N). Такие же водородные связи имеются и внутри каждой цепи. Все три цепи молекулы коллагена ориентированы параллельно, т. е. на одном конце коллагена имеются N-концы цепей, на другом -С-концы. Коллаген -сложный белок, гликопротеин: содержит моносахаридные и дисахаридные остатки, соединенные с гидроксильными группами некоторых остатков оксилизина. Молекулы коллагена, соединяясь «бок о бок», образуют микрофибриллы; а из них волокна и пучки волокон. Связи между молекулами коллагена в фибриллах ковалентные; они возникают за счет взаимодействия оксилизиновых остатков. Коллагеновые волокна вместе с другими полимерными веществами межклеточного матрикса составляют основу соединительной ткани, обеспечивающую ее опорную функцию Фибриллярные белки нерастворимы в воде. Они не перевариваются в пищеварительном тракте большинства животных и человека, и поэтому не могут служить пищей.

6. Фосфопротеиды, гликопротеиды: химическая природа и биологическая роль.
К белкам этого класса относятся казеиноген молока, виеллинин и фосвитин, выделенные го желтка куриного яйца, овальбумин, ихтулин, содержащийся в икре рыб, и др. Большое количество фосфопротеииов содержится в ЦНС. Характерной особенностью структуры фосфопротеинов является то, что фосфорная кислота оказывается связанной сложноэфирной связью с белковой молекулой через гидроксильные группы
·-оксиаминокислот, главным образом серина и в меньшей мере треонина. Фосфопротеины в клетках синтезируются в результате посттрансляционной модификации, подвергаясь фосфорилированию при участии протеинкиназ. Фосфопротеины содержат органически связанный, лабильный фосфат, абсолютно необходимый для выполнения клеткой ряда биологических функций. С другой стороны, они являются ценными источниками энергетического и пластического материала в процессе эмбриогенеза и дальнейшего постнатального роста и развития организма. Простетические группы гликопротеинов представлены углеводами и их производными, весьма прочно связанными с белковой частью молекулы. В состав простетических групп некоторых гликопротеинов входят гликозаминогликаны. К гликозаминогликанам относятся гиалуроновая и хондроитинсерная кислоты. Гиалуроновая кислота входит в состав внеклеточного основного вещества соединительной ткани, содержится в клеточных оболочках, а также в значительных количествах в синовиальной жидкости и стекловидном теле. Полимерная линейная структура гиалуроновой кислоты обеспечивается регулярным чередованием дисахаридных единиц, состоящих из D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, соединенных
· (1-3)-гликозидной связью. Между собой эти структурные единицы дисахаридов соединены обычными в (1-4)-связями; Хондроитинсерная кислота также является полимерной молекулой внеклеточного основного вещества и имеет аналогичную с гиалуроновой кислотой структуру, с тем единственным отличием, что вместо N-ацетил-D-глюкозамина в ее состав входит N-ацетил-D-галактозамин, к гидроксильной группе 4-го углеродного атома которого присоединена сульфатная группа.
К биологически активным гликопротеинам относятся интефероны синтезируемые в животных клетках в ответ на возбуждение экзогенным стимулятором; они наделены антивирусными и противоопухолевыми свойствами и оказывают клеточно- и иммунорегуляторное действием. Из других гликопротеинов выполняющих ряд важнейших биологических функции следует отметить все белки плазмы крови (за исключением альбуминов), трансферрин, Церулоплазмин, гонадотропный и фолликулостимулирующие гормоны, некоторые ферменты, а также гликопротеины в составе слюны (муцин), хрящевой и костной тканей и яичного белка (овомукоид).

7. Хромопротеиды, их виды и химический состав. Гемоглобин, строение и биологическая роль. Гемоглобинопатии.
Хромопротеины состоят из простого белка и связанного с ним окрашенного небелкового компонента, откуда и произошло их название. Среди хромопротеинов различают гемопротеины, (содержащие в качестве простетической группы железо), магний-.порфирины и флавопротеины (содержащие производные изоаллоксазина). К группе гемопротеинов относятся гемоглобин и его производные, миоглобин, хлорофиллсодержащие белки и ферменты. Хромопротеины наделены рядом уникальных биологических функций они участвуют в таких фундаментальных процессах жизнедеятельности, так фотосинтез, дыхание клеток и целостного организма, транспорт кислорода и углерода, окислительно-восстановительные реакции, свето- и цветовосприятие и др. Хромопротеины являются непременными и активными участниками аккумулирования солнечной энергии в зеленых
Гемоглобин это гемопротеид. Это неферментный белок. В его состав входит 4 полипептидные цепи. Есть несколько видов гемоглобина: гемоглобин А, есть и фетальный гемоглобин, в состав которого входят несколько иные цепи. Миоглобин похожий по структуре белок - мышечный белок, который в отличие от гемоглобина состоит из 1 полипептидной цепи и 1-го гема. Имеет значимость в доставке кислорода внутри клетки до митохондрий.
Гем: Это очень устойчивая структура, практически это самая длинная замкнутая сопряженная система, которая образует порфириновое ядро, состоящее из 4 пиррольных колец соединенных метинильными мостиками. Кроме того здесь имеются боковые цепи
Железо связано с пиррольными ядрами, и за счет координационных связей оно связано еще и с азотом имидозольных ядер гистидина полипептидных цепей. Обеспечивается связывание кислорода и образование оксигемоглобина. Соединение в котором железо 3 валентно - метгемоглобин, образуется при действии сильных окислителей (лаки, анилиновые краски). В крови всегда присутствует метгемоглобин не выше 2%. Метгемоглобин - производное гемоглобина не способен транспортировать кислород. Восстановление гемоглобина происходит за счет фермента -метгебоглобинредуктазы. У детей этот фермент крайне неактивен.
Болезни гемоглобинов (их насчитывают более 200) называют гемоглобинозами. Принято делить их на гемоглобинопатии, в основе развития которых лежит наследственное изменение структуры какой-либо цепи нормального гемоглобина (часто их относят также к «молекулярным болезням»), и талассемии, обусловленные нарушением синтеза какой-либо нормальной цепи гемоглобина. Классическим примером наследственной гемоглобинопатии является ссрповидно-клеточная анемия. При этой патологии эритроциты в условиях низкого парциального давления кислорода принимают форму серпа. Гемоглобин S. Отличается по ряду свойств от нормального гемоглобина, в частности, после отдачи кислорода в тканях он превращается в плохо растворимую форму и начинает выпадать в осадок в виде веретенообразных кристаллоидов, названных тактоидами. Последние деформируют клетку и приводят к массивному гемолизу.имический
Гемоглобин.
Мужчины 135-180гр/л Женщины 120-16Огр/л
Изменение числа эритроцитов.
Повышение числа Э и их массы (гематокрит) в целом указывает на эритроцитоз, который может быть первичным (поражение эритропоэза, заболевания ситемы крови) или вторичным. Вторичный эритроцитоз чаще наблюдается при легочных заболеваниях, врожденных пороках сердца, при гиповентиляции, пребывании на высоте, накоплении карбоксигемоглобина при курении, молекулярных изменениях гемоглобина, нарушении выработки эритропоэтина вследствие образования опухоли или кисты. Относительное повышение Э определяется при гемоконцентрации, например, при ожогах, диарее, приеме диуретиков и т. д. Понижение НЬ и Э является прямым непосредственным указанием на анемию (малокровие). Острая кровопотеря по одного литра принципиально не влияет на морфологию Э. Если в отсутствие кровопотери число Э снижается, то, естественно, следует предположить нарушение эффективности эритропоэза. Эффективный (действительный) эритропоэз может быть оценен с помощью следуюших тестов: определения уровня утилизации железа Э, определения количества ретикулоцитов и скорости их созревания, измерения продолжительности жизни эритроцитов и других функциональных характеристик, определяющих их полноценность.

II. Ферменты и витамины.

8. Роль ферментов в метаболизме. Многообразие ферментов. Понятие о классификации ферментов, их номенклатура. Изоферменты. Проферменты.
Ферменты представляют собой сложные белковые молекулы и являются «биологическими катализаторами»,они являются продуктом или производным какого-либо живого организма и обладает способностью увеличивать скорость химической реакции, при этом само вещество в результате реакции не изменяется. Следовательно, после завершения реакции фермент способен сразу же вступать в новую.
Ферменты взаимодействуют только с одним веществом, и катализируют одно из возможных превращений, которым может подвергаться это вещество. Иными словами, фермент является своеобразным «ключом», способным открыть определенный «замок». В качестве «замка» выступают крупные органические молекулы, содержащиеся в сточных водах, которые расщепляются до веществ, необходимых микроорганизмам.Все ферменты делят на 6 классов.
1. Оксидоредуктазы ускоряют реакции окисления восстановления. Окисление протекает как процесс отнятия атомов Н (электронов) от субстрата, а восстановление как присоединение атомов Н (электронов) к акцептору. Пример: каталаза.
2. Трансферазы ускоряют реакции переноса функциональных групп и молекулярных остатков. В зависимости от характера переносимых группировок различают фосфотрансферазы, аминотрансферазы, гликозилтрансферазы, ацилтрансферазы, трансферазы, переносящие одноуглеродные остатки (метилтрансферазы, формил-трансферазы), и др. Например, амидазы ускоряют гидролиз амидов кислот. Из них важную роль в биохимических процессах в организме играют уреаза, аспарагиназа и глутаминаза. Уреаза ускоряет гидролиз мочевины до NН3 и СO2.
3. Гидролазы ускоряют реакции гидролитического распада. Пример: эстеразы, пепсин, трипсин, амилаза.
4. Лиазы ускоряют негидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи (или присоединяют группы атомов по двойной связи).
5. Изомеразы ускоряют пространственные или структурные перестройки в пределах одной молекулы.
6. Лигазы ускоряют реакции синтеза, сопряженные с распадом богатых энергией связей. Пример: ДНК-полимераза
Изоферменты это различные по аминокислотной последовательности изоформы или изотипы одного и того же фермента, существующие в одном организме, но, как правило, в разных его клетках, тканях или органах. примером фермента, имеющего изоферменты, является амилаза панкреатическая амилаза отличается по аминокислотной последовательности и свойствам от амилазы слюнных желёз, кишечника и других органов. Это послужило основой для разработки и применения более надёжного метода диагностики острого панкреатита путём определения не общей амилазы плазмы крови, а именно панкреатической изоамилазы. Проферменты функционально неактивные предшественники ферментов, подвергающиеся тем или иным преобразованиям (обычно расщеплению специфическими эндо- или экзопептидазами или гидролизу), в результате чего образуется каталитически активный продукт фермент.Примерами проферментов являются пепсиноген, трипсиноген и др.

9. Химическая природа ферментов. Свойства ферментов как биологических катализаторов: эффективность, специфичность действия, зависимость активности ферментов от температуры и рН среды.
Изучение ферментов показало, что они обладают св-ми белков. св-ва характерны ферментов
1) они являются амфотерными
2)осаждаются сульфатом аммония т.е. высаливаются
3) инактивируются при нагревании под действием концентрированных кислот и щелочей
4) неспособны проходить через полупроницаемые мембраны.
Абсолютным доказательством белковой природы ферментов - это синтез их из отдельных аминокислот. По хим. составу ферменты как и белки могут быть двух видов - простые и сложные (протеины и протеиды). Несколько слов о протеинах. Они могут состоять из одной полипептидной цепи (рибонуклеаза содержащая 124 ам. ксл. отатка, пепсин, трипсин) В то же время ряд ферментов состоят из нескольких полипептидных цепей т.е. являются олигомернымн белками. Например альдолаза - фермент гликолиза, РНК-полимераза и др. К первой группе относятся обычно класс гидролиз, практически все гадролитические ферменты состоят только из аминокислот т.е. являются простыми белками. Кроме того, некоторые лиазы, а вот все остальные классы ферментов в основном явл. сложными белками т.е. для каталитической активности многих ферментов кроме белковой части необходим второй компонент получивший название кофактор. Есть каталитически активный фермент вместе с кофактором получил название холофермент. Это каталитически активный фермент состоящий из белковой и небелковой части кофактора. Белковая часть сложного фермента получила название апофермент. Характерной особенностью или сложных ферментов протеидов является, то, что ни белковая часть апофермента, ни кофактор в отдельности не обладают заметной каталитической активностью.
Различают два главных вида специфичности ферментов: Субстратную специфичность и специфичность действия.
Субстратную специфичность - это способность фермента катализировать превращения только одного определенного субстрата или же группы сходных по строению субстратов. Определяется структурой адсорбционного участка активного центра фермента.
Различают 3 типа субстратной специфичности:
1) АБСОЛЮТНАЯ субстратная специфичность - это способность фермента катализировать превращение только одного, строго определенного субстрата.
2) ОТНОСИТЕЛЬНАЯ субстратная специфичность - способность фермента катализировать превращения нескольких, сходных по строению, субстратов.
3) СТЕРЕОСПЕЦИФИЧНОСТЬ - способность фермента катализировать превращения определенных стереоизомеров.
Специфичность действия - это способность фермента катализировать только определенный тип химической реакции.
В соответствии со специфичностью действия все ферменты делятся на 6 классов. Классы ферментов обозначаются латинскими цифрами. Название каждого класса ферментов соответствует этой цифре.

10. Механизм действия ферментов. Образование фермент-субстратных комплексов. Активные центры ферментов, их химическая структура. Роль конфармационных изменений фермента и субстрата при катализе.

Принято выделять сегодня две стороны проблемы. 1. Термодинамический аспект 2. Структурно – кинетический. Термодинамический аспект. Каждая молекула любого вещества обладает определенным уровнем внутренней энергии. Этой энергии недостаточно для того, чтобы вещество вступало в реакцию с другими веществами. В то же время достаточно поднять уровень внутренней энергии до определенного предела, как вещество начинает взаимодействовать со своим окружением, т.е. реагировать с ним. Минимальный уровень внутренней энергии необходимый для перехода молекулы вещества в реакционно-способное состояние явл.- энергетическим барьером реакции. По количеству энергии кот. необходимо сообщить молекуле для перехода ее в реакционное состояние получило назв. - энергии активации. Чем больше эн. актив., тем медленнее пройдет реакция. С увеличением энергии активации вероятность перехода молекул субстрата в реакционно-способное состояние резко снижается. Величину энергии активации можно уменьшить двумя приемами. 1. Увеличение среднего уровня внутренней энергии путем повышения температуры. 2. Попытка снизить энергетический барьер реакции. Снижение его возможно только путем снижения изменение структуры субстрата. Ферменты ускоряют ход химической реакции, снижая энергетический барьер реакции. Однако тем самым уменьшают энергию активации. Ферменты снижают энергию активации значительно больше, чем катализаторы небиологической природы. Например, реакция гидролиза сахарозы до глюкозы и фруктозы. Е актив. = 32 Ккал/молъ. В присутствии кислоты снижается до 25, а в присутствии сахоразы до 9. Реакции при кот. происходит выделения энергии получили названия экзоорганические. Эти реакции могут идти самопроизвольно. Ферменты катализируют только экзоораническне реакции. Реакции эндоорганические требуют использование энергии макроэргических соединений.
Сруктурно-кинетическая сторона проблемы механизма. Снижение энергетического барьера говорит о том, что при взаимодействии фермента с субстратом происходит изменение структуры реагирующих молекул, причем это такие изменения которые способствуют протеканию определенных реакций. Химическая реакция - это перестройка, иногда разрыв, одной - двух редко трех связей. Реакции, протекающие в организме человека многоступенчатые. Тогда становится ясно, что ослабление прочности перестраиваемой связи будет способствовать протеканию реакции. Ферменты, взаимодействующие с субстратом так перестраивают структуру этого субстрата, что определенные связи в субстрате становятся менее прочными, а значит более уязвимыми к действию реагентов. Ослабление прочности связи может достигаться двумя путями. 1 Путь это изменение электронной плотности путем перераспределения конкретной связи. 2 Путь это изменение пространственной структуры молекулы субстрата. С этих позиций можно выделить несколько эффектов которые в той или иной мере объясняет ускорение хода реакция ферментами. 1- й эффект. Сам факт связывания фермента с субстратом в активном центре приводит к изменению электронной структуры субстрата и поэтому уже сам факт связывания есть начало катализа. 2-ой эффект. Связанная молекула субстрата оказывается в активном центре в сфере действия каталитических групп. Эти функциональные группы еще более деформируют электронную структуру субстрата, а перераспределение электронной плотности в молекуле субстрата ослабляет, перестраивая связь. 3-й эффект. В активном центре ферментов присутствуют функциональные группировки радикалов аминокислот, которые обладают кислотными и основными свойствами. От их действия к одной части молекулы субстрата будут присоединяться протоны, а от другой ее части протоны будут отщепляться. 4-й эффект. Определяет перестройку субстрата после соединения его к активному центру. 5-й эффект. Молекула субстрата находясь в водной фазе обычно окружена гидратной оболочкой. Связываясь с активным центром, как правило субстрат теряет данную гидратную оболочку. Молекула субстрата, связываясь с группировками активного центра может подвергаться пространственным искажениям. И, наконец, к ускорению реакции в присутствии фермента имеют отношение 2 кинетически структурных момента. 1-Скорость реакции по закону действующих масс растет с увеличением концентрации принудительно в результате их связывания
2- Для того чтобы молекулы прореагировали, они должны столкнуться друг с другом, причем в определенном пространственном соотношении. Эти два кинетических эффекта известны под названием эффектов сближения (1) и пространственной ориентации.

11. Структура ферментов. Функциональные центры ферментов. Кофакторы ферментов, их классификация и роль в катализе. Связь с витаминами, примеры.
Функциональные центры - участки поверхности молекулы фермента ответственное за взаимодействие с др белками, причем белками или обладающими каталитической активностью (ферментами) или белками, не обладающими каталитической активностью
Подобного рода взаимодействия встречаются при формировании надмолекулярных мультиферментных комплексах. Те комплексы о которых мы говорили (пируватдегдрогеназные, альфакетоглюторатгидрогеназные) синтетазы высших жирных кислот) включают несколько ферментов. Дело в том, что включение нескольких ферментов в этом комплексе достаточно в заметной степени сказывается на каталитической активности других ферментов этого комплекса.
Почему? Дело в том, что пространственная структура свободного фермента и фермента включенного в комплекс меняется, а значит, меняется и каталитическая активность. Субстраты в превращении которых участвуют ферменты по сравнению с самим ферментом очень часто очень мелкие молекулы, понятно, что в образовании энз-субс. комплекса участвует не вся мол-ла фермента, а только какой-то ее участок, какая-то часть ее поверхности. Этот участок пов-ти фермента ответственный за связывание и превращение субстрата и получил название активного центра
В структуру актив, центра входят: в его образование принимают участие не более 10-15 ам.к. остатков определенных образом ориентированных в пространстве по отношению друг к другу. Эти остатки могут далеко располагаться в полипептидной цепи, могут сближаться при формировании третичной структуры.
Хемотрипсин принимают участие 4 ам.к. остатка : 2 остатка гистидина (57,40), серин (195), аспартат (102). Составн. элем, актив, центра часто относится участок остова полипептидной цепи удержив. ам.к. радик. в определенном положении друг к др.
В активный центр фермента входят кофакторы (исключ. некот. ионов металлов). В активном центре условно выделяют 2 участка: а) субстратный - отвечает за связывание субстрата
б) каталитический центр - участок осуществляющий катализ связав. субстрата. Сюда входит кофактор. Кофактору и функ гр. присуща большая роль.
В составе многих ферментов так же кроме активных центров имеются регуляторные центры.
а) Аллостерический центр б) Центр ковалентной модификации в) Центр связывания с белками и регуляторами
Аллостер. центр - центр, находящийся в другом месте от активного центра - участок на пов-ти фермента образованный определенным образом ориентированных ам.к. радикалов. Его 3 мерная структура комплементарна низкомолекулярным лнгандам - кот. выступают в качестве регуляторов. цАМФ, АТФ. Присоединение аллост. модуляторов к аллост. центру приводит к изменению конформации белка, что сопровождается изменением пространственной структуры ферм, и изменен, к катализу. 1. Если присоединение модулятора повышает активность - аллостерич. активатор 2. Если понижает - аллостер ингибитор. Связыв. модул, с актив, центром - обратима. Никогда не возникает ковалентная связь. Активность определяется концентрацией модуляторов. Аллостер ферм, имеют как правило 4 структуру. Один и тот же фермент имеет 2 и более актив, центра кот комплемент, разный модуляторам.

12. Активация и ингибирование ферментов. Ингибирование конкурентного и неконкурентного типа. Использование ингибиторов в качестве лекарственных препаратов, в том числе стоматологии.
Активаторы повышают, т.е. активируют каталитическую активность ферментов. Основные механизмы активации.
вытеснение ингибитора или отщепление его от фермента. Например, соляная кислота, пепсиноген HCl пепсин ингибитор Отщепляет от пепсиногена ингибитор в результате этого неактивный фермент - пепсиноген превращается в активный фермент - пепсин, эффективно расщепляющий белки в составе желудочною сока.
Активатор может связываться с субстратом, обеспечивая более эффективное взаимодействие субстрата с активным центром. Такова роль ионов магния во многих реакциях идущих с участием АТФ.
Активатор может способствовать присоединению кофактора к апоферменту.
Активаторы иногда способствуют формированию каталитически активной пространственной структуры фермента.
Активация за счет присоединения к аллостерическому центру фермента положительного аллостерического модулятора. Его называют активатором. Это присоединение сопровождается изменением конформации. Активаторами аллостерическими может являться фосфорная кислота, АТФ, АДФ и др.
Ингибиторы - это вещества, снижающие вплоть до полного прекращения каталитическую активность ферментов. В качестве ингибиторов могут выступать самые разнообразные вещества от самых простых (ионы металлов) до высокомолекулярных соединений типа белков.
Ингибирование делят на обратимое и необратимое. При нем происходит разрушение пространственной структуры фермента в связи с этим фермент не может восстановить первоначальную активность. Необратимыми ингибиторами являются концентрированные кислоты, щелочи поскольку они вызывают серьезные денатурации. Наиболее часта причина это образование недиссоциирующего Энзим - ингибиторного комплекса. Е + J ЕJ. Обратное восстановление энзима невозможно.
При обратимом ингибировании образовавшийся энзим-ингибиторный комплекс нестойкий и поэтому способен диссоциировать на свободный энзим и ингибитор. Е + J EJ. Различают 2 вида обратимого ингибирования
1) Конкурентные ингибиторы конкурируют с субстратом за обладание активным центром фермента. По структуре они похожи на субстрат. Присоединяются к адсорбционному центру фермента: действуют на стадии I-го этапа ферментативного катализа. конкурентные ингибиторы уменьшают сродство фермента к субстрату. Они не изменяют Vmax ферментативной реакции: при повышении концентрации субстрата действие конкурентных ингибиторов можно преодолеть - молекулы конкурентного ингибитора постепенно вытесняются субстратом с активного центра фермента. 2) Неконкурентные ингибиторы связываются с аллостерическим центром фермента. Происходят изменения конформации аллостерического центра, а затем, через всю молекулу, они передаются на каталитический центр. Изменение конформации каталитического центра вызывает снижение активности фермента. Поэтому неконкурентные ингибиторы уменьшают Vmax - снижают скорость протекания II-го этапа ферментативного катализа. Не изменяют сродство фермента к субстрату.

13. Регуляция активности ферментов, ее физиологическое значение. Основные механизмы регуляции: аллостерическое модулирование, ковалентная модификация и белок-белковые взаимодействия. Примеры метаболических путей, регулируемые с помощью этих механизмов.
Активация ферментов это один из механизмов, с помощью которого клетки меняют свой метаболизм. Существует 2 типа регуляции работы ферментов
1) СРОЧНОЕ РЕГУЛИРОВАНИЕ. Изменение активности имеющихся в клетках ферментов. Реализуется быстро.
2) ЗАМЕДЛЕННАЯ РЕГУЛЯЦИЯ. Реализуется за счет изменения концентрации самих ферментов в клетках. Изменение концентрации ферментов в клетках достигается 2 путями: за счет усиления синтеза или за счет изменения распада.
Механизмы срочной регуляции. Регуляция с изменением активности имеющихся в клетках ферментов. В процессах срочного регулирования важнейшая роль, принадлежит следующим 5 механизмам.
1.Образование ферментов из предшественников(проферментов). В случае необходимости под действием специфических ферментов, а иногда других агентов, путем ограниченного протиолиза от профермента отщепляется различной длины полипептидные цепи и формируется активный фермент. В виде проферментов в крови циркулирует целый ряд факторов свертывания крови.
2. Обратимое ингибирование конкурентного типа. Конкурентные ингибиторы конкурируют с субстратом за обладание активным центром фермента. По структуре они похожи на субстрат. Присоединяются к адсорбционному центру фермента: действуют на стадии I-го этапа ферментативного катализа. конкурентные ингибиторы уменьшают сродство фермента к субстрату. Они не изменяют Vmax ферментативной реакции: при повышении концентрации субстрата действие конкурентных ингибиторов можно преодолеть - молекулы конкурентного ингибитора постепенно вытесняются субстратом с активного центра фермента.
З. Аллостерическое ингибирование или активация с участием механизма положительной или отрицательной обратной связи. Наиболее частый механизм регуляции. Причем в клетках встречаются механизмы и активации и ингибирования. Это механизм, с помощью которого клетка узнает, когда данного вещества произведено достаточно. Перекрест метаболических путей достаточно сбалансирован и одно и то же соединение может использоваться во многих ферментативных реакциях. Так регулируется синтез холестерина, пуриновых и пиримидиновых метаболитов и др. метаболические пути. Механизм аллостерической активации очень часто встречается как активация предшественникам. Типичным примером может быть эффект который наблюдается у бактерий синтезирующих изолейцин из треонина. Аллостер. активация широко используется и при активировании различных процессов которые обеспечивают клетки энергии. Например, АДФ, АМФ, фосфорная кислота и пирофосфат увеличивают активность целого ряда ферментов, работа которых обеспечивает клетки в виде энергии АТФ. 4. Ковалентная модификация ферментов с помощью ковалентной связи присоединяется модулятор. Присоединение сопровождается изменением конформации фермента-изменение катализа.
5. Белок-белковое взаимодействие. Участок пов-ти фермента комплиментарен поверхности белка модулятора. Связывание сопровождается изменением структуры акт центра- изм эффективности катализа.

14. Регуляторные ферменты. Аллостерическая модуляция активности ферментов: регуляция активности по принципу отрицательной обратной связи и по принципу активации предшественником.
Аллостерическое ингибирование или активация с участием механизма положительной или отрицательной обратной связи. Наиболее частый механизм регуляции. Причем в клетках встречаются механизмы и активации и ингибирования. Это механизм, с помощью которого клетка узнает, когда данного вещества произведено достаточно. Перекрест метаболических путей достаточно сбалансирован и одно и то же соединение может использоваться во многих ферментативных реакциях. Так регулируется синтез холестерина, пуриновых и пиримидиновых метаболитов и др. метаболические пути. Механизм аллостерической активации очень часто встречается как активация предшественникам. Типичным примером может быть эффект который наблюдается у бактерий синтезирующих изолейцин из треонина. Аллостер. активация широко используется и при активировании различных процессов которые обеспечивают клетки энергии. Например, АДФ, АМФ, фосфорная кислота и пирофосфат увеличивают активность целого ряда ферментов, работа которых обеспечивает клетки в виде энергии АТФ.
Образование ферментов из предшественников(проферментов). В случае необходимости под действием специфических ферментов, а иногда других агентов, путем ограниченного протиолиза от профермента отщепляется различной длины полипептидные цепи и формируется активный фермент. В виде проферментов в крови циркулирует целый ряд факторов свертывания крови.

15. Энзимодиагностика и энзимотерапия. Достижения и перспективы развития медицинской энзимологии. Первичные и вторичные энзимопатии, примеры.
Основные направления:
1).Энзимопатология
2).Энзимодиагностика
3).Энзимотерапия
Энзимодиагностика. использование ферментов в качестве реагентов для открытия и количественного определения нормальных и анормальных химических в-в в крови, моче, желчи и т.д. Так же изучение количества и активности ферментов при патологии.
Оказалось что ряд ферментов появляется в сыворотке крови при распаде клеток; для диагностики органических и функциональных поражений органов и тканей широко применяются ферментные тесты. Известно множество тестов для количественного определения активности ферментов в организме. например уровень липазы, амилазы, трипсина резко увеличен при диабетеЮ поражения печени и поджелудочной железы.
Энзимотерапия. Использование ферментов в качестве лекарственных средств.например применяют пепсин, трипсин, химотрипсин при заболеваниях ЖКТ. Важной областью является применение ингибиторов ферментов. Например естественные ингибиторы протеиназ используются при тяжелых панкреатитах, артритов.
Энзимопатии:
1).Первичные – нарушение активности ферментов, обусловленное генетическим дефектом
Варианты:
А) фермент может не синтезироваться
Б)может синтезироваться с пониженной активностью или в недостаточном количестве
В) может быть лишен своих регуляторных свойств
2) Вторичная- нарушение активности ферментов, развив вследствие того или иного патологического состояния.


16. Общая характеристика витаминов, классификация. Гиповитаминозы, авитаминозы, гипервитаминозы, причины их возникновения. Провитамины. Антивитамины.
Витамины необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения с высокой биологической активностью, которые не синтезируется (или синтезируются в недостаточном количестве) в организме и поступают в организм с пищей. Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов. Биологическая ценность жирорастворимых витаминов в значительной мере связана с их участием в контроле функционального состояния мембран клетки и субклеточных структур. Необходимость водо- и жирорастворимых витаминов для нормального течения различных биологических процессов предопределяет развитие выраженных нарушений в деятельности органов и систем при дефиците любого из витаминов. Под авитаминозами понимают полное истощение витаминных ресурсов организма.
экзогенные причины
1. Низкое содержание витаминов в суточном рационе питания..
2. Действие антивитаминных - факторов, содержащихся в продуктах.
3. Наличие в продуктах витаминов в малоусвояемой форме.
Эндогенные причины:
Нарушение всасывания витаминов в желудочно-кишечном тракте
Повышенная потребность при некоторых физиологических и патологических состояниях
Нарушение нормального метаболизма витаминов и образования их биологически активных форм:
При гиповитаминозах отмечается резкое снижение обеспеченности организма тем или иным витамином. Введение в организм избытка витаминов может вести к серьезным патологическим расстройствам - гипервитаминозам. Наряду с гипо- и авитаминозами в последние годы выделяют еще одну форму дефицита витаминов субнормальную обеспеченность организма человека витаминами, обозначаемую как маргинальную («биохимическую») недостаточность, которая представляет собой доклиническую стадию дефицита витаминов и характеризуется только биохимическими нарушениями
КЛАССИФИКАЦИЯ ВИТАМИНОВ:
1). Жирорастворимые витамины: Витамин А, Витамин D, (кальциферолы), Витамин Е (токоферолы) Витамин К.
2). Водорастворимые витамины: Аскорбиновая кислота (витамин С), Витамины группы В - Тиамин (витамин В1), Рибофлавин (витамин В2), Витамин В6 (пиридоксин), Ниацин (витамин РР, никотиновая кислота), Цианокобаламин (витамин В12), Фолиевая кислота (фолацин), Пантотеновая кислота (витамин Вз), Биотин (витамин Н).
3). Витаминоподобные соединения: Витамин Р (биофлавоноиды), Холин, Миоинозит (инозит, мезоинозит), Витамин U, Липоевая кислота, Оротовая кислота, Пангамовая кислота (витамин В15)
Антивитамины- структурные аналоги витаминов. Они обычно блокируют активные центры ферментов, вытесняя соответствующее производное витаминов(кофермент) из активного центра, и вызывают конкурентное ингибирование ферментов. антивитамины вызывают гипо- или авитаминозы.
Провитамины - это предшественники витаминов. Только два витамина относящихся к группе жирорастворимых имеют провитамины
1. Это витамин А - провитамином явл. каротины. Они легко расщепляются под действием диоксигеназы панкреатической железы давая два витамина две молекулы витамина А. Поэтому пища богатая кератинами она содержит достаточное кол-во витамина А. 2. Витамин D. Его провитамином является 7 дегидрохолестирин, кот. образуется в коже из холестерина.

17. Витамины А, Д, Е, К, их химическая природа и участие в метаболических процессах. Нарушения физиологических функций организма при недостатке этих витаминов, их причины.
Витамин А
Витамины группы А включают значительное число соединений, важнейшими среди которых являются ретинол, ретиналь, ретиноевая кислота и эфиры ретинола. Витамин А присутствует в пищевых продуктах в виде эфиров, а также в виде провитаминов, принадлежащих к группе каротиноидов. Наибольшей витаминной активностью обладает
·-каротин. Эфиры ретинола, введенные с пищей в организм, расщепляются в желудочно-кишечном тракте с освобождением ретинола, который всасывается и поступает в печень, где он вновь эстерифицируется в основном с пальмитиновой кислотой, образуя ретинилпальмитат, являющийся главной резервной формой витамина А. Печень служит депо витамина А и содержит значительные количества ретинола в эфиросвязанной форме. выраженное влияние на структуру и функцию мембран клетки и клеточных органелл. Недостаточность витамина А ведет к тяжелым нарушениям со стороны многих органов и систем, в основе которых лежит генерализованное поражение эпителия, характеризующееся его метаплазией и кератинизацией. Особенно типичны поражения кожных покровов (сухость, фолликулярный гиперкератоз, предрасположенность к пиодермии, фурункулезу и т. п.), дыхательных путей (склонность к ринитам, пневмониям), желудочно-кишечного тракта, мочевыводящих путей. Значительно страдают также органы зрения. Нарушение барьерных свойств эпителия и иммунологического статуса организма при дефиците витамина А ведет к резкому снижению устойчивости к инфекциям. Дефицит витамина А и
·-каротина в питании является также одним из факторов риска возникновения злокачественных новообразований.
Витамин Е.
Витамину Е принадлежит важная роль в поддержании стабильности мембран клетки и субклеточных структур, обусловленная его антиоксидантными свойствами, т. е. его способностью тормозить перекисное окисление. Активация же перекисного окисления мембранных липидов с накоплением при этом перекисей и продуктов является одним из механизмов повреждения мембран клетки и клеточных органелл. Антиоксидантные эффекты витамина Е обусловлены его способностью инактивировать свободные радикалы, инициирующие перекисное окисление мембранных липидов. Наряду с этим важную роль в обеспечении его антиоксидантной активности играет участие - токоферола в построении цитомембран и экранирование жирных кислот мембранных липидов от взаимодействия со свободными радикалами.
Авитаминоз Е у человека не описан. Симптомом гиповитаминоза Е является усиленный гемолиз эритроцитов, обусловленный нарушением стабильности их мембран. Гемолиз эритроцитов усиливается при потреблении с пищей избытка ПНЖК, способствующего усиленному расходованию природного антиоксиданта токоферола и возникновению его относительного дефицита.
Витамин К.
Биологическая роль витамина К определяется прежде всего его участием в процессах свертывания крови необходим для синтеза в печени функционально активных форм протромбина (фактора II), а также трех других белков, участвующих в свертывании крови. Подобно другим жирорастворимым витаминам, витамин К является, по-видимому, одним из компонентов биологических мембран, активно влияющим на их структурные и функциональные свойства.
Недостаточность витамина К у человека приводит к замедлению свертывания крови и развитию выраженною геморрагического синдрома, обусловленных угнетением синтеза протромбина и факторов свертываемости крови, а также замедлением превращения фибриногена в фибрин. Наряду с этим отмечаются изменения функциональной активности и гладких мышц, снижается активность ряда ферментов. Основная причина возникновения недостаточности витамина К у человека нарушение его всасывания в желудочно-кишечном тракте, вызванное либо заболеваниями кишечника (хронические энтериты, колиты), либо поражениями гепатобилиарной системы, связанными с нарушением желчеобразования (инфекционные и токсические гепатиты, циррозы печени) или выведения желчи в просвет кишечника (желчнокаменная болезнь, опухоли.
Витамин D.
Для человека и животных активными препаратами являются витамины D2(эргостин) и D3(холестерин).
С химической точки зрения эргостин представляет собой одноатомный ненасыщенный спирт.витамины Д2 и Д3 представляют собой бесцветные кристаллы с температурой плавления 115-117, нерастворимые в воде, но раств в жирах, хлороформе, эфире.
Участвует в регуляции процессов всасывания Са и Р в кишечнике. Резорбции костной ткани и реабсорбции СА и Р в почечных канальцах.
Недостаток в рационе приводит у детей к заболеванию рахита, в основе которого лежат изменения фосфорно-кальциевого обмена.кости становятся мягкими и меняют форму под тяжестью.Сказывается так же на развитии зубов- задерживается прорезывание и образование дентина.

18. Водорастворимые витамины В1, В2, В3, В5, их участие в метаболических процессах. Нарушение
физиологических функций организма при недостатке этих витаминов, их причины.
Тиамии (витамин В1) соединение, построенное из пиримидинового и тиазолового колец, соединенных между собой метиленовым мостиком. Биологически активной, коферментной фор мой витамина явл. его пирофосфорный эфир тиамин-дифосфат (ТДФ), широко используемый в настоящее время я лечебной практике под названием кокарбоксилаза. Фосфорилирование тиамина в тиаминдифосфат происходит в печени с участием специфический) фермента тиаминкиназы, катализирующей перенос пирофосфата от АТФ к тиамину. Потребность взрослых людей в тиамине колеблется в зависимости от пола, возраста, интенсивности труда и некоторых физиологических состояний от 1,1 до 2,1 мг/сут. Биологическая роль тиамина связана с его участием в построении коферментов ряда важнейших ферментов, в частности пируватдегидрогеназы, катализирующей окисление пировиноградной кислоты до ацетил-КоА;
·-кето-глутаратдегидрогеназы, участвующей в превращении одного из метаболитов цикла Кребса-
·-кетоглутаровой кислоты в сукцинил-КоА; транс-кетолазы, регулирующей ключевые реакции пентозофосфатного цикла. Тиамин необходим также для биосинтеза важнейшего нейромедиатора - ацетилхолина.
Недостаточность тиамина в организме приводит к нарушению окисления углеводов, накоплению недоокисленных продуктов (пировиноградной кислоты и др.) в крови и моче, угнетению биосинтеза ацетилхолина. Эти биохимические нарушения лежат в основе возникновения ряда патологических симптомов со стороны нервной (головная боль, раздражительность, ослабление памяти, периферические полиневриты, парезы, в тяжелых случаях параличи) и сердечнососудистой систем (тахикардия, боли в области сердца, расширение границ сердца, приглушенность сердечных тонов, одышка, отеки) и органов пищеварении (резкое снижение аппетита, боли в животе, тошнота, снижение тонуса кишечника, запоры), развивающихся при недостаточности тиамина. Клинически выраженные формы недостаточности тиамина обозначают как болезнь бери-бери.
Рибофлавин (витамин В2) представляет производное изоаллоксазина, связанного с 5-атомным спиртом рибитолом. Суточная потребность в рибофлавине взрослого человека составляет 1,3 2,4 мг. Биологическая роль рибофлавина определяется прежде всего его участием в построении двух важнейших коферментов флавинмоно-нуклеотида (ФМН) и флавинадениндинуклеотида (ФАД), входящих в состав различных окислительно-восстановительных ферментных систем. Таким образом, биохимический механизм действия рибофлавина связан с его участием в процессах биологического окисления и энергетического обмена. Наряду с этим рибофлавин участвует в построении зрительного пурпура, защищая сетчатку от избыточного воздействия Уф-лучей. Гипо- и авитаминоз В2 (арибофлавиноз) распространены в ряде районов развивающихся стран Африки, Южной и Юго-Восточной Азии. Заболевание характеризуется поражением слизистой оболочки губ с вертикальными трещинами и десквамацией эпителия (хейлоз), ангулярным стоматитом, глосситом, себорейным шелушением кожи вокруг рта, на крыльях носа, ушах, носогубных складках и изменениями органа зрения.
Витамин В3(пантотеновая кислота) В состав пантотена входит
·-аланин, соединенный через аминогруппу с диоксимонокарбоновой кислотой. Чистая пантотеновая кислота представляет собой светло-желтое вязкое масло, хорошо растворимое в воде. Суточная потребность человека исчисляется примерно в 10мг. Выяснилась тесная связь пантотена с реакцией ацетнлирования в животном организме. Оказалось, что в сосстав коферментной группы, осуществляющей реакцию ацетилирования (КоА), входит пантотеновая кислота. КоА участвует в переносе не только ацетильного, но и других кислотных (ацильных) радикалов, образуя соответствующие ацилкоэнзимы А (ацетил-, бутирил-, сукцинил-КоА и т.п.). В окислительном превращении пировиноградной кислоты, также участвует коэнзим А, в который входит пантотеновая кислота. Можно вообще считать, что нарушение в обмене веществ при недостатке в организме пантотеновой кислоты обусловлено частичным выпадением функций КоА, для образования которого необходима пантотеновая кислота
Ниацин (витамин РР,В5). Является производным пиримидинового ядра. Основными представителями этой группы витаминов являются никотиновая кислота и никотинамид. Их биологическая активность практически одинакова, но фармако-терапевтические свойства различны никотиновая кислота оказывает значительно более выраженное сосудорасширяющее действие, чем никотинамид. В животных тканях ниацин содержится в основном в виде никотинамида. Биологическая роль ниацина связана с его участием в построении двух коферментов НАД и НАДФ, входящих в состав важнейших окислительно - восстановительных ферментов дегидрогеназ. Ниацин участвует непосредственно в процессах биологического окисления и энергетического обмена.
При недостаточности ниацина развивается пеллагра тяжелое заболевание, связанное с поражением желудочно-кишечного тракта (глоссит, нарушение секреции желудочного сока, упорная диарея), кожи (симметричный дерматит лица и открытых частей тела) и ЦНС (раздражительность, боли в различных участках тела, нарушение чувствительности, кожных рефлексов, повышение сухожильных рефлексов и появление патологических рефлексов, судороги, атаксия, психозы, в тяжелых случаях деменция). Потребность взрослого человека в ниацине составляет 14 - 28 мг ниациновых эквивалентов в сутки, а в расчете на 1000 ккал около 67 мг.

19. Водорастворимые витамины В7 (биотин), В9 (фолиевая кислота), В12 (кобаламин), их участие в метаболических процессах. Нарушение физиологических функций организма при недостатке витаминов В9, В12, их причины.
В7(биотин) В основе строения биотина лежит тиофеновое кольцо, к которому присоединена мочевина, а боковая цепь представлена валерьяновой кислотой. Наличие серы в биотине не имеет сушественного значения для биологической активности этого соединения, так как в оксибиотине (где вместо серы находится кислород) биологическая активность сохраняется.
Биотин представляет собой кристаллическое вещество, хорошо растворимое в воде и спирте. Это - устойчивое соединение, биологическая активность которого не меняется при кипячении растворов и при доступе кислорода.
Биотин необходим для синтеза пуринов на стадии фиксации СО2; он участвует в реакциях образования малонил-КоА из ацетил-КоА, CO2 и АТФ, в реакциях обратимого карбоксилирования пировиноградной кислоты с образованием щавелевоуксусной кислоты, декарбоксилирования сукцинилкоэнзима А, а также в некоторых реакциях обмена, вовлекающих аспарагиновую кислоту. В последнее время установлено, что СО2 может присоединяться к биотин-ферментному комплексу с образованием «активной формы углекислоты». Суточная потребность 0,25 мг.при недостатке отмечаются воспалительные заболевания кожи. Усиленная деятельность сальных желез, выпадение волос, поражение ногтей, боли в мышцах, усталость.
Фолиевая кислота продукт взаимодействия птеридина, парааминобензойной и L-глутаминовой кислот. В природе широко распространены производные фолиевой кислоты, в которых птероевая кислота связана с двумя, тремя и более остатками глутаминовой кислоты так называемые фолаты. В пищевых продуктах преобладают «связанные» фолаты, всасывание которые в кишечнике требует предварительного освобождения их от избытка глутаминовой кислоты с помощью особых кишечных ферментов у-глутамилкарбоксипептидаз (конъюгаз). Биологическая роль определяется способностью присоединять различные одноуглеродистые остатки и активно участвовать в их дальнейших превращениях, являющихся существенным мометом в процессах биосинтеза пуриновых оснований . Вместе с тем способность к переносу метальной (-СНз) группы определяет ее важную роль в процессе образования из гомоцистеина метионина, лабильные метильные группы которого необходимы для синтеза холина, адреналина, креатина и метаболизма никотиновой кислоты, гистамина и др. так же участвует во взаимопревращениях аминокислот серина и глицина, в ходе которых образуется основная часть одноуглеродных фрагментов. Наконец, фолиевая кислота необходима для превращения промежуточного продукта метаболизма гистидина формиминоглутаминовоя кислоты в глутаминовую кислоту. Таким образом, биохимические функции фолиевой кислоты весьма разнообразны и связаны с участием в процессах биосинтеза белка и нуклеиновых кислот, реакциях метилирования и метаболизме ряда аминокислот. Фолацин имеет особое значение для процессов роста и развития, характеризующихся высокой скоростью синтеза белка и нуклеиновых кислот, и проявляет липотропные свойства, обусловленные его участием в ресинтезе метионина. Суточная потребность взрослых людей в фолацине составляет 200 мкг, беременных – 400 мкг.
Биологическая роль витамина В12 связана с его коферментными свойствами. Он участвует в построении ряда ферментных систем и, прежде всего метионинсинтетазы, катализирующей перенос лабильной метильной группы с тетрагидрофолиевой кислоты на гомоцистеин с образованием при этом аминокислоты метионина и регенерацией свободной тетрагидрофолиевой кислота. В ходе этих превращений витамин B12 служит промежуточным переносчиком метильной группы.
Авитаминоз В12 характеризуется нарушением кроветворения с развитием макроцитарной гиперхромной анемии, поражением нервной системы и органов пищеварения. При авитаминозе отмечаются раздражительность, утомляемость, фуникулярный миелоз (дегенерация и склероз задних и боковых столбов спинного мозга), приводящий в легких случаях к парестезиям, в тяжелых к параличам и расстройствам функций тазовых органов; наблюдаются потеря аппетита, глоссит, ахилия, нарушения моторики кишечника. Суточная потребность – З мкг, беременным - 4 мкг.

20. Витамин С, его биологическая роль. С-гиповитаминозы: причины развития, нарушение обменных процессов при С-гиповитаминозах. Представление о профилактике и диагностике С-гиповитаминозов.
Аскорбиновая кислота и продукт ее окисления дегидроаскорбиновая кислота участвуют в биологических реакциях окисления и восстановления. Аскорбиновая кислота необходима для функциональной интеграции сульфгидрильных групп ферментов, для образования коллагена и внутриклеточного структурного вещества, важного для формирования хрящей, костей, зубов и заживления ран. Она влияет на образование гемоглобина, созревание эритроцитов, превращение фолиевой кислоты в тетрогидрофолат, участвует в метаболизме углеводов, биосинтезе катехоламинов и гидроксилировании карнеоната (метаболит альдостерона). С участием аскорбиновой кислоты происходит инактивация свободных радикалов, метаболизм циклических нуклеидов, простагландинов и гистамина. Являясь антиоксидантом, аскорбиновая кислота предохраняет мембраны клеток и, в частности, лимфоцитов от повреждающего действия перекисного окисления. Это является основой иммуностимулирующих эффектов витамина С, которые проявляются в действии на гуморальные и клеточные механизмы иммунитета, миграцию лимфоцитов, хемотаксис, синтез и освобождение интерферона. Аскорбиновая кислота повышает всасывание железа в желудочно-кишечном тракте и способствует превращению окиси железа в закисную форму.
Дефицит витамина С ведет к развитию цинги. Клинические проявления цинги развиваются, когда запасы витамина С в организме оказываются менее 300 мг. Типичными признаками ее у взрослых являются перифолликулярные кровоизлияния, петехии, экхимозы, особенно на опорных поверхностях и задней поверхности бедер, подкожные кровоизлияния, кровоизлияния в мышцы и суставы, отечность, воспаление, кровоточивость и разрыхление десен, плохое заживление ран, микроцитарная или нормоцитарная анемия (из-за нарушения всасывания в желудочно-кишечном тракте). У детей теряется аппетит, появляются апатичность и субпериостальные кровоизлияния, обусловливающие напряженность и ограничение подвижности конечности. Наблюдаются экхимозы и изменения десен, сходные с таковыми у взрослых.

III. Энергетический обмен. Биологическое окисление.

21. Питательные вещества как источники энергии и пластического материала для организма. Общая схема катаболизма питательных веществ. Общие и специфические пути катаболизма.
Источником свободной энергии в организмах гетеротрофов является распад питательных веществ, иначе говоря, катаболические процессы, протекающие в клетках и тканях. Катаболизм включает сотни химических реакций, десятки метаболических путей. В то же время в организации катаболических процессов прослеживается определенная логика.
Весь катаболизм питательных веществ в организме можно разделить на три этапа или, как принято называть, три фазы. В первой фазе происходит расщепление полимерных молекул на мономеры: белки расщепляются до аминокислот, олиго и полисахариды на моносахариды и их производные, липиды на высшие жирные кислоты, глицерол, аминоспирты и др. Следует заметить, что речь идет не только о расщеплении компонентов пищи в желудочнокишечном тракте, но и распаде биополимеров непосредственно в клетках. В этой фазе нет окислительных процессов, преобладают гидролиз и фосфоролиз. Выделение энергии не превышает 12% от её общего содержания в питательных веществах, причем вся энергия рассеивается в виде теплоты.Однако в этой фазе происходит одно важное событие резкое уменьшение числа соединений, которые поступают затем во вторую фазу катаболизма. Так, с разнообразными пищевыми продуктами продуктами в желудочнокишечный тракт поступают миллионы различных белков и все они расщепляются до 2025 мономероваминокислот, а несколько сотен различных липидов при расщеплении дают полтора десятка различных высших жирных кислот и спиртов; несколько сотен различных олигосахаридов и полисахаридов при распаде дают, в свою очередь, полтора десятка моносахаридов и их производных. Таким образом, вместо миллионов различных соединений, вступающих в первую фазу, на выходе из нее образуется около 50 соединений.
Во второй фазе эти пять десятков соединений подвергаются дальнейшему расщеплению, так что на выходе из этой фазы остается всего пять соединений: ацетилКоА, сукцинилКоА, фумарат, оксало ацетат и 2оксоглутарат. Таким образом, продолжающееся во второй фазе расщепление питательных веществ сопровождается еще большей унификацией промежуточных продуктов. Катаболические процессы, идущие во второй фазе, носят смешанный характер, т.к. в ней идут и фосфоролиз, и лиазное расщепление, и тиолиз и окислительные реакции. Во второй фазе выделяется до 1/3 всей заключенной в питательных веществах энергии, причем часть ее аккумулируется. В этой фазе катаболизма образуются все азотсодержащие конечные продукты катаболизма, а также часть СО2 и Н2О.Логика такой организации катаболических процессов заключается в том, что по мере углубления распада питательных веществ количество промежуточных продуктов метаболизма уменьшается. Такой принцип построения катаболических процессов получил название принцип конвергенции.
Метаболические пути первой и второй фазы катаболизма обычно индивидуальны для отдельных соединений или групп родственных по структуре веществ одного класса. Поэтому метаболические пути первой и второй фазы катаболизма получили название специфических путей катаболизма. В то же время метаболические процессы третьей фазы катаболизма одинаковы вне зависимости от того, какое соединение расщепляется. В связи с этим метаболические пути третьей фазы получили название общих путей катаболизма.
Наличие общих метаболических путей в третьей фазе катаболизма, в которой выделяется 2/3 всей свободной энергии, повышает адаптационные возможности живых организмов, т.к. позволяет сравнительно легко переключаться с одного типа питательных веществ на другой. Наличие общих метаболических путей в третьей фазе позволяет также уменьшить количество различных ферментов, необходимых клеткам и тканям для переработки разных питательных веществ. Все это помогает организмам в борьбе за выживание и является результатом длительной эволюции живых организмов.пути третьей фазы катаболизма : цикл трикарбоновых кислот Кребса и цепь дыхательных ферментов.

22. Незаменимые компоненты пищи. Суточная потребность в основных компонентах пищи: белках жирах, углеводах, воде и микроэлементах. Основные конечные продукты обмена, выделяемые из организма, их суточное количество.
Полноценное питание должно содержать:
1. ИСТОЧНИКИ ЭНЕРГИИ (УГЛЕВОДЫ, ЖИРЫ, БЕЛКИ).
2. НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ.
3. НЕЗАМЕНИМЫЕ ЖИРНЫЕ КИСЛОТЫ.
4. ВИТАМИНЫ.
5. НЕОРГАНИЧЕСКИЕ (МИНЕРАЛЬНЫЕ) КИСЛОТЫ.
6. КЛЕТЧАТКУ
7. Н2О
Углеводы, жиры и белки являются макропитательными веществами. Их потребление зависит от роста, возраста и пола человека и определяется в граммах.
Углеводы составляют основной источник энергии в питании человека. За счет углеводов образуется основная часть энергии в организме человека.
Жиры - это один из основных источников энергии. Перевариваются в желудочно-кишечном тракте (ЖКТ) гораздо медленнее, чем углеводы, поэтому лучше способствуют возникновению чувства сытости. Триглицериды растительного происхождения являются не только источником энергии, но и незаменимымых жирных кислот: линолевой и линоленовой.
Белки - энергетическая функция не является для них основной. Белки - это исочники незаменимых и заменимых аминокислот, а также предшественники биологически активных веществ в организме. Однако при окислении аминокислот образуется энергия. Хотя она и невелика, но составляет некоторую часть энергетического рациона.
Для врослого человека при средней утомляемости требуется суточный рацион в 300 ккал. С увеличением энергозатрат возрастает и потребность в пищевых продуктах. Соостношение белков, жиров и углеводов должно быть 1:1:4. Белки обеспечивают15% суточной энергетической потребности, жиры 30% и углеводы 55%, причем белки животного происхождения долны составлять не менее половины от все белков.
75% всего количества жира должно приходиться на животные жиры и 20-25% на растительные масла.

23. Взаимосвязь обмена веществ и обмена энергии. Экзэргонические и эндэргонические реакции. Макроэргические соединения, их классификация и биологическая роль. Основные пути образования АТФ в клетке и пути ее использования.
Химические реакции, протекающие в клетках, могут иметь различные значения
·Go: положительные или отрицательные. Большинство катаболических реакций имеет отрицательные значения
·Gо, т.е. являются экзэргоническими и могут идти самопроизвольно. В то же время реакции клеточного анаболизма часто являются эндэргоническими и самопроизвольно идти не могут для их осуществления необходима энергия, поступающая извне. Необходимо использовать свободную энергию, выделяющуюся в экзэргонических реакциях катаболизма. Это использование свободной энергии экзэргонических реакция для осуществления эндэргонических реакций есть энергетическое сопряжение реакций.
Единственным условием эффективности энергетического сопряжения :суммарное изменение
·G в двух сопряженных реакциях должно быть отрицательным. живые объекты эффективно используют энергию, заключенную в химических связях тех или иных соединений. Именно в виде химической энергии и передается энергия в системе сопряженных химических реакций.Соединения, выступающие в качестве переносчиков энергии, содержат в одной из своих связей большой запас химической энергии, которая высвобождается при их разрыве. Эти соединения называют «макроэргическими соединениями» или «макроэргами», а химические связи, при разрыве которых выделяется большое количество свободной энергии, получили название «макроэргических связей». Химическая связь в том или ином соединении считается макроэргической, если при её разрыве выделяется не менее 5 ккал ( 20 кДж ) в расчете на 1 моль связи. Свободная энергия, выделяющаяся в ходе катаболической экзэргонической реакции первоначально накапливается ( аккумулируется ) в виде энергии макроэргической связи соединения переносчика энергии, а затем эта аккумулированная энергия высвобождается при разрыве макроэргической связи и используется в ходе анаболической эндэргонической реакции.
4 класса макроэргов:
1. Полифосфаты нуклеотидов ( АТФ, ЦТФ, УТФ и др.) Макроэргическими связями в их составе являются фосфоангидридные пирофосфатные связи:
2. Ацилфосфата или карбонилфосфаты ( ацетилфосфат, 1,3ди фосфоглицерат ). Макроэргической связью является ангидридная связь между карбоксильной группой кислотного остатка и остатком фосфорной кислоты:
3. Тиоэфиры ( ацетилКоА, сукцинилКоА ). Макроэргической связью является ангидридная связь между карбоксильной группой кислоты и HSгруппой тиоспирта, входящего в состав КоА ):
4. Гуанидинфосфаты ( креатинфосфат, аргининфосфат). Макроэргической связью является ангидридная связь между гуанидиновой группой и остатком фосфорной кислоты
Несмотря на высокие значения
·Go для процессов разрыва макроэргических связей богатые энергией соединения представляют собой достаточно стабильные в условиях живых систем вещества. Кроме того, это низкомолекулярные соединения, поэтому они могут сравнительно легко перемещаться в клетке. Совокупность их свойств: способность аккумулировать энергию и способность диффундировать в клетке и позволяет им выполнять функцию переносчиков энергии.
Центральное место в системе клеточных макроэргов принадлежит АТФ , поскольку она, во-первых, выступает первичным аккумулятором большей части энергии, выделяющейся при распаде питательных веществ; во-вторых, АТФ выступает в качестве источника свободной энергии для большинства внутриклеточных эндэргонических реакций и процессов, тогда как остальные макроэрги принимают участие в узком круге реакций; в третьих, большинство других макроэргов или сами образуются за счет энергии АТФ ( креатинфосфат, ЦТФ и др.) или сами служат промежуточными продуктами при синтезе АТФ. Выделяющаяся в ходе окислительных процессов свободная энергия должна быть аккумулирована в виде энергии макроэргических связей АТФ или родственных ей соединений, поскольку в противном случае она превратиться в теплоту и будет рассеяна в окружающей среде. Синтез АТФ из АДФ и неорганического фосфата с использованием энергии, выделяющейся в ходе окислительных процессов, получил название «окислительное фосфорилирование».Принято выделять два варианта окислительного фосфорилирования: субстратное окислительное фосфорилирование и окислительное фосфорилирование в цепи дыхательных ферментов. Механизмы этих процессов существенно отличаются друг от друга. Принято считать, что за счет окислительного фосфорилирования в цепи дыхательных ферментов в клетке образуется до 90% необходимой ей АТФ и лишь около 10% АТФ синтезируется в ходе субстратного окислительного фосфорилирования

24. Биологическое окисление как главный путь расщепления питательных веществ в организме, его функции в клетке. Способы окисления веществ в биологических системах. Ферменты, катализирующие окислительные реакции в организме.
БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ - это совокупность окислительных процессов в живом организме, протекающих с обязательным участием кислорода. Синоним - ТКАНЕВОЕ ДЫХАНИЕ. Окисление одного вещества невозможно без восстановления другого вещества. Окислительно-восстановительных процессов в живой природе очень много. Часть окислительно-восстановительных процессов, протекающих с участием кислорода, относится к биологическому окислению.
Важнейшей функцией биологического окисления, безусловно, является высвобождение энергии, заключенной в химических связях питательных веществ. Выделяющееся энергия используется для осуществления энергозависимых процессов, протекающих в клетках, а также для поержания температуры тела.
Второй функцией биоокисления является пластическая: в ходе расщепления питательных веществ образуются низкомолекулярные промежуточные продукты, используемые в дальнейшем для биосинтезов. Например, при окислительном распаде глюкозы образуется ацетилКоА, который далее может пойти на синтез холестерола или высших жирных кислот.
Третьей функцией биоокисления является генерация восстановительных потенциалов, которые в дальнейшем используются в восстановительных биосинтезах. Главным источником восстановительных потенциалов в биосинтетических реакциях клеточного метаболизма является НАДФН+Н+, образующийся из НАДФ+ за счет атомов водорода, переносимых на него в ходе некоторых реакций дегидрирования.
Четвертая функция биоокисления участие в процессах детоксикации,т.е. обезвреживания ядовитых соединений или поступающих из внешней среды, или образующихся в организме.
Различные соединения в клетках могут окисляться тремя способами:
1. путем дегидрирования. Принято различать два вида дегидрирования: аэробное и анаэробное. если первичным акцептором отщепляемых атомов водорода служит кислород, дегидрирование является аэробным; если же первичным акцептором отщепляемых атомов водорода служит какоелибо другое соединение, дегидрирование является анаэробным. Примерами таких соединений акцепторов водорода могут служить НАД , НАДФ , ФМН, ФАД, окисленный глутатион ( ГSSГ ), дегидроаскорбиновая кислота и др.
2. Путем присоединения к молекулам окисляемого вещества кислорода, т.е. путем оксигенирования.
3. Путем отдачи электронов.
Все живые организмы принято делить на организмы аэробные и организмы анаэробные. Аэробные организмы нуждаются в кислороде, который ,вопервых, используется в реакциях оксигенирования, вовторых, служит конечным акцептором атомов водорода, отщепленных от окисляемого субстрата. Причем, около 95% всего поглощаемого кислорода служит конечным акцептором атомов водорода, отщепленных в ходе окисления от различных субстратов, и лишь 5% поглощаемого кислорода участвует в реакциях оксигенации.
Все ферменты, участвующие в катализе окислительновосстановительных реакции в организме относятся к классу ОКСИДОРЕДУКТАЗ. В свою очередь, все ферменты этого класса могут быть разделены на 4 группы:
1. Ферменты, катализирующие реакции дегидрирования или дегидрогеназы. В зависимости от характера акцептора отщепляемых от окисляемого субстрата (SH2) атомов водорода различают:
а). Аэробные дегидрогеназы или оксидазы
б). Анаэробные дегидрогеназы с типовой реакцией:
2. Ферменты, катализирующие реакции оксигенирования или оксигеназы.
а). Монооксигеназы
б). Диоксигеназы
3. Ферменты, катализирующие отщепление электронов от окисляемых субстратов. называются цитохромы.
4. К оксидоредуктазам относится также группа вспомогательных ферментов, таких как каталаза или пероксидаза. Они играют защитную роль в клетке, разрушая перекись водорода или органические гидроперекиси, образующиеся в ходе окислительных процессов и представляющие собой достаточно агрессивные соединения, способные повреждать клеточные структуры.

25. Цикл трикарбоновых кислот Кребса (ЦТК). Последовательность реакций, регуляция работы цикла и его биологическая роль. Анаболические функции ЦТК.
Это высокоорганизованная циклическая система взаимопревращений ди- и трикарбоновых кислот, катализируемых мультиферментным комплексом Он составляет основу клеточного метаболизма. Несмотря на то, что этот метаболический путь является замкнутым его началом считается цитратсинтазная реакция в ходе которой конденсация Ацетил-КоА и оксалоацитата дает цитрат. Далее следует реакция отщепление воды катализируемая ферментом аконитазой продуктом реакции является цис-аконитовая кислота. Этот же фермент (аконитаза) катализирует реакцию гидротации в итоге образуется изомер изоцитрат. Окислительная реакция кот катализируется ферментом изоцитратдегидрогиназа дает а-кетоглутаровую кислоту. В ходе реакции отщепляется СО2, энергия окислительного превращения аккумулируется в восстановленном НАД. Далее а-кетоглютаровая кислота под действием а-кетоглюторатдегидрогиназного комплекса превращается в сукценил-КоА. Сукцинил-КоА-Фермент катализирует реакцию в ходе которой из ГДФ и фосфорной кислоты образуется ГТФ(АТФ)и отщепляется фермент сукцинаттиокиназа. В итоге образуется янтарная кислота – сукцинат. Сукцинат далее вступает вновь в реакцию окисления с участием фермента сукцинатдегидрогиназы. Это ФАД зависимый фермент. сукцинат окисляется с образованием фумаровой кислоты. Происходит немедленное присоединение воды с участием фермента фумаразы и образуется малат (яблочная кислота). Малат, с участием малатдегидрогиназы содержащий НАД, окисляется в итоге образуется ЩУК т е происходит регенерация первого продукта ЩУК может снова вступать в реакцию конденсации с ацетил-КоА с образованием лимонной.
Что происходит в цикле Кребса? СНЗ-С + ЗНАД + ФАД + ГДФ + НЗРО4 + 2Н2О -> 2СОг + ЗНАДН+Н* + ФАДН2 + ГТФ + HSKoA
Термодинамический контроль работы цикла
Пусковой реакцией цикла является цитратсинтазная реакция. Она сопровождается большой потерей энергии
·G = - 7,7 ккал/моль. В условиях клетки эта реакция практически необратима. Большой потерей энергии сопровождается а-кетоглюторатдегидрогиназная реакция
·G = -8 ккал/моль. В условиях клетки эта реакция абсолютна необратима. За счет этого движение метаболитов возможно лишь в одном направлении.
Кинетический контроль скорости потока метаболитов. Обеспеченность клетки энергией можно характеризовать величиной энергетического ее заряда. Он равен отношению концентрации АТФ и половины концентрации АДФ к концентрациям АДФ, АТФ и АМФ. Когда клетка хорошо обеспечена энергией большая часть ее адениловых нуклеотидов находится в форме АТФ и величина энергетического заряда приближается к 1. Высокая концентрация АДФ и АМФ признак нехватки энергии. Отсюда работа цикла Кребса должна тормозиться высокой концентрацией АТФ. Цикл Кребса должен стимулироваться высокой концентрацией АДФ и АМФ, энергии не хватает - пора включать цикл. Аналогичную роль может играть отношение восстановленного о НАД к окисленному. Скорость работы цикла контролируется прежде всего на пусковой стадии, которая определяется в значительной мере концентрацией ЩУК в клетке. Кроме того цитратсинтаза аллостерически угентается высокими концентрациями АТФ, восстан. НАД, и сукцинил-КоА. Угнетение активности ферментов высокими концентрациями АТФ вполне понятно - клетка обеспеченна энергией и цикл Кребса выключается. Второе регуляторное звено - изоцитратдегидрогиназная реакция. Изоцитратдегндрогиназа аллостерически ингибируется высокими концентрациями АТФ и восстановленного НАД. В то же время АДФ выступает в качестве аллостерического активатора. Аллостерическим активатором по некоторым данным является так же изоцитрат.
Третьим уровнем регуляции является а-кетоглюторатдегидрогеназная реакция. Здесь восстановленный НАД и АТФ явл. аллостер. ингибиторами работы этого комплекса. Активатором выступает АМФ.Высокие концентрации сукцинил-КоА угнетает работу комплекса
Активность фермента сукцинатдегидрогиназы ингибируется по конкурентному механизму высокими концентрациями ЩУК и малоновой кислоты.
ГЛАВНАЯ РОЛЬ ЦТК - ОБРАЗОВАНИЕ БОЛЬШОГО КОЛИЧЕСТВА АТФ.
1. ЦТК - главный источник АТФ. Энергию для образования большого количества АТФ дает полный распад Ацетил-КоА до СО2 и Н2О.
2. ЦТК - это универсальный терминальный этап катаболизма веществ всех классов.
3. ЦТК играет важную роль в процессах анаболизма (промежуточные продукты ЦТК):
- из цитрата -------> синтез жирных кислот
- из aльфа-кетоглутарата и ЩУК ---------> синтез аминокислот
- из ЩУК ----------> синтез углеводов
- из сукцинил-КоА -----------> синтез гема гемоглобина

26. Главная цепь дыхательных ферментов в митохондриях, ее структурная организация и биологическая роль. Цитохромы, цитохромоксидаза, химическая природа и роль в окислительных процессах.
В ходе многочисленных реакций дегидрирования, происходящих как во второй фазе катаболизма, так и в цикле Кребса, образуются восстановленные формы коферментов: НАДН+Н+ и ФАДН2. Эти реакции катализируются многочисленными пиридинзависимыми и флавинзависимыми дегидрогеназами. В то же время пул коферментов в клетке ограничен, поэтому восстановленные формы коферментов должны «разряжаться», т.е. передавать полученные атомы водорода на другие соединения с тем, чтобы в конечном итоге они были переданы у аэробных организмов на свой конечный акцептор кислород. Этот процесс «разрядки» или окисления восстановленных НАДН+Н+ и ФАДН2 выполняет метаболический путь, известный под названием главная цепь дыхательных ферментов. Она локализована во внутренней мембране митохондрий.
Главная цепь дыхательных ферментов состоит из 3 сложных надмолекулярнных белковых комплексов, катализирующих последовательную передачу электронов и протонов с восстановленного НАДН+Н на кислород:
Первый надмолекулярный комплекс катализирует перенос 2 электронов и 2 протонов с восстановленного НАДН+Н+на КоQ с образованием восстановленной формы последнего КоQH2. В состав надмолекулярного комплекса входит около 20 полипептидных цепей, в качестве простетических групп некоторых из них входит молекула фламинмононуклеотида(ФМН) и один или несколько так называемых железосерных центров (FeS)n. Электроны и протоны с НАДН+Н+вначале переносятся на ФМН с образованием ФМНН2, затем электроны с ФМНН2 переносятся через железосерные центры на КоQ, после чего к КоQ присоединяются протоны с образованием его восстановленной формы:
Следующий надмолекулярный комплекс также состоит из нескольких белков: цитохрома b, белка, имеющего в своем составе железосерный центр и цитохрома С1. В состав любого цитохрома входит геминовая группировка с входящим в неё атомом железа элемента с переменной валентностью, способного и принимать электрон, и отдавать его. Начиная с КоQН2 пути электронов и протонов расходятся. Электроны с КоQН2 передаются по цепи цитохромов, причем одновременно по цепи передается по 1 электрону, а протоны с КоQН2 уходят в окружающую среду.
Цитохром С оксидазный комплекс состоит из двух цитохромов: цитохрома а и цитохрома а3 . Цитохром а имеет в своем составе геминовую группировку, а цитохром а3 кроме геминовой группировки в своем составе содержит еще и атом Cu. Электрон при участии этого комплекса переносится с цитохрома С на кислород.
НАД+ , КоQ и цитохром С не входят в состав ни одного из описанных комплексов. НАД+ служит коллектором-переносчиком протонов и электронов с большого ряда окисляемых в клетках субстратов. Функцию коллектора электронов и протонов выполняет также КоQ, принимая их с некоторых окисляемых субстратов ( например, с сукцината или ацилКоА ) и передавая электроны на систему цитохромов с выводом протоны в окружающую среду. Цитохром С также может принимать электроны непосредственно с окисляемых субстратов и передавать их далее на четвертый комплекс ЦДФ.
Так, при окислении сукцината работает сукцинат-КоQ-оксидаредуктазный комплекс ( Комплекс II ), передающий протоны и электроны с сукцината непосредственно на КоQ, минуя НАД+:
Для того, чтобы молекула кислорода превратилась в 2 иона О2, на нее должны быть перенесены 4 электрона. Принято считать, что по цепи переносчиков электронов последовательно переносится 4 электрона с двух молекул НАДН+Н+ и до принятия всех четырех электронов молекула кислорода остается связанной в активном центре цитохрома а3. После принятия 4 электронов два иона О2 связывают по два протона каждый, образуя таким образом 2 молекулы воды.
В цепи дыхательных ферментов используется основная масса поступающего в организм кислорода до 95%. Мерой интенсивности процессов аэробного окисления в той или иной ткани служит дыхательный коэффициент ( QO2 ), который обычно выражается в количестве микролитров кислорода, поглощенных тканью за 1 час в расчете на 1 мг сухого веса ткани ( мкл.час1.мг1 ). Для миокарда он равен 5, для ткани надпочечников 10, для ткани коркового вещества почек 23, для печени 17, для кожи 0,8. Поглощение кислорода тканями сопровождается одновременным образованием в них углекислоты и воды. Этот процесс поглощения тканями О2 с одновременным выделением СО2 получил название тканевое дыхание.

27. Химическая природа дегидрогеназ. НАД- и флавин-зависимые дегидрогеназы, их важнейщие субстраты.
Флавиновые дегидрогеназы. составляют другую группу дегидрогеназ. Коферменгами для них являются флавинадениндидаклеотид (ФАД) или флавиномононуклеотид ГФМН) Эти коферменты являются производными рибофлавина (витамгна В2) Рибофлавин содержит циклическую группировку и остаток пятитомного спирта рибитола. ФМН представляет совой рибофлавин-51-фосфат, а ФАД, кроме того, содержит остаток адениловой кислоты
Флавиновые коферменты прочно связаны с апоферментамн, следовательно, флавиновые дегидрогеназы это сложные белки. В ходе реакции отщепляемые от субстрата атомы водорода присоединяются к изоаллоксазиновой группировке кофермента
К флавиновым ферментам, содержащим ФМН, принадлежит НАД-Н-дегидрогеназа, которая окисляет НАД-Н. Акцептором водорода в этой реакции служит кофермеит Q (убихинон), который в клетке может существовать в окисленной (убихинон Q) и восстановленной формах (убихинол QH2) НАД-Н-Дегидрогеназа переносит водород с НАД-Н на убихинон
НАД-Н+1 №- + Q -> НАД+ + QH2
При этом атомы водорода сначала присоединяются к ФМН в составе НАД-Н-дегидрогенязы (первая полуреакдия), а затем передаются на убихинон (вторая полуреакция)
Дегидрогеяюы содержащие ФАД, катализируют отщепление водорода от групп -CH2-CH2- с образованием двойной связи.

28. Окислительное фосфорилирование в цепи дыхательных ферментов, его механизм по Митчелу. Коэффициент Р/О. Разобщение окисления и фосфорилирования. Окислительное фосфорилирование на уровне субстрата, его значение для клетки.
при переносе пары электронов с НАДН+Н+ на атом кислорода синтезируется максимум 3 молекулы АТФ. Приняв во внимание, что для образования 1 моля пирофосфатных связей АТФ в реакции ее синтеза из АДФ и неорганического фосфата необходимо 7,3 ккал энергии, мы можем рассчитать что из 53 ккал свободной энергии, выделяющейся при окислении 1 моля НАДН+Н+, в клетке аккумулируется примерно 22 ккал .т.е. около 40%. Мерой эффективности процесса окислительного фосфорилирования в цепи дыхательных ферментов служит коэффициент Р/О; количество атомов фосфора, включенных из неорганического фосфата в состав АТФ, в расчете на 1 связанный атом кислорода, пошедший на образование воды в ходе работы дыхательной цепи. При окислении НАДН+Н+ он равен 3, при окислении ФАДН2( КоQН2) он составляет 2 и при окислении восстановленного цитохрома С он равен 1.
Существует множество теорий аккумуляции энергии. Наиболее обоснованной на настоящий момент является химиоосмотическая концепция сопряжения, выдвинутая Митчелом. Суть химиоосмотической концепции сопряжения в следующем: свободная энергия, выделяющаяся при движении электронов по цепи дыхательных ферментов, используется для откачки протонов «Н+» из внутреннего пространства, т.е. матрикса митохондрий через внутреннюю мембрану митохондрий в межмембранное пространство. В результате в межмембранном пространстве митохондрий накапливаются протоны, а в матриксе митохондрий накапливаются гидроксилы, т.е. «ОН». Перемещение «Н+» из внутреннего пространства митохондрий в окружающую среду осуществляется за счет анизотропного расположения в мембране митохондрий ферментных комплексов, причем на уровне каждого из 3 комплексов главной дыхательной цепи при прохождении через него пары электронов из внутреннего пространства митохондрий в межмембранное пространство выбрасывается два протона. Сама же внутренняя мембранна непроницаема для протонов.В результате откачки протонов из матрикса митохондрий в мемжмебранное пространство создается разность электрохимических потенциалов относительно внутренней мембраны митохондрий. Она складывается из градиента концентрации протонов относительно внутренней митохондриальной мембраны ;снаружи концентрация протонов выше, чем изнутри, и разности электрического заряда относительно этой мембраны с наружной стороны мембраны заряд положительный, тогда как изнутри отрицательный.
Система, имеющая в своей структуре градиент электрохимического потенциала, является системой, имеющей запас химической энергии. Эта химическая энергия используется в дальнейшем для синтеза АТФ. Трансформация энергии электрохимического градиента в энергию макроэргических связей АТФ осуществляется в ходе работы надмолекулярного белкового комплекса, являющегося структурным компонентом внутренней митохондриальной мембранны. Этот комплекс состоит из двух субъединиц: F0 и F1. Субъединица FО пронизывает внутреннюю митохондриальную мембрану, образуя туннель, через который протоны могут двигаться по градиенту концентрации из межмембранного пространства в матрикс митохондрии. Субъединица F1, состоящая из нескольких полипептидных цепей, прикреплена к субъединице Fo c внутренней стороны мембранны и представляет собой фермент АТФсинтетазу, способную использовать свободную энергию, выделяющуюся при движении протонов по градиенту электрохимического потенциала, для синтеза АТФ из АДФ и неорганического фосфата.
Таким образом, по Митчелу аккумулирование свободной энергии, выделяющейся в ходе работы цепи дыхательных ферментов, состоит из двух этапов: на первом этапе энергия, выделяющаяся при движении электронов по дыхательной цепи, трансформируется в энергию электрохимического градиента, а на втором этапе энергия электрохимического градиента трансформируется в энергию макроэргических связей АТФ. Примерами окислительного фосфорилирования на уровне субстрата могут служить два далее приведенных превращения:
При окислительном декарбоксилировании 2оксоглутарата в цикле Кребса на первом этапе энергия окисления накапливается, во-первых, в виде энергии восстановленного НАДН+Н+ , во-вторых, в виде энергии макроэргической связи продукта окисления сукцинила~КоА. На следующем этапе энергия макроэргической связи сукцинил~КоА трансформируется в энергию макроэргической пирофосфатной связи ГТФ.
Часть процесса окислительного расщепления глюкозы. Промежуточный продукт этого метаболического пути 3фосфоглицериновый альдегид подвергается окислению с образованием 1,3 дифосфоглицериновой кислоты, причем энергия окисления накапливается в виде энергии восстановленного НАДН+Н+ и энергии макроэргической связи окисленного субстрата реакции с остатком фосфорной кислоты. На следующем этапе энергия макроэргической связи 1,3дифосфоглицериновой кислоты опять же трансформируется в энергию макроэргической пирофосфатной связи АТФ.
Разобщение окисления и фосфорилирования.
Нарушение целостности внутренней мембраны митохондрий будет сопровождаться нарушением синтеза АТФ, поскольку разрядка электрохимического градиента будет идти в обход системы синтеза АТФ; в то же время работа ферментных комплексов дыхательной цепи будет продолжаться, другими словами, окисление будет идти, тогда как фосфорилирование будет нарушено, частично или полностью. Такое состояние известно под название разобщения окисления и фосфорилирования. Коэффициент Р/О при этом при окислении НАДН+Н+ становится меньше 3 и может принимать любые значения вплоть до 0. Поскольку в неповрежденных митохондриях скорость окисления лимитируется эффективностью работы сопряженного с ним процесса фосфорилирования, то при разобщении скорость окисления в митохондриях возрастает. К числу соединений, получивших название веществ-разобщителей, относятся полихлорфенолы и нитрофенолы, используемые в сельском хозяйстве для борьбы с вредителями; к ним относится, например, ацетилсалициловая кислота, используемая в медицине в качестве жаропонижающего средства. Разобщающим эффектом обладают также высшие жирные кислоты в высоких концентрациях. В митохондриях бурой жировой ткани обнаружен специфический белок, получивший название «термогенин», выступающий в качестве проводника протонов через внутреннюю мембрану. Вызываемое с его помощью разобщение окисления и фосфорилирования в митохондриях буровой жировой ткани приводит к увеличению теплопродукции этой тканью, что является ее главной физиологической функцией.

29. Микросомальное окисление. Роль микросомального окисления в организме. Процессы гидроксилирования, участие в нем цитохрома Р450. Значение микросомального окисления в обезвреживании ксенобиотиков и инактивации лекарственных препаратов.
В клетках идут и окислительные процессы, связанные с присоединением кислорода к окисляемым субстратам, иначе говоря, процессы оксигенирования. Эти процессы не сопровождаются аккумуляцией энергии вся выделяющаяся свободная энергия превращается в теплоту. Поэтому вся совокупность окислительных процессов этого типа получила название СВОБОДНОЕ ОКИСЛЕНИЕ. Процессы оксигенирования идут в различных клеточных мембранах: мембранах эндоплазматической сети, мембранах митохондрий и др., но поскольку основное количество реакций оксигенирования идет в мембранах эндоплазматической сети, эти процессы обычно называют не совсем в принципе точным термином процессы микросомального окисления.
В процессах свободного окисления участвуют ферменты из группы оксигеназ: монооксигеназы ( гидроксилазы ) и диоксигеназы, а также цитохромы типа Цит.b5 или Цит.Р450 , т.е. цитохромы, отличные от тех, которые работают в главной цепи дыхательных ферментов.
В ходе процессов микросомального окисления происходит расщепление ряда метаболитов, в том числе идет катаболизм питательных веществ. Так, при участии диоксигеназы идет начальный этап расщепления аминокислоты триптофана, а при участии оксигеназы гомогентизиновой кислоты идет преобразование гомогентизиновой кислоты промежуточного продукта расщепления тирозина в малеилацетоацетат.С помощью диоксигеназ может идти разрыв углерод-углеродных связей и в ациклических соединениях. По такому механизму идет, например, превращение молекулы b-каротина в две молекулы ретиналя.
Реакции окисления, идущие с участием монооксигеназ, иначе реакции гидроксилирования, также участвуют в синтезе многих нужных для организма соединений. Эти реакции могут идти как в эндо плазматической сети, как например, гидроксилирование остатков пролина и лизина при синтезе коллагена в фибробластах соединительной ткани или гидроксилирование дофамина при его превращении в норадреналин в клетках мозгового вещества надпочечников.
Важной функцией микросомального ( свободного ) окисления является инактивация биологически активных соединений, тем или иным путем поступающими в клетки. Это могут быть как экзогенные токсичные соединения ксенобиотики, так и соединения, образующиеся в самом организме. Подобно рода процессы получили название детоксикации или в более общем виде биотрансформации. Кстати, инактивация многих лекарственных препаратов, являющихся по своей сути типичными ксенобиотиками, идет путем их гидроксилирования. В качестве примера можно привести реакцию гидроксилирования антифебрина:
В ходе подобного рода реакций, во-первых, изменяется структура соединений, в результате чего снижается их токсичность; во-вторых, за счет появления дополнительных полярных группировок в молекуле улучшается их растворимость в воде, тем самым облегчается их выведение из организма; в третьих, появление в структуре соединений гидроксильных группировок облегчает их последующее участие в реакциях коньюгации следующем процессе биотрансформации.
Как известно, в гидроксилазных реакциях параллельно окислению основного соединения субстрата реакции должно окисляться еще одно соединение косубстрат. В качестве косубстратов в различных реакциях могут использоваться НАДН+Н+, НАДФН+Н+ , аскорбиновая кислота, 2оксуглутарат и др. Работа гидроксилаз всегда сопряжена с работой цитохромов b5 или Р450. Косубстраты выступают в качестве восстановителей цитохромов, в свою очередь цитохромы выступают в качестве окислителей связывающихся с ними субстратов. В общем виде ( самый простой вариант ) фукционирование такой системы может быть представлено в следующем виде:
Цитохром Р450 выступает в качестве коллектора электронов, поступающих с окисляемого субстрата и НАДФН+Н+ . Далее происходит передача этих электронов на кислород с последующим образованием конечных продуктов: гидроксилированного субстрата и воды. В мембранах эндоплазматической сети присутствует много различных изоферментных форм цитохрома Р450 , более того, многие ксенобиотики, в том числе и лекарственные, препараты могут индуцировать синтез этого цитохрома.

IV. Обмен и функции углеводов

30. Углеводы, их классификация, биологическая роль отдельных классов. Важнейшие углеводы, входящие в состав организма человека.
Их химическое строение, свойства и значение для организма.
Углеводы составляют незначительную часть общего сухого веса тканей человеческого организма - не более 2%.Тем не менее, углеводы выполняют в организме целый ряд жизненно важных функции, принимая участие в структурной и метаболической организации органов и тканей.
С химической точки зрения углеводы представляют собой многоатомные альдегидо- или кетоноспирты или их полимеры, причем мономерные единицы в полимерах соединены между собой гликозидными связями.
Классификация углеводов.
Углеводы делятся на три больших группы: моносахариды и их производные, олигосахариды и полисахариды. Моносахариды в свою очередь делятся, во первых, по характеру карбонильной группы на альдозы и кетозы и, во-вторых,по числу атомов углерода в молекуле на триозы, тетрозы, пентозы и т.д. Обычно моносахариды имеют тривиальные названия: глю-коза, галактоза, рибоза, ксилоза и др. К этой же группе соединений относятся различные производные моносахаридов, важнейшими из них являются фосфорные эфиры , уроновые кислоты, аминосахара.
Олигосахариды, представляющие собой полимеры, мономерными единицами которых являются моносахариды или их производные. Число отдельных мономерных блоков в полимере может достигать полутора или двух десятков. Все мономерные единицы в полимере связаны гликозидными связями. Олигосахариды в свою очередь делятся на гомополигосахариды, состоящие из одинаковых мономерных блоков [ мальтоза ] , и гетероолигосахариды - в их состав входят различные мономерные единицы[ лактоза ]. В большинстве своем олигосахариды встречаются в организме в качестве структурных компонентов более сложных молекул - гликолипидов или гликопротеидов
Полисахариды, представляющие собой полимеры, построенные из моносахаридов или их производных, соединенных между собой гликозидными связями, с числом мономерных единиц от нес-кольких десятков до нескольких десятков тысяч. Эти полисахариды могут состоять из одинаковых мономерных единиц, т.е. являться гомополисахаридами, или же в их состав могут входить различные мо-номерные единицы - тогда мы имеем дело с гетерополисахаридами. Единственным гомополисахаридом в организме человека является гликоген, состоящий из остатков a-D - глюкозы. Более разнообразен набор гетерополисахаридов- в организме присутствуют гиалуроновая кислота, хондроитинсульфаты, кератансульфат, дерматансульфат, гепарансульфат и гепарин.
Функции углеводов различных классов. Моносахариды и их производные выполняют, во-первых, энергетическую функцию: окислительное расщепление этих соединений дает организму 55-60 % необходимой ему энергии. Во-вторых, промежуточные продукты распада моносахаридов и их производных используются в клетках для синтеза других необходимых клетке веществ, в том числе соединений других классов; В третьих, моносахариды и их производные выполняют структурную функцию, являясь мономерными единицами других, более сложных молекул, таких как полисахариды или нуклеотиды.
Главной функцией гетероолигосахаридов является структурная функция - они являются структурными компонентами гликопротеидов и гликолипидов. В этом качестве гетероолигосахариды участвуют в реализации гликопротеидами целого ряда функций: регуляторной [ гормоны гипофиза тиротропин и гонадотропины - гликопротеиды ],коммуникативной [ рецепторы клеток - гликопротеины ], защитной [ антитела - гликопротеины ]. Кроме того, гетероолигосахаридные блоки, входя в состав гликолипидов и гликопротеидов, участвуют в формировании клеточных мембран, образуя, например, такой важный элемент клеточной структуры как гликокалликс.
Гликоген - единственный гомополисахарид, имеющийся в организме животных - выполняет резервную функцию. Гликоген в том или ином количестве присутствует практически во все клетках человеческого организма. Запасы гликогена в печени могут составлять до 3-5 % от сырой массы этого ор-гана [ порой до 10 % ], а его содержание в мышцах - до 1% общей массы ткани.
Гетерополисахариды выполняют в организме структурную функцию они входят в состав глизаминопротеогликанов; последние,наряду с структурными белками типа коллагена или эластина, формируют межклеточное вещество. Кроме того, молекулы гетерополисахаридов имеют в своей структуре множество полярных и несущих отрицательный заряд группировок, за счет которых они могут связывать большое количество воды и катионов, выполняя роль своеобразных депо для этих молекул.
Функции некоторых углеводов, имеющихся в организме, весьма специфичны. Так, гепарин является естественным антикоагулянтом - он препятствует свертыванию крови в сосудах, а лактоза, о чем уже упоминалось, является резервным углеводом женского молока.

31. переваривание углеводов в ЖКТ. Всасывание моносахаридов слизистой кишечника и транспорт их кровью. Непереносимость лактозы. Усвоение лактозы и галактозы в печени. Галактоземия, фруктоземия.
Суточная потребность в углеводах составляет примерно 400 г. В процессе усвоения пищи все экзогенные полимеры углеводной природы расщепляются до мономеров, а во внутреннюю среду организма из кишечника поступают лишь моносахариды и их производные
Расщепление крахмала или гликогена пищи начинается уже в ротовой полости за счет воздействия на эти гомополисахариды амилазы и мальтазы слюны. В желудке при пищеварении среда кислая и амилаза слюны, попадающая в желудок вместе с пищевым комком, практически не работает. Основная масса крахмала и гликогена пищи расщепляется в тонком кишечнике под действием амилазы поджелудочной железы до дисахаридов мальтозы и изомальтозы. Образовавшиеся дисахариды расщепляются до глюкозы при участии ферментов, секретируемых стенкой кишечника: мальтазы и изомальтазы. Мальтаза катализирует гидролиз a-1,4-гликозидных связей, а изомальтаза - гидролиз a-1,6-гликозидных связей.
Поступившая с пищей сахароза расщепляется в кишечнике до глюкозы и фруктозы при участии фермента сахаразы, а поступившая лактоза - до глюкозы и галактозы под действием фермента лактазы. Оба этих фермента секретируются стенкой кишечника.
Процессы расщепления гетероолигосахаридов или гетерополисахаридов благодаря тому что стенкой кишечника секретируются гликозидазы, способные расщеплять a - и b - гликозидные связи имеющиеся в этих полимерах.
Всасывание моносахаридов происходит в тонком кишечнике, причем скорости всасывания различных моносахаридов существенно различны. Принято считать, что всасывание глюкозы и галактозы идет с участием механизмов активного транспорта, всасывание фруктозы и рибозы - по механизму облегченной диффузии, а всасывание маннозы или ксилозы по механизму простой диффузии. Примерно 90 % всосавшейся глюкозы поступает из энтероцитов непосредственно в кровь, а 10 % ее оказывается в лимфе, впрочем, в дальнейшем и эта глюкоза также оказывается в крови. Следует отметить, что углеводы могут быть полностью исключены из пищевого рациона. В этом случае все необходимые для организма углеводы будут синтезироваться в клетках из соединений неуглеводный природы в ходе процессов, получивших название глюконеогенез.
Поступающая в печень фруктоза может фосфорилироваться под действием гексокиназы, или фруктокиназы.в результате образуется фруктозо-1-фосфат.он под действием аьдолазы расщепляется на 2 триозы: глицеральдегид и диоксиацетонфосфат.. Далее под действием АТФ и триокиназы глицеральдегид подвергается фосфорилированию до глицеральдегид-3-фосфата. Далее он подвергается обычным превращениям в том числе и образовании пировиноградной кислоты.
Галактоза в печени сначала фосфорилируется при участии АТФ и галактокиназы с образованием галактозо-1-фосфата. Большая его часть превращается в ходе реакции, катализируемой гексозо-1-фосфат-уридилтранферазой.наследственная утрата этого фермента приводит к галактоземии(характерно умсетвенная отсталость и кататракта)
Наследственная непереносимость фруктозы может быть вызвана отсутствием ферментов фруктокиназы или фруктозо1фосфатальдолазы.При отсутствии фруктокиназы обычно кроме повышения концентрации фруктозы в крови и появления её в моче после приема пищи, содержащей фруктозу, других последствий не бывает. Однако при недостаточности фруктозо1фосфатальдолазы после приема пищи, содержащей фруктозу,могут возникнуть боли в животе, рвота, диаррея, возможны кома и судороги. При продолжающемся приеме пищи, содержащей фруктозу развиваются тяжелые поражения печени и почек. Естественно, при лечении такого больного в первую очередь из пищи нужно убрать продукты, содержащие фруктозу, в том числе исключить сахарозу.
У людей, страдающих непереносимостью лактозы, в кишечнике не синтезируется фермент лактаза, обеспечивающий в норме расщепление лактозы до глюкозы и галактозы. Поскольку дисахариды не всасываются, поступившая с пищей лактоза остается в просвете кишечника, где она разлагается под действием микрофлоры. Образуется много различных продуктов микробного расщепления лактозы, в том числе и газообразных. Изза повышения осмотического давления в кишечника жидкость из крови уходит в просвет кишечника, следствием чего могут быть понос или рвота, у детей развивается дегидратация, которая ими переносится крайне тяжело. Одновременно развивается метеоризм. В кровь из кишечника поступают токсичные продукты микробного расщепления галактозы, например, ряд альдегидов. Кроме того, для маленьких детей существенное значение имеет недостаточное поступление в организм углеводов, поскольку при грудном вскармливании лактоза является практически единственным углеводом их пищи.

32. Гликоген, его значение. Биосинтез и «мобилизация» гликогена в печени. Физиологическая роль этих процессов, их регуляция. Амилолитический путь распада гликогена. Гликогенозы.
Повышение концентрации глюкозы в крови и поступление глюкозы в клетку может увеличиваться и часть глюкозы может использоваться для синтеза гликогена. Поступившая в клетку глюкоза подвергается фосфорилированию с участием фермента гексокиназы или гюкокиназы. Образующаяся глюкоза-6-фосфат с участием фермента фосфоглюкомутаэы изомеризуется в глюкоза-1-фосфат. Далее за счет энергии уридинтрифосфорной кислоты с участием фермента глюкоза-I-фосфатуридил трансфераза превращается в уридиндифосфоглюкозу Образующийся пирофосфат немедленно расщепляется пирофосфотазой - необратимая реакция термодинамического контроля. УДФ глюкоза с участием фермента гликогенсинтетазы включается в молекулу гликогена. Наибольшее количество содержится в печени и мышцах. Включение одного остатка глюкозы в молекулу гликогена сопровождается использованием двух макроэргических эквивалентов Необходима одна молекула АТФ и одна молекула УДФ. Поэтому синтез гликогена может идти только при достаточной энергообеспеченности клеток, т е при высокой концентрации АТФ.
МОБИЛИЗАЦИЯ ГЛИКОГЕНА Гликоген как резерв глюкозы накапливается в клетках в постадсорбционном периоде (после всасывания) и расходуется затем. Расщепление гликогена в печени получило название мобилизация гликогена. Происходит за счет фермента гликоген фосфорилазы. Он катализирует расщепление а-1,4-гликозидные связи в молекулах гликогена. Гликоген-» глюкозо-1-фосфат <> глюкозо.-6-фосфат -> глюкоза + НзРО, (С,Н100,). Регуляция процессов синтеза и распада гликогена осуществляется на уровне 2 ферментов гликогенфосфорилазы и гликогенсинтетазы. Основным механизмом регуляции активаостн этих ферментов является их ковалентная модификация путем фосфорилирования – дефосфорилирования Фосфорилированная фосфорилаза активна (отвечает за расщепление гликогена) ее называют фосфорилаза-А Дефосфорилированная фосфорилаза неактивна - фосфорилаза-В
РАСПАД ГЛИКОГЕНА В ПЕЧЕНИ Первичным сигналом стимулирующим мобилизацию гликогена в печени является снижение концентрации глюкозы в крови
1. В ответ на это а-клетки островков Лангерганса панкреатической железы выбрасывают в кровь гормон ГЛЮКАГОН. 2. Глюкагон циркулирующий в крови взаимодействует со своим белком-рецептором находящимся на внешней стороне наружной клеточной мембраны и образует гормон-рецепторный комплекс 3. Затем с помощью специального механизма после образования гормон-рецепторного комплекса происходит активация фермента аденилатциклазы 4. Активная форма начинает образовывать циклический АМФ из АТФ 5. ЦАМФ способен активировать еще один фермент – протеинкиназа. Этот фермент состоит из 4 субъединиц : 2-х регуляторных и 2-х каталитических Две молекулы ЦАМФ присоединяются к регуляторньм субъединицам => происходит изменение конформации и высвобождаются каталитические субъединицы 6. Каталитические субъеднницы обеспечивают фосфорилироваиие ряда белков, в том числе ферментов В частности они обеспечивают фосфорилирофание гликогенсинтетазы и это сопровождается блокированием синтеза гликоген. Кроме этого происходит фосфорилирование киназы- которая фосфорилирует гдикогенсинтетазу. Отсюда активация расщепления гликогена с выходом глюкозы в кровь. Выброшенная глюкоза в кровь увеличивает концентрацию доводя ее до нормальных величин. Стимуляция расщепления гликогена в печени происходит так же за счет выброса адреналина
Гликогеновые болезни связаны с наследственными,т.е. генетически обусловленными нарушениями метаболических путей синтеза или распада гликогена. Могут наблюдаться или избыточное накопление гликогена в клетках гликогеноз, или отсутствие (пониженное содержание) гикогена в клетках агликогеноз. При гликогенозах в результате отсутствия одного из ферментов, участвующих в расщеплении гликогена, гликоген накапливается в клетках, причем избыточное накопление гликогена приводит к нарушению функции клеток и органов. Гликогенозы могут быть локальными, в этом случае гликоген накапливается в каком либо одном (иногда двух) органе, но они могут быть и генерализованными, в таком случае гликоген накапливается в клетках многих органов. Известно более десятка гликогенозов, отличающихся друг от друга характером энзимного дефекта. Примерами могут служить:
а) Болезнь МакАрдля ( гликогеноз V типа ). Дефектным ферментом у больных является фосфорилаза мышц. Для этих больных характерны мышечная слабость, боли в мышцах при умеренной физической нагрузке.
б) Болезнь Херса ( гликогеноз V1 типа ). В основе заболевания лежит нарушение активации печеночной фосфорилазы в результате отсутствия, например, киназы фосфорилазы.
в) Болезнь Андерсена ( гликогеноз 1V типа ). Этот гликогеноз вызван дефектом фермента ветвления в клетках различных органов и тканей, в результате чего в клетках синтезируются длинные полимерные молекулы, напоминающие по структуре амилозу крахмала.В результате этой гипоглюкоземии могут возникнуть судороги, рвота, потеря сознания. Постоянный недостаток глюкозы для питания мозга часто приводит к задержке умственного развития.

33. Глюкоза- основной метаболит углеводного обмена. Ее содержание в крови. Пул глюкозы в организме, пути его пополнения, и основные направления использования. Регуляция содержания глюкозы в крови. Гипо- и гиперглюкоземии, причины их возникновения.
Преобладающим в количественном отношении моносахаридом, присутствующим во внутренней среде организма, является глюкоза. Содержание глюкозы в крови составляет 3,3 - 5,5 мМ/л. Пул глюкозы, т.е. общее содержание свободной глюкозы в организме, составляет величину порядка 20 г. Из них 5 - 5,5 г содержится в крови, остальная глюкоза распределена в клетках и межклеточной жидкости. концентрация глюкозы в клетках значительно ниже, чем в крови, что создает условия для поступления глюкозы из крови в клетки путем простой или облегченной диффузии.
Пул глюкозы в организме есть результат динамического равновесия процессов, обеспечивающих пополнение этого пула и процессов, сопровождающихся использованием глюкозы из пула для нужд органов тканей.
Пополнение пула глюкозы идет за счет следующих процессов:
а/ поступление глюкозы из кишечника;
б/ образование глюкозы из других моносахаридов, например, из
галактозы или фруктозы;
в/ распад резервного гликогена в печени / гликогенез /; г/ синтез глюкозы из неуглеводных соединений,т.е. глюконеогенез.
Основные направления использования глюкозы из пула:
а/ окислительный распад глюкозы / аэробное окисление до СО2 и Н2О, анаэробное окисление до лактата и др.;
б/ синтез резервного гликогена;
в/ синтез липидов;
г/ синтез других моносахаридов или их производных; д/ синтез заменимых аминокислот; е/ синтез других азотсодержащих соединений, необходимых клеткам.
Транспорт глюкозы из крови или межклеточной жидкости в клетки идет по механизму облегченной диффузии, т.е. по градиенту концентрации с участием белка-переносчика. Эффективность работы механизма этого транспорта в клетках большинства органов и тканей зависит от инсулина. Инсулин увеличивает проницаемость наружных клеточных мембран для глюкозы, увеличивая количество белка-переносчика за счет дополнительного его поступления из цитозоля в мембраны . Основная масса клеток различных органов и тканей является в этом контексте инсулинзависимыми, однако по крайней мере в клетках трех типов эффективность переноса глюкозы через их наружные мембраны не зависит от инсулина, это эритроциты, гепатоциты и клетки нервной ткани. Эти ткани получили название инсулиннезависимых тканей. клетки мозга и гепатоциты имеют в составе своих наружных мембран рецепторы для инсулина.
Целый ряд гормонов повышает содержание глюкозы в крови: глюкагон, адреналин, глюкокортикоиды (кортизол), соматотропный гормон, тироксин.
Глюкагон повышает содержание глюкозы в крови за счет стимуляции расщепления гликогена в печени и активации глюконеогенеза. Адреналин стимулирует расщепление гликогена в мышцах, обеспечивая миоциты энергетическим топливом; ускоряет расщепление гликогена в печени за счет активации фосфорилазы. Кортизол является основным стимулятором глюконеогенеза за счет увеличения скорости расщепления белков в периферических тканях, увеличения потребления аминокислот печенью и увеличения в гепатоцитах количества ферментов, принимающих участие в глюконеогенезе.
Соматотропный гормон гипофиза уменьшает поступление глюкозы в ткани; повышения поступления в кровь глюкагона; уменьшения скорости окисления глюкозы в клетках в результате повышенного поступления в клетки более эффективного энергетического топлива жирных кислот. Длительное введение соматотропного гормона приводит к развитию сахарного диабета.
Нормальное содержание глюкозы в крови составляет 3,3–5,5 ммоль/л или 60–100 мг/дл. Ряд патологических состояний организма сопровождаются изменениями содержания глюкозы в крови. Повышение концентрации глюкозы в крови более 5,5 ммоль/л носит название гипергликемия.
Гипергликемия характерна для сахарного диабета. При сахарном диабете или снижена продукция инсулина или же уменьшено число рецепторов для инсулина в клетках инсулинзависимых тканей..
При так называемом стероидном диабете также развивается стойкая гипергликемия. В ее основе лежит избыточная продукция гиперплазированным корковым веществом надпочечников гормонов глюкокортикоидов, вызывающих гиперстимуляцию глюконеогенеза. Гиперплазия коры надпочечников наблюдается при болезни или синдроме Иценко-Кушинга..
Снижение содержания глюкозы в крови ниже 3,3 ммоль/л получило название гипогликемия (гипоглюкоземия). Гипогликемия значительно более опасна для человека нежели гипергликемия, так как снижение содержания глюкозы в крови приводит к нарушению энергообеспечения клеток головного мозга.
Причинами гипогликемии могут быть голодание или длительная тяжелая работа. Стойкие гипогликемии могут развиваться в результате нарушении деятельности желез внутренней секреции. Так, при бронзовой болезни в результате деструкции коры надпочечников в организме снижается содержание глюкокортикоидов, что приводит к снижению уровня глюконеогенеза и падению содержания глюкозы в крови.

34. Аэробный дихотомический распад глюкозы в тканях, его основные этапы. Биологическое значение. Пентозофосфатный путь распада глюкозы, его биологическая роль.
ПРОЦЕСС АЭРОБНОГО ОКИСЛЕНИЯ ГЛЮКОЗЫ разделяют на 3 этапа:
1. Расщепление глюкозы до пирувата.
2. Окислительное декарбоксилирование пирувата до ацетил-КоА.
3. Окисление ацетила в цикле Кребса (ЦТК).
Эти этапы можно представить в виде общей схемы:
Глюкоза – 2пируват – 2 ацетил-КоА + 2СО2 – 4 СО2+10Н2О
1 этап. Расщепление глюкозы до пирувата.
По современным представлениям первый этап окисления глюкозы протекает в цитозоле и катализируется надмолекулярным белковым комплексом гликолитическим метаболоном, включающим в себя до десятка отдельных ферментов.Контроль направления потока метаболитов по данному метаболическому пути осуществляется с помощью термодинамических механизмов. Имеется три реакции, в ходе которых теряется большое количество энергии: гексокиназная, фосфофруктокиназная и пируваткиназная, эти реакции в клетке практически необратимы, и за счет их необратимости процесс становится необратимым.
2 этап. Окислительное декарбоксилирование пирувата с образованием ацетил-КоА. Это превращение катализируется надмолекулярным пируватдегидрогеназным комплексом, локализованным в матриксе митохондрий. Суммарное уравнение процесса:
2Пируват +2НАД+ +2HS-КоА ––( 2Ацетил-КоА +2НАДН+Н+ +2СО2
В ходе окисления 2 моль пирувата высвобождается около 500 кДж энергии, из них около 420 кДж накапливается в виде энергии восстановленного НАД. Остальная энергия рассеивается в виде теплоты.

активность комплекса снижается, если клетка хорошо обеспечена энергией (много АТФ и НАДН+Н+) или же цикл Кребса не справляется с окислением имеющегося ацетил-КоА.
Образовавшийся ацетил-КоА, как уже неоднократно упоминалось, поступает в цикл трикарбоных кислот, работа которого сопряжена с функционированием цепи дыхательных ферментов. При функционировании этих двух метаболических путей остаток ацетила окисляется до углекислого газа и воды.
Суммарное уравнение для всех трех этапов окисления молекулы глюкозы выглядит следующим образом:Глюкоза + 2 АДФ + 2 ГДФ + 4Ф + 10 НАД+ + 2 ФАД +2Н2О ––( 6 СО2 + 2 АТФ + 2 ГТФ + 10 НАДН+Н+ + 2 ФАДН2; при окислении 1 молекулы глюкозы до углекислого газа и воды клетка получит 38 молекул АТФ (40 синтезируется и 2 расходуется).Второй важной функцией аэробного окисления глюкозы является пластическая функция. Из промежуточных продуктов ее окисления синтезируется много различных соединений, необходимых клетке: Гл-6-ф используется в клетке для синтеза пентоз и глюкуроновой кислоты;Фр-6-ф для синтеза аминосахаров; ФГА и ФДА для образования 3-фосфоглицерола, необходимого для синтеза глицеролсодержащих липидов; 3-фосфоглицериновая кислота для синтеза заменимых аминокислот: серина, глицина и цистеина; ФЭП для синтеза сиаловых кислот, используемых при синтезе гетероолигосахаридов; пируват для синтеза аланина; ацетил-КоА для синтеза жирных кислот и стероидов.
В пентозном цикле окисления углеводов идет образование восстановленного НАДФН+Н+ и целого ряда моносахаридов, имеющих в своем составе пять атомов углерода - пентоз (рибоза, ксилоза).
Восстановительные эквиваленты и пентозы необходимы для биосинтетических процессов, протекающих в клетках.
Пентозный путь окисления углеводов может быть разделен на два этапа включает в себя достаточно много отдельных парциальных реакций:
окислительный этап
неокислительный этап.
Суммарное уравнение окислительного этапа пентозного цикла окисления :
Глюкоза + АТФ + 2 НАДФ+ + Н2О –– Рибулозо-5-ф + СО2+ 2НАДФН+Н+ + АДФ
В ходе неокислительного этапа цикла в результате изомеризации образуются необходимые для клетки фосфорилированные пентозы: рибозо-5-фосфат и ксилулозо-5-фосфат.Кроме того, важно отметить, что на этом этапе образуются промежуточные продукты, идентичные с промежуточными продуктами первого этапа аэробного окисления глюкозы: 3-фосфоглицериновый альдедид и Фруктозо-6-фосфат. За счет этих общих промежуточных соединений создается возможность переключения потока метаболитов с пентозного цикла окисления на путь аэробного (или анаэробного) окисления глюкозы и наоборот.
За шесть оборотов пентозного цикла окисления полностью сгорает один остаток глюкозы, так что суммарное уравнение окисления глюкозы в цикле, начиная с Гл-6-ф, можно представить в следующем виде: Гл-6-ф + 7 Н2О + 12 НАДФ+ ––( 6 СО2 + Ф + 12 НАДФН+Н+
Пентозофосфатный цикл активно функционирует в печени, жировой ткани, коре надпочечников, семенниках и в молочной железе в период лактации. В этих тканях активно идут процессы синтеза высших жирных кислот, аминокислот или стероидов, нуждающиеся в восстановительных эквивалентах в виде НАДФН+Н+. Цикл интенсивно работает также в эритроцитах, в которых НАДФН+Н+ используется для подавления перекисного окисления мембранных липидов.

35. Окислительное декарбоксилирование пировиноградной кислоты. Состав пируватдегидрогеназного комплекса. Роль в этом процессе витаминов В1 и В3.
В аэробных условиях пировиноградная кислота подвергается окислительному декарбоксилированию с образованием ацетилКоА. Это превращение катализируется надмолекулярным пируватдегидрогеназным комплексом, локализованным в матриксе митохондрий. В состав пируватдегидрогеназного комплекса входят три различных фермента: пируватдекарбоксилаза, дигидролипоатацетилтрансфераза и дегидрогеназа дигидролипоевой кислоты, их количественные соотношения в составе комплекса зависят от источника выделения, как правило это соотношение приближается к 30:1:10.
Первый фермент этого комплекса пируватдекарбоксилаза ( Е1)
катализирует реакцию: СН3СОСООН + ТДФЕ1 > СО2 + СН3 СТДФ(тиаминдифосфат)Е1с образованием углекислого газа и активированного ацетальдегида, связанного с тиаминдифосфатом простетической группой фермента.
Второй фермент дигидролипоатацетильрансфераза ( Е2 ) катализирует два последовательных превращения:
а) на первом этапе идет перенос активированного остатка ацетальдегида на простетическую группу фермента липоевую кислоту, причем этот перенос сопровождается одновременным окислением альдегидной группы до карбоксильной группы
б) на втором этапе остаток ацетила переносится с липоевой кислоты, жестко связанной с ферментом, на свободный HSКоА:
Образуются ацетилКоА и фермент Е2 с восстановленной формой кофермента.
Третий фермент дегидрогеназа дигидролипоевой кислоты катализирует превращение восстановленной формы липоевой кислоты предыдущего фермента в окисленную форму, при окислении глюкозы образуется 2 молекулы пирувата, что следует учесть при написании суммарного уравнения окислительного декарбоксилирования пирувата:
2Пируват +2НАД+ +2HSКоА >2АцетилКоА +2НАДН+Н+ +2СО2
В ходе окисления 2 моль пирувата высвобождается около 120 ккал энергии, из них около 100 ккал накапливается ввиде энергии восстановленного НАД. Остальная энергия рассеивается в виде теплоты.
Превращение пирувата в ацетилКоА в ходе функционирования пируватдегидрогеназного комплекса необратимо, посколько сопровож дается потерей 11,5 ккал/моль энергии в расчете на 1 моль окис ленного пирувата.
Контроль интенсивности потока метаболитов по пируватдегидрогеназному комплексу осуществляется за счет работы двух механизмов: ковалентной модификации и аллостерической модуляции
Фосфорилирование усиливается при высоких соотношениях АТФ/АДФ, НАДН/НАД+ и ацетилКоА/КоА. Иначе говоря, активность комплекса снижается, если клетка хорошо обеспечена энергией
Образовавшийся ацетилКоА, как уже неоднократно упоминалось. поступает в цикл трикарбоных кислот, работа которого сопряжена с функционированием цепи дыхательных ферментов. При функционирова нии этих двух метаболических путей остаток ацетила окисляется до углекислого газа и воды.

36. Анаэробный распад глюкозы в клетках (гликолиз), последовательность реакций до образования лактата. Физиологическое значение этого процесса, его регуляция. Роль анаэробного распада глюкозы и гликогена в мышцах. Утилизация молочной кислоты в организме.
Человек является аэробным организмом, так как основным конечным акцептором отщепляемых от окисляемых субстратов атомов водорода является кислород. Парциальное давления кислорода в тканях составляет в среднем 3540 мм рт. ст. Торможение окислительных процессов при дефиците кислорода связано с тем, что клеточный пул НАД+ и других коферментов. способных акцептировать атомы водорода от окисляемых субстратов, весьма ограничен. Как только основная их масса переходит в восстановленное состояние из за дефицита кислорода, дегидрирование субстратов прекращается. Развивается гипоэнергетическое состояние, которое может стать причиной гибели клеток.
В подобного рода условиях в клетках различных органов и тканей включаются механизмы, обеспечивающие клетки энергией, не за висящие от наличия кислорода. Основными из них являются анаэробное расщепление гликогена и гликогенолиз. В анаэробных условиях расщепление глюкозы и гликогена идет абсолютно идентичными по сравнению с метаболическими путями до образования пирувата. Однако далее эти пути расходятся: если в аэробных условиях пируват подвергается окислительному декарбоксилированию, то в анаэробных условиях пировиноградная кислота восстанавливается в молочную кислоту. Реакция катализируется ферментом лактатдегидрогеназой.
Поскольку в ходе лактатдегидрогеназной реакции используются молекулы НАДН+Н+, ранее образовавшиеся при окислении 3фосфогли цериноваго альдегида в 1,3дифосфоглицериновую кислоту,
расщепление глюкозы до лактата сопровождается высвобождением лишь 1/12 - 1/13 всей заключенной в химических связях глюкозы энергии ( ~ 50 ккал/моль ), тем не менее на каждую распавшуюся в ходе анаэробного гликолиза молекулу глюкозы клетка получает 2 молекулы. При гликогенолизе клетка получит 3 молекулы АТФ на каждый остаток глюкозы из молекулы гликогена ( 1 АТФ расходуется и 4 АТФ синтезируется ). Несмотря на очевидную невыгодность в отношении количества высвобождаемой энергии анаэробные гликолиз и гликогенолиз позволяют клеткам существовать в условиях отсутствия кислорода.
Суммарное уравнение гликолиза:
Глюкоза + 2 АДФ + 2 Н3РО4Д> 2 Лактат + 2 АТФ + 2 Н2О Анаэробный путь окисления глюкозы и анаэробное расщепление гликогена играют важную роль в обеспечении клеток энергией, во первых, в условиях высокой экстренно возникающей функциональной нагрузки на тот или иной орган или организм в целом. Во вторых, эти процессы играют большую роль в обеспечении клеток энергией при гипоксичеких состояниях, например, при тромбозах артерий в период до развития коллатерального кровообращения или при тяжелых шоковых состояниях с выраженными расстройствами гемодинамики.
Активация анаэробного окисления углеводов приводит к увеличению продукции лактата в клетках и тканях. При сохранении кровообращения этот наработанный в клетках лактат выносится кровью и основная его часть метаболизируется в печени или в сердечной мышце. В миокарде лактат окисляется до углекислого газа и воды; в печени же лишь примерно 1/5 поступающего лактата подвергается окислению до конечных продуктов, а 4/5 ресинтезируются в глюкозу в ходе интенсивно идущего в печени процесса глюконеогенеза.
Если же вынос лактата из гипоксической ткани невозможен, то при его накоплении в клетках за счет повышения концентрации про тонов ингибируется фосфофруктокиназа, в результате чего ингибируются и гликолиз, и гликогенолиз. Клетки, лишенные последних источников энергии, обычно погибают, что наблюдается при инфарктах различных органов, в особенности при инфаркте миокарда.
Следует заметить, что в клетках некоторых органов и тканей человека образование молочной кислоты происходит и в обычных, т.е. в аэробных условиях. Так. в эритроцитах, не имеющих митохондрий. все необходимое для них количество энергии вырабатывается в ходе гликолиза. К тканям с относительно высоким уровнем аэробного гликолиза относятся также сетчатка глаза и кожа. Высокий уровень аэробного гликолиза присущ также многим опухолям.

Обмен и функции липидов
37. Липиды и их классификация. Структура и биологическая роль отдельных классов. Липиды как незаменимые компоненты пищи, норма суточного потребления.
Липиды - природные органические соединения (крайне гегерогенны по своей химической структуре) общими свойствами которых является низкая растворимость в воде и хорошая растворимость в аполярных растворителях таких как хлороформ, жидкие углеводороды и др
Классификация:
Жирные кислоты и их производные - это алифатические карбоновые кислоты число атомов в которых может достигать 22-24 Они подразделяются на насыщенные жирные кислоты. И ненасыщенные жирные кислоты –
Ненасыщенные жирные кислоты в свою очередь делятся на
а)моноеновые те содержащие одну двойную связь
б)полиеновые содержащие много двойных связей диеновые,триеновые и др)
Жирные кислоты в организме выполняют несколько функций. Прежде всего несомненно это энергетическая, структурная, пластическая : из ацетилКоА (продукт распада жирных кислот) в гепатоцитах синтезируются ацетоновые тела и холестерол. А эикозаполиеновые кислоты используются для синтеза рядя биорегуляторов : простогландины, тромбоксаны, Особенно необходимо подчеркнуть, что ряд полиненасыщенных жирных кислот относятся к незаменимым. Важную роль в регуляции функционирования клеток различных органов и тканей играет производные эикозаполиеновых кислот, так называемые эйкозоноиды. К ним относятся простоноиды а) простогландины, 6) простоциклины, ъ)лейкотриены; г) трамбоксаны Простогландины, которые делятся на простогландины а, в, с, d ,относятся к биорегуляторам паракринной системы. При очень низких концентрациях они вызывают сокращение гладкой мускулатуры, 1) участвуют в развитии воспалительной реакции. 2) они принимают участие в регуляции процесса свертывания крови, и 3) регулируют метаболические пути на уровне клеток Иначе их называют местными гормонами. Тромбоксаны образуются в тромбоцитах и после выхода в кровяное русло вызывают сужение кровеносных сосудов и агрегацию тромбоцитов. Простоциклины образуются в стенках кровеносных сосудов и являются сильными ингибиторами агрегации тромбоцитов. Лейкотриены представляют собой группу триенов с сопряженными двойными связями. Они образуются в тромбоцитах, лейкоцитах и макрофагах в ответ на имуниологические и неимуннологические стимулы. а) принимают участие в развитии анофелоксии, б) повышают проницаемость кровеносных сосудов, в) вызывают приток и активацию лейкоцитов .
2) Глициринсодержащие липиды. Из глициринсодержащих липидов наибольшее значение имеют ацилглицерины и глицерофосфолипиды. Обычно их рассматривают как производные трехатомного спирта – глицерола. делятся по количеству входящих в их состав ацильиых групп на а) моноацилглицигины -1 жирный кислотный остаток б)диацилглицерины в)триацилглицерины. Триацилглицерины. составляют основную массу резервных липидов человеческого организма Триацилглицерины выполняют резервную функцию Причем это преимущественно энергетический резерв организма. 1)Глицерол, входящий в структуру триацилглицерннов, Может использоваться для синтеза глюкозы или некоторых. 2) участвуют в защите внутренних органов человека от механических повреждений 3) Участвуют в терморегулящии, образуя теплоизолирующую прослойку. Все глицерофосфолипиды можно рассматривать как производные фосфотидной кислоты которой один атом заменен на аминоспирт. Основной функцией глицерофосфолипидов является структурная. Они входят в качестве важнейших структурных компонентов в состав мембран. 2) Некоторые глицерофосфолнпиды выполняют специфические функции Например инозитолфосфотиды участвуют в работе регуляторных механизмов в клетке
3)Липиды, не содержании глицерола. К этим липидам относятся множество самых разнообразных соединений химической природы а) сфинголипиды б) стероиды в) полипреноиды
Сфинголипиды. Можно рассматривать как производные стерамида Прежде всего структурная функция. Они входят обязательно в состав клеточных мембран. Углеводные компоненты цереброзидов участвуют в образовании гдикокаликса. 3) Ганглиозиды выполняют рецепторные функции
Стероиды. К ним относятся соединения имеющие в своей структуре стерановое ядро. Различные соединения из класса стероидов отличаются друг от друга. а) дополнительными углеводородными радикалами, б) наличием двойных связей,в) наличием различных функциональных групп г) различия могут ноешь стереохимический характер Биологически важные соединения сгпероидной природы
1) Холестерол 2) Стероидные гормоны (гормоны коры надпочечников глюко- и минералокортикоиды) 3)
Половые гормоны (андрогены и эстрогены)

38. Глицеринсодержащие липиды тканей организма. Их виды, химическая структура, значение для организма. Особенности метаболизма глицерофосфолипидов в тканях.
Из глицеринсодержащих липидов наибольшее значение имеют ацилглицерины и глицерофосфолипиды. Обычно их рассматривают как производные трехатомного спирта глицерола.
Ацилглицерины делятся по количеству входящих в их состав ацильных групп на моноацилглицерины, диацилглицеины и триацилглицерины.
Триацилглицерины составляют основную массу резервных липидов человеческого организма. Содержание прочих ацилглицеринов в клетках крайне незначительно; в основном они присутсутс-вуют в клетках в качестве промежуточных продуктов распада или синтеза триацилглицеринов.
Триацилглицерины выполняют резервную функцию, причем это преимущественно энергетический резерв организма. У человека массой 70 кг на долю резервных липидов приходится примерно 11 кг. Учитывая калорический коэффициент для липидов, равный 9,3 ккал/г, общий запас энергии в резервных триглицеридах составляет величину порядка 100 000 ккал. Функция резервных триглицеридов как запаса пластического материала не столь очевидна, но все же продукты расщепления триацилглицеринов могут использоваться для биосинтезов, например, входящий в их состав глицерол может быть использован для синтеза глюкозы или некоторых аминокислот.
Являясь одним из основных компонентов жировой ткани, триацилглицерины участвуют в защите внутренних органов человека от механических повреждений. Кроме того, входя в большом количестве в состав подкожной жировой клетчатки, они участвуют в терморегуляции, образуя теплоизолирующую прослойку.
Все глицерофосфолипиды можно рассматривать как производные фосфатидной кислоты,
в которой атом водорода в одном из гидроксилов фосфорной кислоты замещен на остатки или аминоспиртов, или серина, или фосфоинозитола или других соединений
В пределах одного класса соединения отличаются друг друга составом жирнокислотных остатков. Основной функцией глицерофосфолипидов является структурнаяони входят в качестве важнейших структурных компонентов в состав клеточных мембран или липопротеидов плазмы крови. Некоторые глицерофосфолипиды выполняют специфические для конкретного класса фосфолипидов функции. Так, инозитолфосфатаиды участвуют в работе регуляторных механизмов клетки: при воздействии на клетку ряда гормонов происходит расщепление инозитолфосфатидов, а образующиеся соединения: инозитолтрифосфат и диглицериды, выступают в качестве внутриклеточных мессенджеров, обеспечивающих метаболический ответ клетки на внешний регуляторный сигнал.

39. Химическое строение и биологическая роль клеточных мембран.
БИОЛОГИЧЕСКИЕ МЕМБРАНЫ
Состоят из фосфолипидов, гликолипидов, белков и холестерина. В состав липидных компонентов мембран входят только фосфолипиды. Липидные участки мембран построены из фосфолипидов (ФЛ), гликолипидов (ГЛ) и ХС(холестерин).
Мембраны можно рассматривать как белково-липидные комплексы. Мембраны образованы липидным бислоем и погруженными в них белкамию Белки и липиды, входящие в состав этих комплексов, связаны слабыми типами связей, из которых наиболее часто встречается гидрофобное взаимодействие. Соотношение белков и липидов в большинстве плазматических мембран 50% белков и 50% липидов. Но есть мембраны, в которых много белков: внутренняя мембрана митохондрий на 80% состоит из белков, и только 20% составляют липиды. В миелиновых оболочках нервов, наоборот, 80% - липиды и 20% - белки. ХС встречается в основном в в плазматических мембранах.
В состав мембран входят только сложные липиды: ФОСФОЛИПИДЫ (ФЛ), ГЛИКОЛИПИДЫ (ГЛ) и из стероидов - ХОЛЕСТЕРИН (ХС).
Основу мембран составляют ФОСФОЛИПИДЫ - это липиды, содержащие ФОСФАТНЫЙ ОСТАТОК.
Гликолипиды .тоже имеют гидрофильную "головку" и 2 гидрофобных "хвоста

СТЕРОИДЫ.
Делятся на 2 группы.
1. Стерины (в их составе полициклическая стуктура стерана).
2. Стериды (эфиры холестерина и высших жирных кислот).
Стерины содержат гидроксильную группу (-ОН), поэтому они немножко гидрофильны, но всётаки их молекулы в основном гидрофобны. К ним относится холестерин.
Холестерин является полициклическим веществом. Преобладают гидрофобные свойства, но есть одна ОН-группа.
образуется бимолекулярный слой (бислой). Между "головками" ионные, водородные связи, между "хвостами" - гидрофобное взаимодействие. Липидная часть мембраны состоит из таких липидов.
мембрана рассматривается как жидкокристаллическая структура
Важнейшим компонентом плазматических мембран является холестерин.
Холестерин взаимодействует с гидрофобными хвостами полярных молекул и ограничивает скорость диффузии липидов. Поэтому холестерин называют стабилизатором биологических мембран. Компоненты мембран не только движутся в пространстве, но и постоянно обновляются. Их место занимают новые молекулы.

40. Липиды пищи человека. Переваривание липидов в ЖКТ. Всасывание продуктов расщепления в стенку кишечника. Ресинтез триглицеридов в кишечной стенке. Транспорт экзогенных липидов к органам и тканям.
Пищевой рацион должен содержать липиды из расчета 1,5 г на 1 кг массы тела, что составляет для 70килограммового человека около 100г липидов в сутки. Липиды нельзя исключить из пищевого рациона, поскольку вместе с ними поступают, эссенциальные полиненасыщенные высшие жирные кислоты и, жирорастворимые витамины.
Расщепление липидов в желудочнокишечном тракте.
В желудочно кишечном тракте они в значительной мере расщепляются до составляющих их мономеров: высших жирных кислот, глицерола, аминоспиртов и др. Эти продукты расщепления всасываются в кишечную стенку и из них в клетках кишечного эпителия синтезируются липиды, свойственные человеку. Эти видоспецифические липиды далее поступают в лимфатическую и кровеносную системы и разносятся к различным тканеям и органам. Процесс расщепления пищевых жиров идет в основном в тонком кишечнике. образующиеся в пилорическом отделе желудка жирные кислоты и моноглицериды далее участвуют в эмульгировании жиров в двенадцатиперстной кишке. В желудке под действием протеиназ желудочного сока происходит частичное расщепление белковых компонентов липопротеидов, что в дальнейшем облегчает расщепление их липидных составляющих в тонком кишечнике.
Поступающие в тонкий кишечник липиды подвергаются действию ряда ферментов. Пищевые триацилглицерины (жиры) подвергаются действию фермента липазы, поступающей в кишечник из поджелудочной железы. Эта липаза наиболее активно гидролизует сложноэфирные связи в первом и третьем положении молекулы триацилглицерина, менее эффективно она гидролизует сложноэфирные связи между ацилом и вторым атомом углерода глицерола. Для проявления максимальной активности липазы требуется полипептид колипаза, поступающий в двенадцатиперстную кишку с соком поджелудочной железы. В расщеплении жиров участвует также липаза, выделяемая стенками кишечника, однако , вопервых, эта липаза малоактивна; вовторых, она преимущественно катализирует гидролиз сложноэфирной связи между ацилом и вторым атомом углерода глицерола.
Всасывание продуктов переваривания липидов. В стенку кишечника легко всасываются вещества, хорошо растворимые в воде. Из продуктов расщепления липидов к ним относятся, например, глицерол, аминоспирты и жирные кислоты с короткими углводородными радикалами (до 8 10 атомов «С»), натриевые или калиевые соли фосфорной кислоты. В то же время большинство продуктов переваривания липидов: высшие жирные кислоты, моно и диацилглицерины, холестерол, лизофосфолипиды и др. плохо растворимы в воде и для их всасывания в стенку кишечника требуется специальный механизм. соединения, наряду с желчными кислотами и фосфолипидами, образуют мицеллы. Каждая мицелла состоит из гидрофобного ядра и внешнего мономолекулярного слоя амфифильных соединений, расположенных таким образом, что гидрофильные части их молекул контактируют с водой, а гидрофобные участки ориентированы внутрь мицеллы, где они контактируют с гидрофобным ядром. В состав мономолекулярной амфифильной оболочки мицеллы входят преимущественно фосфолипиды и желчные кислоты, сюда же могут быть включены молекулы холестерола. Гидрофобное ядро мицеллы состоит преимущественно из высших жирных кислот, продуктов неполного расщепления жиров, эфиров холестерола , жирорастворимых витаминов и др. Благодаря растворимости мицелл возможен транспорт продуктов расщепления липидов через жидкую среду просвета кишечника к щеточной каемке клеток слизистой оболочки, где эти продукты всасываются. В норме всасывается до 98% пищевых липидов.
Ресинтез триацилглицеринов в стенке кишечника
При поступлении в энтероциты моноацилглицеринов, в особенности 2моноацилглицеринов, они путем последовательного двойного ацилирования могут быть превращены в триацилглицерины. При наличии свободного глицерола в клетках кишечника ресинтез триглицеридов может идти через фосфатидную кислоту. Далее от фосфатидной кислоты гидролитическим путем отщепляется остаток фосфорной кислоты ( реакция катализируется фосфатазой фосфатидной кислоты ) с образованием диглицерида. К образовавшемуся диглицериду с помощью ацилтрансферазы присоединяется третий остаток высшей жирной кислоты.В результате образуется триглицерид.
Транспорт липидов из кишечника к органам и тканям.Смесь всосавшихся и ресинтезированных в стенке кишечника липидов поступает в лимфатическую систему, а затем через грудной лимфатический проток в кровь и с током крови распределяется в организме. Поступление липидов в лимфу наблюдается уже через 2 часа после приема пищи, алиментарная гиперлипидемия достигает максимума через 6 8 часов, а через 10 12 часов после приема пищи она полностью исчезает. Триглицериды, фосфолипиды, холестерол практически не растворимы в воде, в связи с чем они не могут транспортироваться кровью или лимфой в виде одиночных молекул. Перенос всех этих соединений осуществляется в виде особым образом организованных надмолекулярных агрегатовлипопротеидных комплексов или просто липопротеидов.
В состав липопротеидов входят молекулы липидов различных классов и молекулы белков. Все липопротеиды имеют общий план структуры: амфифильные молекулы белков, фосфолипидов и свободного холестерола образуют наружную мономолекулярную оболочку частицы, в которой гидрофильные части молекул этих соединений направлены кнаружи и контактируют с водой, а гидрофобные части молекул обращены вовнутрь частиц, участвуя в образовании гидрофобного ядра частицы. В состав гидрофобного ядра липопротеидов входят триглицериды и эстерифицированный холестерол, сюда же могут включаться другие гидрофобные молекулы, например, молекулы жирорастворимых витаминов.
Существует несколько классов липопротеидных частиц, отличающихся друг от друга по составу, плавучей плотности и электрофоретической подвижности: хиломикроны (ХМ), липопротеиды очень низкой плотности (ЛПОНП), липопротеиды низкой плотности (ЛПНП) , липопротеиды высокой плотности (ЛПВП) и некоторые другие. В транспорте экзогенных липидов, т.е. липидов, поступающих во внутреннюю среду организма из кишечника, принимают участие главным образом ХМ и ЛПОНП.
Ведущую роль в транспорте экзогенных липидов играют хиломикроны. Хиломикроны поступают в лимфатическую систему, а затем вместе с лимфой поступают в кровь и попадают вместе с током крови в капилляры различных органов и тканей.
На поверхности эндотелия капилляров имеется фермент липопротеидлипаза. Липопротеидлипаза расщерляет триглицериды хиломикронов до глицерола и высших жирных жирных. Часть высших жирных кислот поступает в клетки, другая их часть связывается с альбуминами и уносится током крови в другие ткани. Глицерол также может или утилизироваться непосредственно в клетках данного органа, или уносится током крови. Кроме триглицеридов хиломикронов липопротеидлипаза способна гидролизовать триглицериды ЛПОНП.
Хиломикроны, потеряв большую часть своих триглицеридов под действием липопротеидлипазы, превращаются в так называемые ремнантные ХМ. Эти ремнанты в дальнейшем или поглощаются печенью, где они полностью расщепляются, или же, по некоторым сведениям, в результате достаточно сложной перестройки их состава могут превращаться в ЛПВП. В норме спустя 10 12 часов после приема пищи плазма практически не содержит хиломикронов.
 
41. Депонирование и мобилизация жиров в жировой ткани, физиологическое значение и регуляция. Транспорт и основные направления использования ВЖК в организме.
В постабсорбционном периоде идет мобилизация энергетических резервов организма, в том числе мобилизация резервных триглицеридов жировой ткани. Образующиеся в ходе мобилизации высшие жирные кислоты через мембраны липоцитов поступают в кровяное русло и в комплексе с альбуминами переносятся с током крови в различные органы и ткани. Там они проникают через наружные клеточные мембраны внутрь клеток и связываются с специальным так называемым Zбелком. В комплексе с этим внутриклеточным белкомпереносчиком они перемещаются в цитозоле к месту их использования.
В условиях длительной интенсивной работы, требующей больших энергозатрат, жирные кислоты, поступающие из жировых депо, становятся основным видом «энергетического топлива». Значение их как энергетического топлива еще более возрастает при недостатке глюкозы в клетках органов и тканей, например при сахарном диабете или голодании. Однако на пути эффективного использования клетками высших жирных кислот, поступающих из кровяного русла, встает так называемый «диффузионный барьер». Суть этого явления в следующем: высшие жирные кислоты на своем пути из кровяного русла в клетки должны пройти через гидрофильную фазу межклеточной среды. Но высшие жирные кислоты не растворимы в воде и скорость их движения через межклеточную среду ограничена. Преобразование жирных кислот в печени в соединения с небольшой молекулярной массой, растворимые в воде: bгидроксибутират и ацетоацетат, которые из печени поступают опять же в кровь, а затем из крови идут в органы и ткани. для них диффузионного барьера не существует и они служат эффективным энергетическим топливом. Эти соединения получили название ацетоновые тела. К ацетоновым относится также ацетон. В то же время и в гепатоциты высшие жирные кислоты поступают, минуя диффузионный барьер, поскольку гепатоциты в печеночных синусах непосредственно контактируют с кровью.

42. В-окисление высших жирных кислот. Последовательность реакций окисления. Связь окисления жирных кислот с цитратным циклом и дыхательной цепи. Физиологическое значение.
Основным способом окисления высших жирных кислот, по крайней мере в отношении общего количества окисляющихся в клетке соединений данного класса, является процесс b-окисления,
открытый Кноопом еще в 1904 г. Этот процесс можно определить как процесс ступенчатого окислительного расщепления высших жирных кислот, в ходе которого идет последовательное отщепление двухуглеродных фрагментов в виде ацетил-КоА со стороны карбоксильной группы активированной молекулы высшей жирной кислоты. Поступающие в клетку высшие жирные кислоты подвергаются активации с превращением их в ацил-КоА ( R-CO-SKoA), причем активация жирных кислот происходит в цитозоле. Сам же процесс b-окисления жирных кислот идет в матриксе митохондрий. Ацильные остатки переносятся через внутреннюю мембрану митохондрий с помощью специального переносчика, в качестве которого выступает карнитин ( КН ). В цитозоле с помощью фермента внешней ацилКоА-карнитинацилтрансферазы остаток высшей жирной кислоты переносится с коэнзима А на карнитин с образованием ацилкарнитина. Ацилкарнитинин при участии специальной карнитин-ацилкар-
нитин-транслоказной системы проходит через мембрану внутрь митохондрии и в матриксе с помощью фермента внутренней ацил-КоА:карнитин-ацилтрансферазы ацильный остаток передается с карнитина на внутримитохондриальный коэнзим А. В результате в матриксе митохондрий появляется активированный остаток жирной кислоты в виде ацил-КоА; высвобожденный карнитин с помощью той же самой транслоказы проходит через мембрану митохондрий в цитозоль, где может включаться в новый цикл переноса. Карнитин-ацилкарнитин-транслоказа, встроенная во внутреннюю мембрану митохондрий, осуществляет перенос молекулы ацилкарнитина внутрь митохондрии в обмен на молекулу карнитина, удаляемую из митохондрии.
Активированная жирная кислота в матриксе митохондрий подвергается ступенчатому циклическому окислению. В результате одного цикла b-окисления радикал жирной кислоты укорачивается на 2 атома углерода, а отщепившийся фрагмент выделяется в виде ацетил-КоА. В ходе одного цикла b-окисления, например,при превращении стеароил-КоА в пальмитоил-КоА с образованием ацетил-КоА, высвобождается 91 ккал/моль свободной энергии, однако основная часть этой энергии накапливается в виде энергии восстановленных коферментов, потери же энергии в виде теплоты составляют лишь около 8 ккал/моль.
Образовавшийся ацетил-КоА может поступать в цикл Кребса, где он будет окисляться до конечных продуктов или же может использоваться для других нужд клетки, например, для синтеза холестерола. Укороченный на 2 атома углерода ацил-КоА вступает в новый цикл b-окисления. В результате нескольких последовательных циклов окисления вся углеродная цепь активированной жирной кислоты расщепляется до "n" молекул ацетил-КоА, причем значение "n" определяется числом атомов углерода в исходной жирной
кислоте. Энергетический эффект одного цикла b-окисления можно оценить исходя из того, в ходе цикла образуются 1 молекула ФАДН2 и 1 молекула НАДН+Н . При их поступлении в цепь дыхательных ферментов будет синтезироваться 5 молекул АТФ ( 2 + 3 ). Если образовавшийся ацетил-КоА будет окислен в цикле Кребса, то клетка получит еще 12 молекул АТФ.
Общее количество свободной энергии, выделяющееся при окислении 1 моля стеариновой кислоты составляет около 2632ккал, из них накапливается в виде энергии макроэргических связей синтезированных молекул АТФ около 1100 ккал. Таким образом, аккумулируется примерно 40% всей выделяющейся свободной энергии. Скорость b-окисления высших жирных кислот определяется, во-первых, концентрацией жирных кислот в клетке и, во-вторых, активностью внешней ацил-КоА:карнитин ацилтрансферазы. Активность фермента угнетается малонил-КоА.

43) Биосинтез и окисление кетоновых тел, биологическая роль этих процессов. Диагностическое значение их определения.
Жирные кислоты, поступающие в гепатоциты, активируются и подвергаются b-окислению с образованием ацетилКоА. Именно этот ацетилКоА используется для синтеза ацетоновых тел: ацетоацетата, b-гидроксибутирата и ацетона. На первой стадии из 2х молекул ацетил-КоА образуется ацетоацетил-КоА. Реакция катализируется ферментом ацетил-КоА-ацетилтрансферазой. Затем ацетоацетил-КоА взаимодействует с еще одной молекулой ацетил-КоА под влиянием фермента оксиметилглутарил-КоА-синтетазы. Образовавшийся продукт способен под действием оксиметилглутарил-коА-лиазы расщепляться на ацетоацетат и ацетил-КоА.
Образовавшиеся ацетоновые тела поступают из гепатоцитов в кровь и разносятся к клеткам различных органов. Этот процесс в той или иной мере идет постоянно и ацетоновые тела постоянно присутствуют в крови в концентрации до 30 мг/л. Ежесуточное их выделение с мочой не превышает 20 мг.
Ацетоновые тела в норме достаточно хорошо утилизируются клетками периферических тканей, в особенности это касается скелетных мышц и миокарда, которые значительную часть нужной им энергии получают за счет окисления ацетоновых тел. Лишь клетки центральной нервной системы в обычных условиях практически не утилизируют ацетоновые тела, однако при голодании даже головной мозг от Ѕ до ѕ свой потребности в энергии может удовлетворять за счет окисления ацетоновых тел.
Ацетоацетат,поступающий в клетки различных тканей, прежде всего подвергается активации . Основным путем активации ацетоацетата в клетках является путь с участием тиафоразы. В гепатоцитах нет этого фермента. Именно поэтому образовавшийся в гепатоцитах ацетоацетат в них не активируется и не окисляется, тем самым создаются условия для « экспорта» ацетоацетата из гепатоцитов в кровь.b-Гидроксибутират в клетках предварительно окисляется с участием НАД+ в ацетоацетат. Эта реакция катализируется ферментом b-гидроксибутиратдегидрогеназой. Ацетон также может окисляться в клетках периферических органов. Возможны два варианта его окисления: во-первых, он может расщепляться до ацетильного и формильного остатков; во-вторых, через пропандиол он может превращаться в пируват. Ацетоновые тела, накапливаясь в крови и в тканях, оказывают ингибирующее действие на липолиз, в особенности это касается расщепления триглицеридов в липоцитах. Биологическая роль этого регуляторного механизма становится понятной, если принять во внимание, что ацтоацетат и гидроксибутират представляют собой достаточно сильные органические кислоты, в связи с чем их избыточное накопление в крови приводит к развитию ацидоза. Снижение уровня липолиза в клетках жировой ткани приводит к уменьшению притока высших жирных кислот в гепатоциты и к снижению скорости образования ацетоновых тел и, следовательно, снижению их содержания в крови.

44) Обмен и функции холестерола в организме. Биосинтез холестерола, последовательность реакций до образования мевалоновой кислоты. Представление о дальнейших этапах синтеза, регуляция процесса.
Суточная потребность человека в холестероле составляет
около 1г, причем вся потребность в этом соединении может быть
удовлетворена за счет его эндогенного синтеза. В то же время
экзогенный, т.е. пищевой, холестерол также эффективно усваива
ется организмом. Основным органом, в котором идет синтез холестерола, является печень. В печени синтезируется от 50% до 80% эндогенного холестерола, от 10% до 15% холестерола синтезируется в клетках кишечника, около 5% образуется в коже. Объем
синтеза холестерола в других органах и тканях незначителен,
хотя ферментные системы, обеспечивающие синтез этого соедине
ния, присутствуют в клетках большинства органов и тканей.
Общее содержание холестерола в организме составляет около
140 г. Основная масса этого соединения включена в состав кле
точных мембран. Однако около 10 г холестерола постоянно нахо
дится в плазме крови, входя в состав ее липопротеидов. Кон
центрация холестерола в плазме крови составляет 3,56,8 мМ/л.
причем примерно 2/3 всего холестерола плазмы крови представле
ны в ней в виде стероидов, сложных эфиров холестерола и выс
ших жирных кислот.. Из
быток холестерола в клетках также запасается в виде эфиров
олеиновой кислоты. тогда как в состав мембран входит свободный
холестерол.
Холестерол используется в организме для синтеза желчных кислот, из него также синтезируются стероидные гормоны, в коже из 7-дегидрохолестерола под действием ультрафиолетовой радиации образуется витамин Д.Избыток холестерола выводится из организма с желчью; часть избыточного холестерола может поступать в просвет кишечника непосредственно из его стенки.
Таким образом, холестериновый гомеостаз в организме есть ре
зультат динамического равновесия, во-первых, процессов его
поступления в организм и эндогенного синтеза и, во-вторых,
процессов использования холестерола для нужд клеток и его вы
ведения из организма.
Холестерол синтезируется в клетках из двухуглеродных
группировок ацетилКоА. Процесс синтеза холестерола включает в
себя порядка 35 последовательных энзиматических реакций и мо
жет быть разбит на 5 этапов:
а) образование из ацетилКоА мевалоновой кислоты;
б) образование из мевалоновой кислотой активированных пятиуглеродных группировок изопентенилпирофосфата и диметилал
лилпирофосфата ( активных изопреноидных группировок );
в) конденсация изопреноидных группировок с образованием
сквалена;
г) циклизация сквалена в ланостерин;
д) преобразование ланостерина в холестерол.

45) Транспортные липопротеиды крови: особенности строения, состава, функций липопротеидов разных классов. Изменения соотношения липопротеидов при атеросклерозе.
Липиды практически нерастворимы в воде, в связи с чем
возникают проблема с их транспортом в организме.
Все липиды, присутствующие в крови, входят в состав сме
шанных надмолекулярных белковолипидных комплексов. Высшие
жирные кислоты связаны с альбуминами плазмы крови, прочие ли
пиды входят в состав липопротеидов плазмы крови. Любой липо
протеид плазмы крови состоит из монослойной амфифильной оболоч
ки, образованной молекулами апобелков, фосфолипидов, сфинго
липидов и свободного холестерола, и гидрофобного ядра, в сос
тав которого входят триацилглицерины и эфиры холестерола, а
также молекулы некоторых других липидов типа витамина Д или
витамина Е. Общее содержание липидов в ряду ХМ > ЛПОНП > ЛПНП >> ЛПВП постепенно снижается, тогда как содержание белков в том же ряду постепенно нарастает. Постепенно в том же ряду возрастает содержание фосфолипидов, а содержание триглицеридов понижается. Наконец, содержание холестерола в ряду ХМ Д>
ЛПОНП Д> ЛПНП увеличивается, но затем при переходе к ЛПВП
оно снижается. В зависимости от состава липопротеидных частиц они
различаются по ряду свойств: плавучей плотности, электрофоре
тической подвижности и др., что используется при разделении
липопротеидов плазмы крови на ряд классов.
Фракция липопротеинов высокой плотности состоит из двух под фракций: ЛПВП2 и ЛПВП3. Эти подфракции различаются между собой по содержанию в них холестерола: в ЛПВП2 его содержится в среднем около 23%, тогда как в ЛПВП3 только 17%. При патологических состояниях в крови могут появляться и другие типы липопро
теидных частиц, например b-ЛПОНП, ЛП-а и др.
Белки, содержащиеся в липопротеидах, получили название
апобелков или апопротеинов. Известно несколько семейств или
классов этих белков: апоА, апоВ, апоС, апоД, апоЕ.

Апобелки различных семейств входят в состав липопротеидов
различных классов или в виде главных апобелков, или в виде ми
норных компонентов. Главными апобелками являются:
для Х-белки апоВ48; для ЛПОНП- апоВ100 и апоС; для ЛПНП белки апоВ100;для ЛПВП белки апоА..
1. Хиломикроны (ХМ) - образуются в клетках кишечника, их функция: перенос экзогенного жира из кишечника в ткани (в основном - в жировую ткань), а также - транспорт экзогенного холестерина из кишечника в печень.
2. Липопротеины Очень Низкой Плотности (ЛОНП) - образуются в печени, их роль: транспорт эндогенного жира, синтезированного в печени из углеводов, в жировую ткань.
3. Липопротеины Низкой Плотности (ЛНП) - образуются в кровеносном русле из ЛОНП через стадию образования Липопротеинов Промежуточной Плотности (ЛПП). Их роль: транспорт эндогенного холестерина в ткани.
4. Липопротеины Высокой Плотности (ЛВП) - образуются в печени, основная роль - транспорт холестерина из тканей в печень, то есть удаление холестерина из тканей, а дальше холестерин выводится с желчью.

Наиболее распространенным нарушением липидного обмена является атеросклероз. Это патологическое состояние связано с нарушениями в стенках крупных сосудов аорты или крупных артерий, вызываемыми избыточным накоплением в них холестерола. Велика роль нарушений обмена транспортных липопротеидов плазмы крови, играющих важную роль в переносе холестерола между печенью и кишечником с одной стороны и различными органами и тканями с другой. Содержание холестерола в мембранах клеток периферических органов и тканей, в том числе и в клетках стенок сосудов, будет определяться сбалансированностью потоков. Явное преобладание в крови концентрации холестерола ЛПОНП+ЛППП+ЛПНП над содержанием холестерола в ЛПВП будет свидетельствовать о том, что в клетках периферических тканей накапливается холестерол и возникает угроза развития атеросклеротического процесса. Академиком А.Н.Климовым был предложен специальный показатель холестериновый коэффициент атерогенности, характеризующий соотношение этих потоков. Этот коэффициент рассчитывается по формуле в которой числитель представляет собой не что иное, как содержание холестерола ( ХС ) в ЛПОНП+ЛППП+ЛПНП. Значение этого коэффициента в норме не должно превышать 3,03,5. Если же его значение выше 3,5, человеку угрожает развитие атеросклероза.

46) Биосинтез жирных кислот в клетках эукариот, биологическая роль. Представление о работе пальмитоатсинтетазы.
В органах и тканях человека синтезируются почти все необходимые для организма высшие жирные кислоты, за исключением эссенциальных полиеновых жирных кислот. Эти высшие жирные кислоты используются в клетках обычно для синтеза более сложных липидов, таких как триглицериды, фосфолипиды или сфинголипиды.
Исходным соединением для синтеза высших жирных кислот является ацетилКоА, который может образовываться в клетках из различных соединений. С этой целью используется в основном ацетилКоА, образующийся при окислительном расщеплении моносахаридов, однако в этот процесс может вовлекаться и ацетилКоА, образовавшийся при расщеплении углеродных скелетов аминокислот.
АцетилКоА, используемый при липогенезе, образуется в основном в матриксе митохондрий при окислительном декарбоксилировании пировиноградной кислоты. Синтез же высших жирных кислот идет в цитозоле. Учитывая, что внутренняя мембрана митохондрий непроницаема для ацетилКоА, прежде всего необходимо рассмотреть систему транспорта ацетильных остатков из матрикса митохондрий в цитозоль.
Синтез ВЖК идет путем последовательного присоединения к строящейся молекуле жирной кислоты двухуглеродных остатков, однако в самом процессе сборки используется лишь одна молекула ацетилКоА. Источником остальных двухуглеродных фрагментов выступает малонилКоа. МалонилКоА, в свою очередь, синтезируется путем энергозависимого карбоксилирования ацетил-КоА:
СН3СО~SKoA + CO+ АТФ Д-> СООНСНСО~SКоА +Биотинзависимая ацетилКоАкарбоксилаза
Промежуточные продукты синтеза высщих жирных кислот в цитозоле в свободном виде не появляются, а конечным продуктом синтеза является пальмитиновая кислота, в связи с чем ферментная система, обеспечивающая этот синтез получила название пальмитоилсинтетазы. В клетках микроорганизмов эта система состоит из 6 ферментов и одного дополнительного белка, не обладающего ферментативной активностью, но выполняющего роль акцептора строящейся молекулы жирной кислоты. Таким образом, в клетках микроорганизмов пальмитоилсинтетаза представляет собой типичный метаболон.
Пальмитоилсинтетаза клеток животных представляет собой белок, состоящий из двух полипептидных цепей: субъединицы А и субъединицы В. Обе полипептидные цепи имеют полидоменную структуру, причем на каждом из доменов имеется свой функциональный центр, способный катализировать ту или иную промежуточную реакцию биосинтеза высших жирных кислот; кроме того, один из доменов имеет центр связывания синтезируемой жирной кислоты. Таким образом, в целом эта структура представляет собой типичный полифункциональный фермент. Работа этого полифункционального фермента обеспечивает высокую эффективность процесса и устраняет конкуренцию с другими метаболическими процессами в клетке за промежуточные продукты синтеза. Активность пальмитоилсинтетазы угнетаются по аллостерическому механизму избыточными концентрациями свободной пальмитиновой кислоты в клетке. Синтез других высших жирных кислот Из пальмитиновой кислоты в клетках могут синтезироваться другие высшие жирные кислоты. Насыщенные высшие жирные кислоты синтезируются путем последовательного удлиннения углеводородного радикала на два углеродных атома в ферментных системах клетки, отличных от пальмитоилсинтетазы. Источником двухуглеродных фрагментов при синтезе других высших жирных кислот в цитозоле служит малонилКоА, тогда как в митохондриальных системах удлиннения ацильного радикала используется ацетилКоА.
Мононенасыщенные или моноеновые высшие жирные кислоты синтезируются в клетках из насыщенных жирных кислот с тем же числом атомов углерода. Двойная связь образуется в первую очередь между 9 и 10 атомами «C» углеродной цепи при участии микросомальной десатуразной системы. Принцип ее работы представлен на схеме:
Дополнительные двойные связи в молекулу ненасыщенной жирной кислоты в клетках животных могут вводиться только в участок углеродной цепи между карбоксильной группой и уже имеющейся двойной связью. Поэтому животные не способны синтезировать такие полиеновые высшие жирные кислоты, как линолевая или линоленовая. Арахидоновая кислота может синтезироваться в клетках животных из одной из линоленовых кислот, однако в условиях недостаточного поступления линоленовой кислоты с пищей арахидоновая кислота также становится незаменимой жирной кислотой.

VI. Обмен простых белков и аминокислот
47. Роль белков в питании. Пищевая ценность белков. Переваривание белков в пищеварительном тракте. Роль соляной кислоты и протеолитических ферментов в переваривании белков в желудке. Гниение белков в толстом кишечнике.
Белки в организме человека выполняют множество функций. Среди них:
Структурная; Каталитическая; Транспортная; Регуляторная; защитная и т.д..
На белки приходится около 45% сухой массы тела. В таких органах как мышцы, легкие, селезенка белки составляют 80-85% их сухой массы, даже в костях на долю белков приходится около 20% сухой массы.
Белки органов и тканей постоянно обновляются, т.е. находятся в состоянии динамического равновесия между процессами их синтеза и распада. Установлено, что в организме человека массой около 70 кг ежесуточно обновляется около 400 г белков. Период полуобновления белков для организма человека составляет около 80 суток.
Для обеспечения синтеза белков организм человека нуждается в наличии 20 аминокислот. В то же время, человек и другие млекопитающие способны синтезировать лишь часть необходимых им аминокислот; другая их часть должна поступать с пищей.
Для человека абсолютно незаменимыми являются 8 аминокислот: Валин, Лейцин, Изолейцин, Лизин, Фенилаланин, Три, Треонин, Метионин. К условно незаменимым относят Гистидин и Аргинин, синтез которых недостаточен для покрытия потребности организма.
Переваривание белков в желудочно-кишечном тракте представляет собой расщепление пищевых видоспецифичных белков, на составляющие их аминокислоты, лишенные данной видовой специфичности.
Расщепление белков в желудочно-кишечном тракте идет при участии ферментов-протеиназ, катализирующих гидролитическое расщепление пептидных связей. Протеиназы делят на две группы:
а) эндопротеиназы, катализирующие разрыв пептидных связей внутри белковых молекул с образованием пептидов. К их числу относятся пепсин, гастриксин, трипсин, химотрипсин, коллагеназа, эластаза;
б) экзопротеиназы, катализирующие отщепление концевых аминокислот с N- или С-конца полипептида. К ним относятся карбоксипептидазы А и Б, лейцинаминопептидаза и аланинаминопептидаза.
Протеиназы желудочно-кишечного тракта обладают определенной специфичностью с наибольшей эффективностью они катализируют разрыв пептидных связей между вполне определенными аминокислотами. Например:
а) пепсин катализ разрыва пептидных связей, образованных аминогруппами Фенилаланин и Тирозин;
b) трипсин катализ разрыва пептидных связей, образованных карбоксильными группами Лиз и Арг;
с) химотрипсин катализ разрыва пептидных связей, обр. карб. группами Фенилаланин, Тирозин и Три;
d) Карбоксипептидаза А катализ разрыва пептидных связей, обр. Сконцевыми Фенилаланин, Тир и Три;
e) Карбоксипептидаза B катализ разрыва пептидных связей, образованных Cконцевыми Лиз и Арг;
f) Aланинаминопептидаза катализ разрыва пептидных связей, образованных Nконцевым Аланином.
В целом протеиназы желудочно-кишечного тракта в отношении своей специфичности обладают дополнительностью действия, т.е. за счет совокупности их каталитического эффекта с большой скоростью идет гидролиз всех пептидных связей в белковых молекулах
Переваривание белков в желудке
Переваривание белков начинается в желудке. В желудочном соке присутствует несколько протеиназ: пепсин, гастриксин, пепсин В. У детей присутствует еще одна эндопротеиназа реннин.
Главные клетки слизистой желудка вырабатывают профермент пепсиногена. Под действием НСI желудочного сока пепсиноген в результате ограниченного избирательного протеолиза превращается в пепсин. Оптимальной средой является среда с рН порядка 1,0-2,5. Пепсин обеспечивает до 95% всей переваривающей способности желудочного сока. Так, действие гастриксина крайне ограничено.
Важным компонентом желудочного сока является НСI, которая денатурирует белки, делая их структуру более рыхлой, а значит и более доступной для действия протеиназ; угнетает микрофлору, попадающую в желудок вместе с пищей.
Переваривание белков в кишечнике
Смесь полипептидов поступает из желудка в двенадцатиперстную кишку, где под действием протеиназ поджелудочной железы и стенки кишечника продолжается расщепление белков и полипептидов. рН кишечного сока составляет от 7,5 до 8,2, это слабощелочное значение рН поддерживается в основном за счет бикарбонатов, поступающих в кишечник с соком поджелудочной железы. В поджелудочной железе синтезируются трипсиноген, химотрипсиноген, прокарбоксипептидазы А и В, проколлагеназа и проэластаза. С соком поджелудочной железы эти проферменты поступают в просвет кишечника и в результате избирательного ограниченного протеолиза превращаются в активные ферменты.
Важнейшую роль в превращение проферментов в ферменты принадлежит двум протеиназам: энтерокиназе кишечной стенки и трипсину. Энтерокиназа отщепляет от неактивного трипсиногена гексапептид, превращая профермент в активный трипсин. В дальнейшем превращение трипсиногена в трипсин может идти путем аутокатализа.
Образовавшийся трипсин превращает все другие проферменты в активные ферменты. Так, например, химотрипсиноген А или В под действием трипсина превращается в одну из форм активного химотрипсина (пи-химотрипсин, сигма-химотрипсин и др.), или проэластаза превращается в эластазу.
Действие протеиназ поджелудочной железы дополняется действием ферментов, продуцируемых стенками кишечника: аминопептидаз и дипептидаз.
Под действием этого комплекса ферментов белки и пептиды расщепляются до отдельных аминокислот и в таком виде всасываются в стенку кишечника.

48. Аминокислотный пул организма: пути его пополнения и основные пути использования аминокислот. Трансаминирование аминокислот, биологическая роль этого процесса.
Аминокислотный пул организма.
В жидкой среде организма, т.е. в плазме крови, в межклеточной жидкости и во внутриклеточной жидкости постоянно имеется определенное количество свободных аминокислот. Они образуют аминокислотный пул организма. Для человека массой 70 кг величина этого пула составляет около 30 г. Пул постоянно пополняется за счет трех процессов: распада тканевых белков; поступления аминокислот из кишечника;синтеза заменимых аминокислот.
Ежесуточно в аминокислотный пул поступает до 400 г аминокислот в результате расщепления тканевых белков и около 100 г аминокислот поступает из кишечника. В то же время из аминокислотного пула ежесуточно изымается не менее 400 г аминокислот для ресинтеза тканевых белков и около 100 г. аминокислот расщепляется до конечных продуктов.
Так, в сутки в результате глюконеогенеза при безуглеводном рационе может быть синтезировано до 100-120 г глюкозы и основным поставщиком пластического материала для этого синтеза являются аминокислоты. Ежесуточно в организме из сукцинил-КоА и аминокислоты глицина синтезируется до 300 мг гема. В целом, за сутки через аминокислотный пул проходит не менее 450-500 г аминокислот, т.е. пул обменивается за сутки не менее 15 раз, а его постоянство есть отражение динамического равновесия между процессами, обеспечивающими поступление и использование аминокислотного пула.
При трансаминировании происходит перенос аминогруппы с аминокислоты на кетокислоту без образования свободного аммиака. Одна из участвующих во взаимодействии кислот должна быть дикарбоновой.
Реакции катализируются ферментами аминотрансферазами (трансаминазами). Простетической группой любой из аминотрансфераз является фосфопиридоксаль фосфорилированное производное витамина В6. Фосфопиридоксаль выступает в реакции в качестве промежуточного акцептора аминогруппы, именно поэтому в ходе реакции и не происходит образования свободного аммиака:
Реакции трансаминирования легко обратимы. В клетках органов и тканей имеется большое количество различных аминотрансфераз, поскольку каждый фермент катализирует перенос аминогруппы только между определенной парой кислот. В реакцию трансаминирования из аминокислот, входящих в состав белков, не вступают лишь треонин и лизин.
Трансаминирование является одним из этапов синтеза заменимых аминокислот из безазотистых соединений в клетках. Так, в организме синтезируется ряд кетокислот, которые в результате трансаминирования могут превращаться в заменимые аминокислоты.
Кроме того, трансаминирование играет важную роль в оптимизации смеси аминокислот, поступающих из кишечника во внутреннюю среду организма. Поскольку чужеродные белки рациона, при расщеплении образуют смесь аминокислот, в которой соотношение отдельных аминокислот может быть весьма далеким от соотношения аминокислот в белках человеческого организма.
Трансаминирование в качестве одного из этапов входит в более сложные процессы трансдезаминирование и трансреаминирование.

49. Дезаминирование аминокислот. Прямое окислительное дезаминирование аминокислот. Трансдезаминирование. Судьба безазотистого остатка аминокислот. Кетогенные и глюкогенные аминокислоты.
Дезаминирование аминокислот представляет собой процесс отщепления от аминокислот аминогруппы с образованием свободного аммиака.
Дезаминирование в организме человека может протекать в двух вариантах:
а)в виде прямого дезаминирования, в ходе которого аммиак образуется при непосредственном отщеплении аминогруппы от аминокислоты
б)в виде непрямого дезаминирования, в ходе которого отщепляемая аминогруппа вначале переносится с аминокислоты на другое соединение, от которого в дальнейшем отщепляется аммиак
Прямое дезаминирование, в свою очередь, на разных уровнях организации живых объектов встречается в 4 вариантах: окислительное дезаминирование, внутримолекулярное дезаминирование, гидролитическое дезаминирование, восстановительное дезаминирование.
В клетках человеческого организма работают лишь два из перечисленных механизма: окислительное и внутримолекулярное дезаминирование.
Прямое окислительное дезаминирование.
При прямом окислительном дезаминировании аминокислот образуются альфа-кетокислоты и аммиак. Процесс идет в два этапа. На первом этапе при участии фермента оксидазы аминокислот от аминокислоты отщепляется 2 атома водорода и аминокислота превращается в иминокислоту. Атомы водорода переносятся на простетическую группы ферментов, причем это ФМН (флавинмононуклеотид) для оксидазы аминокислот L-ряда и ФАД(флавинадениндинуклеотид) для оксидазы аминокислот D-ряда. Эти же ферменты затем переносят атомы водорода со своих простетических групп на молекулярный кислород с образование перекиси водорода.
На втором этапе образовавшаяся иминокислота без участия фермента взаимодействует с водой с образованием кетокислоты и аммиака:
Выделенная из организма человека оксидаза L-аминокислот представляет собой малоактивный фермент, к тому же он способен дезаминировать лишь около 10 аминокислот. Поэтому принято считать, что прямое окислительное дезаминирование аминокислот L-ряда не вносит существенного вклада в метаболизм этих соединений у человека.В то же время в печени и особенно в почках человека присутствует высокоактивная оксидаза аминокислот D-ряда, способная дезаминировать самые различные Dаминокислоты. Трансдезаминирование аминокислот. Процесс трансдезаминирования процесс двухэтапный. На первом этапе различные L-аминокислоты вступают в реакцию трансаминирования с 2-оксоглутаратом с образование кетоаналога аминокислоты и глутаминовой кислоты, тогда как на втором этапе происходит прямое окислительное дезаминирование глутамата с образованием аммиака и регенерацией 2-оксоглутарата. В условиях организма и аминотрансферазы, и глутаматдегидрогеназа представляют собой высокоактивные ферменты, что обеспечивает высокую скорость процесса трансдезаминирования в целом. Кроме того, в ходе трансдезаминирования не образуется токсичного для клеток пероксида водорода, что наблюдается при действии оксидазы L-аминокислот, и образуется восстановленный НАДН+Н+, при окислении которого в цепи дыхательных ферментов клетка получает 3 АТФ. Глутаматдегидрогеназа является регуляторным ферментом. Ее активность угнетается по аллостерическому механизму высокими концентрациями АТФ и ГТФ в клетке и повышается при нарастании концентрации АДФ и ГДФ. За счет работы этого регуляторного механизма скорость процесса трансдезаминирования аминокислот контролируется энергетическим статусом клетки. Если энергии в клетке недостаточно, скорость процесса возрастает, в то время как при достаточно хорошем обеспечении клеток энергией расщепление аминокислот тормозится.
Углеродные скелеты аминокислот, образующиеся при дезаминировании аминокислот используются в клетках по следующим направлениям:в качестве субстратов для глюконеогенеза;превращаются в ацетоновые тела; окисляются до СО2 и Н2О;для ресинтеза аминокислот;Углеродные остовы аминокислот: Серина, Глицина, Треонина, Цистеина и Аланина превращаются в пируват и далее могут карбоксилироваться с образованием оксалоацетата (щавелево-уксусной кислоты). Углеродные скелеты Аспарагиновой кислоты, Аспарагина, Пролина, Гистидина, Глутаминовой кислоты, Глутамина, Аргинина, Валина, Изолейцина и Метионина в ходе своего расщепления образуют промежуточные продукты цикла Кребса, которые по ходу цикла могут также превращаться в оксалоацетат. Оксалоацетат через фосфоэнолпируват идет на синтез глюкозы. При расщеплении углеродных скелетов Лейцина, Лизина, Тирозина и Фенилаланина в качестве промежуточного продукта образуется ацетоацетат соединение из группы ацетоновых тел. Эти аминокислоты получили название кетопластических или кетогенных, хотя часть углеродных скелетов Тирозина и Фенилаланина также может быть использована в глюконеогенезе. Углеродные остовы как глюкопластических, так и кетопластических аминокислот могут окисляться до СО2 и Н2О в цикле Кребса. Оксалоацетат, при своем декарбоксилировании превращается в пируват, а пируват, в свою очередь декарбоксилируясь, превращается в ацетил-КоА.

50. Декарбоксилирование аминокислот. Биогенные амины, их физиологическое значение. Инактивация биогенных аминов. Нарушения обмена биогенных аминов при патологических состояниях.
Одним из путей превращения аминокислот в клетках различных органов и тканей является их декарбоксилирование. Известно несколько вариантов декарбоксилирования, встречающихся на разных уровнях организации живых систем. У человека работают два основных варианта декарбоксилирования: альфа-декарбоксилирование аминокислот и декарбоксилирование, связанное с конденсацией двух молекул, одной из которых является аминокислота. Последний вариант декарбоксилирования встречается, например, на одном из этапов синтеза гема.
Отщепление CO2 от аминокислот катализируются ферментами декарбоксилазами, простетическими группами которых является фосфопиридоксаль. В условиях клеток эти реакции необратимы. Декарбоксилированию подвергаются далеко не все аминокислоты, а лишь те из них, при декарбоксилировании которых образуются биологически активные соединения, выполняющие в организме функции или биорегуляторов, или нейромедиаторов. Вся эта группа соединений получила название биогенные амины.
Общим путем инактивации биогенных аминов является их окислительное дезаминирование с участием ферментов моноаминоксидаз или диаминоксидаз. Образующийся альдегид окисляется до соответствующей кислоты, а перекись водорода разрушается каталазой. Некоторые биогенные амины, например, гистамин могут инактивироваться путем метилирования или ацетилирования.
Например, из аминокислоты гистидина в результате ее декарбоксилирования образуется гистамин:
Гистамин обладает выраженным сосудорасширяющим эффектом, он участвует в развитии воспалительных, в том числе аллергических, реакций. Гистамин стимулирует выделение желудочного сока; в этом качестве он нашел применение в клинической лабораторной диагностике для установления причины нарушения секреции желудочного сока.
Инактивация гистамина идет или за счет его дезаминирования, или путем метилирования c образованием N1-метилгистидина.
Аминокислота триптофан служит предшественником еще одного биологически важного амина серотонина. Серотонин является нейромедиатором стволовой части мозга. Инактивация серотонина идет или путем его окислительного дезаминирования, или же путем метилирования (ацетилирования) по аминогруппе.
В ходе декарбоксилирования аминокислот орнитина и лизина образуются алифатические диамины путресцин, кадаверин, а в ходе декарбоксилирования S-аденозилметионина образуется S-аденозилгомоцистеамин. Эти соединения используются при синтезе полиаминов спермина и спермидина, которые участвуют в регуляции процессов пролиферации. Алифатические амины инактивируются также путем их окисления под действием соответствующих моноаминоксидаз или диаминоксидаз.

51. Токсичность аммиака. Пути обезвреживания аммиака в организме. Биосинтез мочевины: последовательность реакций, суммарное уравнение. Нарушение процессов обезвреживания. Гипераммониемии.
В организме человека в результате дезаминирования аминокислот, а также некоторых других соединений, например, биогенных аминов или азотистых оснований некоторых нуклеотидов, ежесуточно образуется 15-17 г аммиака. Кроме того, в качестве продукта жизнедеятельности микробной флоры аммиак постоянно образуется в кишечнике; этот аммиак легко всасываясь, поступает во внутреннюю среду организма. Аммиак представляет собой высоко токсичное соединение, средняя концентрация в крови в норме составляет 0,1-0,2 мг/л или 30-40 мкмоль/л.
При повышении концентрации аммиака в крови наблюдаются симптомы аммиачного отравления: своеобразный тремор, повышенная раздражительность, нечленораздельная речь, затуманивание зрения, а в тяжелых случаях отравления развивается коматозное состояние и может наступить смерть.
Токсичность аммиака объясняется его способностью связывать в клетках 2-оксоглутарат за счет обратимости действия глутаматдегидрогеназы. В митохондриях клеток резко падает концентрация 2оксоглутарата, что приводит к нарушению работы цикла трикарбоновых кислот и развитию тяжелого гипоэнергетического состояния, порой угрожающего жизни.
Печень является основным органом, в котором происходит обезвреживание аммиака. В гепатоцитах до 80-90% образовавшегося аммиака превращается в мочевину малотоксичное соединение, которое с током крови поступает из печени в почки и выводится с мочой. В норме в сутки с мочой выводится от 20 до 35 г мочевины. Небольшая часть образующегося в организме аммиака до 1 г в сутки выводится почками с мочой в виде аммонийных солей.
Аммиак, поступивший в печень или непосредственно образовавшийся в гепатоцитах вступа
·ет в цикл мочевинообразования.
Синтез мочевины начинается в митохондриях гепатоцитов с образования карбамоилфосфата. Образовавшийся карбамоилфосфат взаимодействует с орнитином с образованием цитруллина.
Последующие стадии процесса протекают в цитозоле. Вначале цитруллин взаимодействует с аспартатом с образованием аргининосукцината. Эта реакция энергозависима и сопровождается расщеплением АТФ до АМФ и пирофосфата, причем пирофосфат сразу же расщепляется пирофосфатазой на два остатка фосфорной кислоты и реакция становится необратимой термодинамический контроль направления реакции и процесса в целом.Далее аргининосукцинат расщепляется до аргинина и фумарата. Образовавшаяся в ходе реакции фумаровая кислота может поступать в цикл трикарбоновых кислот и превращаться в ходе его работы в оксалоацетат. Оксалоацетат, в свою очередь, может путем трансаминирования с глутаматом вновь превращаться в аспартат и повторно использоваться в цикле синтеза мочевины.
В заключительной реакции цикла идет гидролитическое расщепление аргинина на мочевину и орнитин.
Образовавшийся орнитин может повторно использоваться в цикле, а мочевина из гепатоцитов поступает в кровь и выводится из организма через почки. Суммарное уравнение синтеза мочевины:

СО2 + NH3 +аспартат+3АТФ+3Н2О ––( Мочевина+Фумарат+2АДФ+АМФ+4Р
На синтез одной молекулы мочевины клетка затрачивает 4 макроэргических эквивалента.
Нарушение процессов обезвреживания аммиака приводит к его накоплению в крови развивается гипераммониемия. Гипераммониемия может быть первичной т.е. обусловлено врожденной недостаточностью одного из ферментов цикла синтеза мочевины.
Для облегчения состояния таких больных следует уменьшить содержание белков в пище до минимально приемлемых количеств, и поступление пищевых белков должно быть разбито на возможно большее количество порций. Этими мероприятиями предотвращается одномоментное поступление больших количеств аминокислот во внутреннюю среду организма, а, следовательно, и накопление аммиака.
Вторичная гипераммониемия встречается при тяжелых поражениях печени, хотя в принципе печень обладает очень большими резервными возможностями в отношении обезвреживания аммиака: сохранение всего 1/6 части неповрежденной печеночной ткани может полностью обеспечить обезвреживание образующегося в организме аммиака.

52. Патология обмена простых белков и аминокислот: белковая недостаточность, нарушения обмена при недостаточном поступлении витаминов (С, В6, В9 и др). Врожденные нарушения обмена аминокислот, аминоацидурии.
Нарушения обмена простых белков и аминокислот могут быть первичными, т.е. в основе своей иметь генетический дефект, или вторичными (развиваются или в результате какого-либо заболевания, или являются следствием неблагоприятных условий жизни).
Белковая недостаточность может развиваться или вследствие дефицита белка в пищевом рационе, в том числе при недостаточном поступлении с пищей одной или нескольких незаменимых аминокислот, или в результате нарушения усвоения пищевых белков при заболеваниях желудочно-кишечного тракта.
Главными симптомами (признаками) развития этого состояния являются отрицательный азотистый баланс, гипопротеинемия (снижение содержания белков в плазме крови) и развитие отеков. В организме нарушается синтез белков, что приводит к быстрой утомляемости, снижению резистентности организма к воздействию неблагоприятных факторов внешней среды и другим нежелательным явлениям.
В организме нарушается синтез ферментов, принимающих участие в обмене аминокислот, нарушаются процессы дезаминирования и трансаминирования аминокислот. При выраженной белковой недостаточности, например, при длительном голодании, нарушается выработка пищеварительных ферментов желудочно-кишечного тракта, в том числе и протеиназ. Поэтому такие больные нуждаются в парэнтеральном введении аминокислотных гидролизатов для восстановления синтеза ферментов. Особенно тяжело белковую недостаточность переносят дети: у них развивается тяжелое поражение печени, наблюдается остановка роста, падает сопротивляемость организма к воздействию неблагоприятных факторов внешней среды.
Белковая недостаточность может развиваться и при тяжелых заболеваниях, поражающих органы пищеварения, например хронических панкреатитах.
Нарушения обмена при витаминной недостаточности . Производные ряда витаминов выступают в качестве кофакторов ферментов, катализирующих реакции обмена тех или иных аминокислот. Естественно, что при недостатке в организме любого из этих витаминов будут наблюдаться нарушения в ходе того или иного обменного процесса.
При недостатке витамина С гидроксилирование остатков пролина нарушается, в результате чего образуются дефектные коллагеновые волокна, обладающие значительно меньшей плотностью. Последствиями этого являются:во-первых, снижение прочности стенок сосудов, что приводит к кровоизлияниям в органах и тканях; во-вторых, из за снижения прочности коллагеновых волокон происходит также расшатывание и выпадение зубов характерные признаки С-авитаминоза.
Важную роль в обмене аминокислот играет фосфопиридоксаль, являющийся производным витамина В6, Недостаточность фосфопиридоксаля приводит к нарушению реакций трансаминирования и декарбоксилирования аминокислот, в том числе нарушается распад триптофана и уменьшается уровень эндогенного синтеза витамина В5. Отсюда развитие при авитаминозе В6 дерматита, похожего на дерматит при пеллагре. При недостаточности витамина В1 в клетках нарушается синтез заменимых аминокислот, в особенности Асп и Глу. Причиной этого является нарушение обмена углеводов с уменьшением содержания в тканях щавелевоуксусной и 2-оксоглутаровой кислот, служащих исходными субстратами для биосинтеза Асп и Глу.Дефицит в организме витаминов В9 и В12 приводит к нарушению функционирования в клетках системы переноса одноуглеродных группировок, тесно связанной с обменом таких аминокислот как Сер, Гли и Мет. В результате нарушается синтез нуклеотидов и нуклеиновых кислот, следствием чего является развитие фолиеводефицитной или В12-дефицитной анемии.
Обмен нуклеотидов и нуклеиновых кислот. Матричные биосинтезы.
53. Представление о биосинтезе пиримидиновых нуклеотидов: происхождение атомов пиримидинового кольца. Регуляция биосинтеза. Катаболизм пиримидиновых нуклеотидов.
Нуклеотидами называются соединения, состоящие из азотистого основания, углевода-пентозы и фосфорной кислоты.
Биосинтез нуклеотидов пиримидинового ряда начинается в цитозоле, где при участии цитозольной карбамоилфосфатсинтетазы образуется карбамоилфосфат, причем источником азота для его синтеза является глутамин:
СО2 + Глн + 2АТФ –( NH2-CO-O-PO3H2 + 2АДФ + Ф + Глу
Далее карбамоилфосфат взаимодействуя с аспартатом в реакции, катализируемой аспартаттранскарбамоилтрансферазой, превращается в карбамоиласпартат, а затем при участии дигигидрооротазы в дигидрооротовую кислоту:
Дигидрооротовая кислота при участии митохондриального фермента дигидрооротатдегидрогеназы переходит в оротовую кислоту. В следующей реакции принимает участие фосфорибозилпирофосфат. Он образуется из рибозо-5-фосфата с участием АТФ в ходе реакции, катализируемой ферментом фосфорибозилпирофосфатсинтетазой. Реакция синтеза фосфорибозилпирофосфата (ФРПФ) не является специфичной для синтеза пиримидиновых нуклеотидов, в ходе этой реакции синтезируется ФРПФ, необходимый для синтеза различных мононуклеотидов.
Оротовая кислота при участии фермента оротат-фосфорибозилтрансферазы переносится на остаток рибозо-5-фосфата с образованием оротидиловой кислоты, которая подвергается декарбоксилированию, с образованием уридин-5-монофосфорной кислоты (уридиловая кислота или УМФ). Последняя реакция катализируется оротидилатдекарбоксилазой.
Все остальные нуклеотиды пиримидинового ряда синтезируются из уридиловой кислоты.
В ходе синтеза пиримидиновых нуклеотидов используются глутамин, СО2, АТФ, аспартат и фосфорибозилпирофосфат (ФРПФ). Все эти соединения синтезируются в клетках. при недостатке фолиевой кислоты (В9) в организме будет нарушен синтез дезокситимидиловой кислоты, необходимой для последующего синтеза ДНК в клетках.
Пиримидиновые нуклеозиды, образующиеся в клетках при деградации соответствующих нуклеотидов, могут с помощью специальных ферментов киназ вновь превращаться в мононуклеотиды.
В то же время образующиеся в ходе внутриклеточного распада свободные азотистые основания пиримидинового ряда повторно не используются и подвергаются расщеплению до конечных продуктов.
Расщепление пиримидиновых нуклеотидов начинается с отщепления рибозофосфатного остатка, а образовавшееся свободное азотистое основание расщепляется без образования специфических конечных продуктов.
Скорость синтеза нуклеотидов соответствует потребностям клетки. В работе механизмов регуляции синтеза пуриновых и пиримидиновых нуклеотидов много общего: решающую роль в регуляции играет ретроингибирование снижение скорости синтеза нуклеотидов при достижении их достаточной концентрации в клетках за счет аллостерического ингибирования ключевых ферментов соответствующих метаболических путей.
Основными регуляторными ферментами метаболического пути синтеза пиримидиновых нуклеотидов являются карбамоилфосфатсинтетаза (Е1) и аспартаттранскарбамоилаза (Е2). Активность первого фермента (Е1) ингибируется по аллостерическому механизму высокими концентрациями УТФ в клетке, а активность второго фермента (Е2) высокими концентрациями ГТФ. Активность карбамоилфосфатсинтетазы, кроме того, активируется высокими концентрациями ФРПФ.

54. Представление о биосинтезе пуриновых нуклеотидов: происхождение атомов пуринового кольца, инозиновая кислота как предшественник адениловой и гуаниловой кислот. Катаболизм пуриновых нуклеотидов. Нарушения обмена пуриновых нуклеотидов при подагре.
При синтезе нуклеотидов пуринового ряда, в отличие от синтеза пиримидиновых нуклеотидов, формирование гетероциклического ядра идет непосредственно на рибозо-5-фосфате. Вначале синтезируется ФРПФ(фосфорибозилпирофосфат), который при взаимодействии с глутамином превращается в 5-фосфорибозиламин.
Затем следует большая последовательность реакций, в ходе которых формируется пуриновое ядро. Первым нуклеотидом, образующимся в ходе синтеза является инозиновая кислота (ИМФ).
Из ИМФ синтезируются другие нуклеотиды пуринового ряда. При синтезе АМФ идет аминирование ИМФ, источником аминогруппы служит аспартат.
При синтезе гуаниловой кислоты вначале остаток гипоксантина в ИМФ окисляется до ксантина с образованием КМФ, а затем идет аминирование и превращение ГМФ. Донором аминогруппы выступает глутамин, энергетика реакции обеспечивается расщеплением АТФ.
Образовавшиеся АМФ и ГМФ в ходе реакций трансфосфорилирования с АТФ преобразуются в АДФ и ГДФ, а затем последние подвергаются фосфорилированию за счет энергии, выделяющейся при биологическом окислении, превращаясь в АТФ и ГТФ.
Синтез пуриновых нуклеотидов с использованием в качестве пластического материала атомных группировок из молекул других соединений получил название синтеза “de novo
Расщепление пуриновых нуклеотидов идет во всех клетках. Конечным продуктом катаболизма образующихся при расщеплении нуклеотидов пуриновых азотистых оснований является мочевая кислота. С наибольшей интенсивностью образование мочевой кислоты идет в печени, тонком кишечнике и почках.
Нуклеотиды в клетках подвергаются дефосфорилированию с образованием аденозина или гуанозина. Аденозин при участии фермента аденозиндезаминазы превращается в инозин и далее путем фосфоролиза в гипоксантин. Гипоксантин при участии ксантиноксидазы вначале окисляется в ксантин, а затем при участии того же фермента ксантин переходит в мочевую кислоту. При расщеплении ГМФ вначале в несколько этапов происходит образование свободного гуанина, который при участии фермента гуаназы переходит непосредственно в ксантин, а затем окисляется в мочевую кислоту. до 20% мочевой кислоты у человека может расщепляется до СО2 и NH3 и выделяться через кишечник.
Наиболее известным заболеванием, тесно связанным с нарушением обмена пуриновых нуклеотидов, является подагра. У больных с этой патологией наблюдается повышенное содержание мочевой кислоты в крови и тканях, а также избыточное количество уратов в моче. повышение содержания мочевой кислоты в биологических жидкостях приводит к появлению в них кристаллов мочевой кислоты. Если кристаллы появляются в суставной жидкости, развивается подагрические артриты. Выпадение кристаллов мочевой кислоты непосредственно в ткани вызывает асептическое воспаление с последующим инкапсулированием образовавшихся кристаллов и формированием подагрических узелков. Наиболее тяжелым проявлением этого заболевания является подагрическая нефропатия с нарушением функции почек.
Развитие заболевания тесно связано с гиперурекемией повышеннным содержанием мочевой кислоты в крови. Причинами подагры в ряде случаев является нарушение функционирования таких ферментов как ФРПФ-синтетаза или гипоксантин-гуанин-фосфорибозилтрансфераза. При снижении активности гипоксантин-гуанин-фосфорибозилтрансферазы в клетках снижается уровень повторного использования образующихся в них гипоксантина и гуанина за счет торможения реутилизации. Возникает нехватка пуриновых нуклеотидов, которая компенсируется активацией синтеза пуринов de novo, что в конечном итоге ведет к повышенному образованию пуринов в организме и, соответственно, к повышению содержания мочевой кислоты в организме.

55. Первичная, вторичная и третичная структура ДНК. Роль ядерных белков в компактизации ДНК. Биологическая роль ДНК.
Первичная структура ДНК это последовательность расположения остатков дезоксирибонуклеотидов в полинуклеотидной цепи. Молекула ДНК построена из двух дезоксирибополинуклеотидных цепей. В состав ДНК в качестве главных нуклеотидов входят 4 нуклеотида - дАМФ, дГМФ, дЦМФ и ТМФ (дТМФ). На их долю приходится не менее 97% нуклеотидов, лишь около 3% приходится на минорные нуклеотиды.
При формировании полинуклеотидной цепи один мононуклеотид соединяется с другим за счет образования сложно-эфирной связи между остатком фосфорной кислоты, связанного с третьим атомом углерода рибозы одного мононуклеотида и пятым атомом углерода рибозы другого. Такой тип связи получил название 3',5'фосфодиэфирная связь.
Собственно остов полимерной структуры образован чередующимися остатками дезоксирибозы и фосфорной кислоты. именно в последовательности нуклеотидных остатков цепей ДНК закодирована (заключена) генетическая информация.
Вторичная структура ДНК представляет собой двойную, правозакрученную, спираль, образованную двумя антипараллельными комплементарными дезоксирибополинуклеотидными цепями.
Центральную часть спиральной структуры занимают азотистые основания, плоскости которых почти перпендикулярны длинной оси структуры.
Каждое азотистое основание одной цепи образует комплементарную пару с азотистым основанием другой цепи, так что и в целом одна дезоксирибонуклеотидная цепь в спиральной структуре комплементарна второй цепи. Для ДНК такими парами являются пары аденин-тимин и гуанин-цитозин. Стабилизация такой структуры осуществляется, во-первых, за счет водородных связей между комплементарными парами азотистых оснований соседних цепей и, во-вторых, за счет так называемого стэкинг-взаимодействия взаимодействия делокализованных систем электронов сближенных и расположенных параллельно друг другу ароматических циклов, составляющих структурную основу каждого азотистого основания.
Известно несколько возможных вариантов вторичной структуры ДНК, обозначаемых буквами от А до Е. Все они представлены правозакрученными вариантами двойной спирали, но отличаются друг от друга числом пар нуклеотидов на 1 виток спирали, пространственными параметрами витка спирали, величиной угла наклона плоскостей азотистых оснований по отношению к длинной оси молекулы и др.
Третичная структура ДНК . спирализованная молекула ДНК должна быть упакована в пространстве таким образом, чтобы линейные размеры этой структуры были уменьшены. Укладка молекул ДНК в более компактные структуры возможна только в результате ее взаимодействия с другими компонентами ядра, в основном с ядерными белками, такими как гистоны, кислые негистоновые ядерные белки или белки, образующие внутриядерный поддерживающий матрикс.Принято выделять три уровня компактизации молекул ДНК.
Нуклеосомный уровень компактизации обусловлен взаимодействием ДНК с молекулами белков гистонов. Восемь молекул гистонов образуют гистоновый октамер, на который накручивается примерно на 1,75 оборота участок молекулы ДНК. За счет нуклеосомного уровня компактизации линейные размеры молекул ДНК уменьшаются примерно в 6–7 раз.
В формировании второго уровня компактизации ДНК образовании фибрилл ДНК важная роль принадлежит белку гистону Н1. Своей глобулярной частью молекула гистона Н1 связывается со средней частью одной нуклеосомы, а с помощью своих “ручек” она взаимодействует с двумя соседними нуклеосомами. При этом нуклеосомы стягиваются вместе, образуя регулярную повторяющуюся структуру, напоминающую спираль. За счет формирования подобного рода фибриллярных структур длина молекул ДНК уменьшается еще в 6–7 раз.
Дальнейшее уменьшение линейных размеров ДНК идет за счет третьего петельного уровня компактизации. Фибриллы ДНК образуют петлеобразные структуры, крепящиеся к элементам ядерного скелета в интерфазе клеточного цикла или к осевой нити хромосомы в делящейся клетке, образованной негистоновыми белками клеточного ядра.
ДНК в живых системах выступает в качестве хранителя генетической информации, обеспечивая как видовые, так и индивидуальные различия организмов, а репликация ДНК лежит в основе передачи генетической информации в ряду поколений.

56. Репликация ДНК, биологическая роль процесса. Механизм репликации. Роль ферментов и белков, не обладающих каталитической активностью в механизме репликации.
В ходе процесса репликации происходит удвоение молекулы ДНК. В каждой из идентичных дочерних молекул ДНК содержится тот же самый объем генетической информации, что и в материнской молекуле, поэтому при последующем делении клеток каждая из двух новых клеток получает эквивалентный объем генетической информации, что в конечном итоге и обеспечивает стабильность клеток и вида в ряду поколений.
На первом этапе репликации происходит раскручивание двойной спирали ДНК и расхождение ее цепей. На следующем этапе на каждой из материнских цепей ДНК синтезируется новая вторая дезоксирибополинуклеотидная цепь. Каждый следующий дезоксирибонуклеотид будет присоединяться к синтезируемой цепи лишь в том случае, если его азотистое основание будет комплементарно азотистому основанию очередного дезоксирибонуклеотидного остатка материнской цепи. По завершению процесса синтеза мы будем иметь две молекулы ДНК, в каждой из которых одна из дезоксирибонуклеотидных цепей происходит из материнской ДНК, а вторая вновь синтезированная:
Такой механизм получил название полуконсервативного механизма репликации ДНК, поскольку в состав каждой из двух дочерних молекул ДНК входит неизмененная дезоксирибополинуклеотидная цепь материнской молекулы ДНК. Пластическим материалом для синтеза служат молекулы дезоксирибонуклеозидтрифосфатов четырех главных нуклеотидов ДНК: д(дезокси)АТФ, дГТФ, дЦТФ и дТТФ (ТТФ). Суммарное уравнение синтеза ДНК может быть представлено в виде нескольких вариантов.
Материнская цепь ДНК + n(дАТФ) + m(дГТФ) + р(дЦТФ) + q(дТТФ) -->
Репликазный комплекс-------------------> Дочерняя молекула ДНК + Ф~Ф(n+m+p+q)
В определенном участке хромосомы, который получил название сайта инициации репликации, одновременно формируется два репликационных комплекса, которые движутся по молекуле ДНК в противоположных направлениях, образуя две репликационные вилки. Репликационные вилки соседних репликационных глазков сталкиваются и при их слиянии высвобождаются удвоенные участки хромосомной ДНК.
Ферментом, непосредственно катализирующим синтез дочерних цепей ДНК является ДНК-полимераза. В клетке имеется три ДНК-полимеразы: это (ДНКполимераза, принимающая непосредственное участие в репликации хромосомной ДНК; (-ДНК-полимераза, участвующая в процессах репарации поврежденной хромосомной ДНК и (-ДНК-полимераза, обеспечивающая репликацию митохондриальной ДНК.
Реплицируемая молекула ДНК не удовлетворяет ни одному из этих требований, поскольку представляет собой двойную плотно скрученную структуру из антипараллельных цепей без каких-либо разрывов, в районе которого мог бы присоединиться и начать работу фермент. Все перечисленные сложности разрешаются в ходе работы репликазного комплекса.
Расплетение двойной спирали ДНК осуществляется с помощью фермента - ДНК-хеликазы, способной связываться с одной из цепей ДНК и двигаться по этой цепи, расплетая по ходу своего движения двойную спираль ДНК. Энергия, необходимая для такого перемещения фермента, обеспечивается гидролизом АТФ.
К образовавшимся одноцепочечным участкам молекулы ДНК присоединяются особые белки, препятствуя обратному скручиванию расплетенного участка.
При расплетении молекулы ДНК на нераскрученной части может возникать множество супервитков. Эта проблема решается с помощью фермента топоизомеразы типа I. Фермент присоединяется к участку ДНК, имеющему супервиток, разрезает одну из цепей ДНК, что сопровождается ликвидацией супервитка, а затем вновь восстанавливает целостность разрезанной цепи. Таким образом, фермент выполняет функцию “шарнира” ликвидирующего супервитки, возникающие в ходе расплетения двойной спирали ДНК.
Поскольку ДНК-полимераза неспособна начать синтез дочерней цепи ДНК с нуля, на одной из цепей материнской ДНК, идущей в направлении 3'(5', синтезируется небольшой (порядка десятка нуклеотидных остатков) олигонрибоуклеотид, который и служит затравкой или праймером для ДНК-полимеразы. Праймер синтезируется с помощью фермента праймазы, в дальнейшем этот олигорибонуклеотид будет удален из дочерней цепи ДНК.
ДНК-полимераза присоединяется к праймеру и начинает последовательно присоединять к его 3'- концу новые дезоксирибонуклеотидные остатки, обеспечивая непрерывный рост дочерней цепи ДНК в направлении 5'(3'.
По современным представлениям репликация второй цепи материнской ДНК идет небольшими участками, получившими название “фрагменты Оказаки” по фамилии ученого, обнаружившего данный феномен.
дочерняя цепь ДНК, синтезируемая на материнской цепи ДНК, идущей в направлении 3'(5' по ходу движения репликационной вилки, синтезируется несколько раньше и в виде непрерывной цепи; она получила название “ведущей” цепи. Тогда как синтез дочерней цепи на материнской цепи ДНК, идущей в направлении 5'(3' по ходу движения репликационной вилки, несколько запаздывает во времени и идет в виде фрагментов Оказаки, она носит название “отстающей” цепи.

57. РНК: строение, биологическая роль различных классов, локализация в клетке. Особенности строения иРНК и тРНК.
В клетках эукариот присутствует несколько классов РНК, играющих ту или иную роль в процессах реализации генетической информации:
Информационная или матричная РНК (мРНК). Этот класс молекул РНК участвует в переносе генетической информации из ядра в цитозоль на рибосомы и принимает непосредственное участие в работе механизма синтеза полипептидных цепей белка на рибосомах.
Рибосомальные РНК (рРНК); их роль состоит в структурной организации рибосом внутриклеточных органелл, ответственных за сборку полипептидных цепей белков. Кроме того, рРНК принимают непосредственное участие в работе самого механизма биосинтеза белка.
3. Транспортные РНК (тРНК). Они обеспечивает связывание аминокислот в цитозоле, перенос аминокислот на рибосомы, а также принимают непосредственное участие в синтезе полипептидных цепей белков на рибосомах.
4. Гетерогенная ядерная РНК (гяРНК). Молекулы этого класса РНК представляют собой так называемые первичные транскрипты с тех или иных структурных генов ДНК и являются высокомолекулярными предшественниками молекул РНК различных других классов.
Молекулы РНК представляют собой полимеры, мономерными единицами которых являются рибонуклеотиды, связанные между собой 3',5'-фосфодиэфирными связями. Углеводным компонентом рибонуклеотидов является рибоза, а основная масса азотистых оснований РНК представлены аденином, гуанином, цитозином и урацилом. Главными нуклеотидами РНК являются АМФ, ГМФ, ЦМФ и УМФ.
В состав молекул отдельных классов РНК может входить до 15–17% минорных нуклеотидов.
Первичная структура РНК - последовательность расположения рибонуклеотидных остатков в полимерной цепи молекулы.
Молекулы РНК представляют собой одиночные полинуклеотидные цепи, не имеющие на всем своем протяжении регулярной пространственной упаковки. На отдельных участках молекулы РНК имеются элементы вторичной структуры, получившие название “шпилек”. Стабилизируются эти структуры водородными связями между азотистыми основаниями нуклеотидных остатков антипараллельных участков цепи РНК и стэкинг-взаимодействием.Третичная структура РНК это определенный способ укладки полинуклеотидной цепи РНК в определенном объеме пространства. За счет пластичности участков цепи, не принимающих участия в формировании “шпилек”, молекулы РНК тем или иным образом компактизуются, формируя объемные структуры, присущие тому или иному классу РНК. Стабилизация таких структур осуществляется за счет электростатического и гидрофобного взаимодействий между элементами цепи РНК и взаимодействием этих молекул с белками.
Наиболее многочисленным и гетерогенным по своим размерам является класс мРНК, что связано с ее функциями информационное обеспечение синтеза десятков тысяч различных белковых молекул, присутствующих в каждой клетке. На долю мРНК приходится 2-5% общего количества клеточной РНК. На 5'-конце мРНК всегда присутствует структура, именуемая “КЭП(шапка) она обозначает начало синтеза. Кроме того, КЭП защищает мРНК от преждевременного расщепления мРНК клеточными рибонуклеазами.
Важнейшей зоной молекулы мРНК является ее часть, ограниченная со стороны 5'конца так называемым инициирующим кодоном, а со стороны 3'-конца - одним из терминирующих кодонов. Это так называемая зона трансляции. Между КЭПом и инициирующим триплетом расположена лидерная или 5'-концевая нетранслируемая последовательность, она обычно состоит из нескольких десятков нуклеотидных остатков. Эта последовательность необходима для правильного связывания мРНК в функциональном центре
На 3'-конце большинства молекул мРНК имеется длинная последовательность от 20 до 250 нуклеотидных остатков. Это так называемый полиаденилатный блок (поли-А). Его функция отвечает за стабильность мРНК в клетке; от размеров полиаденилатного блока зависит число молекул белка, синтезируемого в клетке с участием данной молекулы мРНК
Молекулы тРНК имеют небольшие размеры они состоят из 75-80 нуклеотидных остатков, а их молекулярная масса составляет около 25 килодальтон. Особенностью молекул тРНК является высокое содержание в них минорных нуклеотидов до 15-19% от их общего числа в молекуле. На долю тРНК приходится до 15% от общего количества РНК в клетке.
В плоскостной модели структуры тРНК типа “клеверный лист” принято выделять 4 основных элемента:
а). Стебель листа, на 3'-конце которого имеется акцепторный тринуклеотид, к которому присоединяется аминокислота, переносимая данной тРНК.
б). Антикодонная петля. На вершине этой петли расположен триплет нуклеотидов антикодон, который за счет взаимодействия с кодоном мРНК определяет место включения аминокислоты, в полипептидную цепь белка, синтезируемого на рибосоме.
в). Две петли, дигидроуридиловая и псевдоуридиловая (по обязательному присутствию в них минорных нуклеотидов дигидроуридиловой кислоты и псевдоуридиловой кислоты) играют определенную роль во взаимодействии молекулы тРНК с ферментами аминоацил-тРНК-синтетазами и с рибосомами.
г). В молекулах некоторых тРНК присутствует небольшая дополнительная петля, расположенная между антикодонной петлей и псевдоуридиловой петлей.

58. Биосинтез РНК в тканях. Представление о посттранскрипционном процессинге РНК. Биологическая роль транскрипции.
Синтез РНК или транскрипция представляет собой первый этап реализации генетической информации, в ходе которого эта информация переписывается на молекулы РНК и только в этом виде становится доступной для ее использования в клетке. В результате транскрипции образуются, во-первых, мРНК, несущие информацию о последовательностях аминокислот в полипептидных цепях белков, во-вторых, структурные РНК: рРНК, тРНК, мяРНК, непосредственно выполняющие те или иные функции в клетке.
Синтез функционально активных молекул РНК можно разделить на два этапа.
На первом этапе происходит сборка молекулы РНК на соответствующем структурном гене ДНК; собственно это и есть непосредственно процесс транскрипции. Однако в результате транскрипции получается не готовая молекула той или иной РНК, а ее функционально неактивный предшественник. Такую РНК обычно называют первичным транскриптом соответствующего гена.
На втором этапе первичный транскрипт подвергается процессингу -, в ходе которого из первичного транскрипта формируется функционально активная молекула того или иного класса РНК.
Синтез первичного транскрипта
Процесс синтеза РНК носит консервативный характер. Это означает, что после синтеза РНК структура участка ДНК, на котором шел этот синтез, полностью восстанавливается; с другой стороны, ни один из структурных элементов участка ДНК, на котором шла транскрипция, не попадает в состав структуры новообразованной РНК. Пластическим материалом для синтеза РНК служат только главные рибонуклеозидтрифосфаты: АТФ, ГТФ, УТФ и ЦТФ. Ферментом, катализирующим синтез РНК является ДНКзависимая РНК-полимераза. В клетках эукариот в процессах транскрипции участвует 3 РНК-полимеразы: РНК-полимераза I ответственна за синтез рРНК; РНК-полимераза II за синтез мРНК;РНК-полимераза III за синтез тРНК и одной из рРНК 5S-РНК.
Процесс синтеза первичного транскрипта принято разделять на 3 этапа: инициацию, элонгацию и терминацию.
В ходе инициации специальные белки факторы транскрипции, связавшись с нуклеотидными блоками промотора, обеспечивают связывание РНК-полимеразы и ее ориентацию на стартовую точку кодирующей области гена.
РНК-полимераза раскручивает двойную спираль ДНК на протяжении 17 пар нуклеотидов, причем по мере продвижения РНК-полимеразы по кодирующей области гена происходит и перемещение этого участка раскрученной ДНК.
Найдя стартовую точку и определив кодирующую цепь ДНК, РНК-полимераза отбирает из окружающей среды два рибонуклеозидтрифосфата, азотистые основания которых комплементарны азотистому основанию дезоксирибонуклеотидного остатка стартовой точки и азотистому основанию соседнего дезоксирибонуклеотидного остатка кодирующей цепи ДНК и соединяет их между собой за счет образования 3',5'-фосфодиэфирной связи.
Далее идет удлинение синтезируемой молекулы РНК или элонгация. Элонгация идет циклически: РНК-полимераза отбирает из окружающей среды очередной рибонуклеозидтрифосфат с комплементарным азотистым основанием дезоксирибонуклеотидному остатку матричной цепи ДНК, присоединяет его к синтезируемой цепи РНК и продвигается по ДНК на одну пару дезоксирибонуклеотидов. Затем цикл повторяется.
Спиральная структура матричной ДНК после прохождения РНК-полимеразы сразу же восстанавливается. Окончание процесса синтеза РНК, т.е. терминация, происходит за пределами кодирующей области гена, в районе спейсера.
Процессинг мРНК включает: кэпирование первичного транскрипта; сплайсинг - удаление интронов, сшивание экзонов; формирование 5'-конца молекулы, включающее в себя удаление лишней последовательности нуклеотидов и присоединение полиаденилатного блока; превращение части главных нуклеотидов в минорные.
Синтезированные молекулы мРНК перемещаются из ядра в цитозоль. К настоящему времени мало что известно о механизме этого процесса. Предполагают, что в ядерных порах имеются специальные белки-рецепторы, которые “узнают” зрелые мРНК и с помощью механизма активного транспорта переносят их через ядерную мембрану. Молекулы мРНК, не прошедшие полностью процессинг, не могут участвовать в этом переносе.

59. Современные представления о синтезе белка: синтез аминоацил-тРНК, представление о синтезе полипептидных цепей на рибосомах. Посттрансляционныый процессинг белковых молекул.
Процесс трансляции представляет собой заключительную фазу реализации генетической информации в системе ее переноса в генеральном направлении: ДНК ––( РНК ––( Белок.
Синтез функционально полноценных белковых молекул включает в себя следующие этапы:
Подготовка пластического материала для сборки полипептидных цепей на рибосомах процесс рекогниции (узнавания).
Сборка полипептидных цепей на рибосомах в соответствии с информацией, поставляемой на рибосомы мРНК процесс трансляции.
Преобразование синтезированных на рибосомах полипептидных цепей в функционально полноценные белковые молекулы посттрансляционный процессинг.

Каждая тРНК в своей структуре имеет антикодон, способный к комплементарному взаимодействию с соответствующим кодоном мРНК, однако тРНК не имеют в своей структуре участков, комплементарных той или иной аминокислоте.
Присоединение аминокислоты к “своей” тРНК, например, Ала к тРНКАла, осуществляется с помощью специальных ферментов аминоацил-тРНК-синтетаз.
Каждая аминоацил-тРНК-синтетаза катализирует двухстадийную реакцию:
на первом этапе которой в активном центре фермента связывается молекула ”своей” аминокислоты и молекула АТФ, с образованием аминоациладенилата - остатка аминокислоты, связанного макроэргической связью с фосфатной группой АМФ.
На втором этапе к активному центру фермента присоединяется тРНК, антикодон которой комплементарен кодону аминокислоты, связанной в активном центре в виде аминоациладенилата
В каждой клетке имеется как минимум 20 различных аминоацил-тРНК-синтетаз, по одной на каждую из 20 аминокислот.
Синтез полипептидных цепей на рибосомах
Сборка полипептидных цепей белков происходит на рибосомах в соответствии с информацией, поступающей из ядра с м-РНК.
Рибосомы эукариот представляют собой клеточную органеллу, состоящую из двух субъединиц: малой и большой
В составе рибосомы имеется 4 функциональных центра:
центр связывания мРНК;
П-центр - центр связывания тРНК, несущей синтезируемую полипептидную цепь;
А-центр - центр связывания тРНК, несущей очередную аминокислоту, которая будет присоединяться к синтезируемой полипептидной цепи;
Т-центр или пептидилтрансферазный центр, обеспечивающий образование пептидных связей в синтезируемом полипептиде:
Процесс трансляции принято делить на три фазы: инициацию, элонгацию и терминацию.
Для инициации синтеза полипептида необходимы рибосома, диссоциированная на субъединицы; инициирующая тРНК, в качестве которой в клетках эукариот используется тРНКМет, нагруженная метионином; мРНК; ГТФ; кроме того, необходимо несколько белков-факторов инициации: эФИ-1, эФИ-2, эФИ3, эФИ-4 (А, В, С), причем фактор инициации эФИ-3 необходим для диссоциации рибосомы на субъединицы. Инициация начинается с взаимодействия Мет-тРНК с малой субъединицей рибосомы, для этого необходимы факторы инициации ФИ-4 эФИ-2 и ГТФ. Параллельно идет взаимодействие 5'-конца мРНК с КЭП-связывающим белком. Затем мРНК вместе с КЭП-связывающим белком взаимодействует с малой субъединицей рибосомы, нагруженной Мет-тРНК.
Далее малая субъединица продвигается по мРНК в направлении от ее КЭПа к 3'-концу, пока не достигнет инициирующего кодона АУГ.
Сформировавшийся комплекс, состоящий из малой субъединицы рибосомы, связанной с мРНК и инициаторной Мет-тРНК подучил название инициирующего комплекса.
Этот инициирующий комплекс, в состав которого входят также ГТФ и два инициаторных белка, взаимодействует с большой (60S) субъединицей рибосомы. В ходе этого взаимодействия происходит расщепление ГТФ до ГДФ и Ф, высвобождается КЭП-связывающий белок и ряд факторов инициации. После присоединения большой субъединицы рибосомы Мет-тРНК оказывается в П-центре рибосомы, а А-центр свободен и может связывать следующую аминоацил-тРНК, антикодон которой комплементарен кодону мРНК, находящемуся в А-центре рибосомы.
В ходе следующей фазы фазы элонгации происходит последовательное присоединение аминокислотных остатков к синтезируемой полипептидной цепи в направлении от ее N-конца к С-концу. Процесс элонгации идет циклически, причем в ходе цикла полипептидная цепь увеличивается на один аминокислотный остаток.
Цикл элонгации начинается с взаимодействия аминоацил-тРНК (Аа-тРНК), антикодон которой комплементарен кодону мРНК, находящемуся в А-центре рибосомы, с ГТФ и белковым фактором элонгации I (ФЭ-1):
Образовавшийся комплекс взаимодействует с рибосомой. В ходе взаимодействия тРНК с аминокислотой связывается в А-центре рибосомы так, что ее антикодон взаимодействует с кодоном мРНК. В результате в А-центре рибосомы оказывается А/а-тРНК, а в П-центре оказывается тРНК, несущая синтезируемую полипептидную цепь (или Мет-тРНК, если речь идет о первом цикле элонгации):
Под действием пептидилтрансферазы Т-центра рибосомы синтезируемая полипептидная цепь с тРНК, находящейся в П-центре рибосомы, переносится на NH2-группу аминокислоты, связанной с тРНК в А-центре рибосомы с образованием пептидной связи. Необходимая для образования пептидной связи энергия, высвобождается за счет разрыва макроэргической связи между аминокислотным остатком и тРНК.

После переноса пептидильного остатка свободная тРНК покидает П-центр рибосомы, а рибосома передвигается по мРНК в направлении ее 3'-конца на расстояние, равное одному кодону. В результате перемещения рибосомы в ее П-центре оказывается тРНК, несущая синтезируемый полипептид, а в ее А-центре следующий кодон матричной РНК. Рибосома готова к новому циклу элонгации. Количество циклов элонгации определяется количеством кодонов в зоне трансляции мРНК.
После многих циклов элонгации, в результате которых синтезируется полипептидная цепь того или иного белка, в А-центре рибосомы оказывается один из терминирующих кодонов: УАА, УГА, УАГ. Начинается следующая фаза фаза терминации транскрипции. Появление в А-центре терминирующего кодона узнается с помощью белковых высвобождающих факторов или R-факторов. R-факторы при участии ГТФ и пептидилтрансферазы Т-центра рибосомы гидролизуют связь между синтезированным полипептидом и тРНК, находящейся в П центре рибосомы. Синтезированный полипептид уходит с рибосомы. Далее из П-центра рибосомы уходит освобожденная от синтезированного полипептида тРНК, а затем рибосома покидает мРНК. Свободная рибосома диссоциирует на субъединицы и может начинать синтез новой полипептидной цепи.
Процессинг полипептидных цепей белков

Синтезированная в ходе транскрипции полипептидная цепь должна претерпеть ряд изменений, прежде чем она превратится в функционально полноценную белковую молекулу. Для разных белков характер этих превращений будет различным.
Наиболее общими механизмами процессинга являются:
отщепление от синтезированной полипептидной цепи N концевого остатка метионина;
формирование третичной структуры с образованием дисульфидных мостиков между HS-группами цистеиновых остатков.
химическая модификация аминокислотных остатков: гидроксилирование (превращение остатков пролина в гидроксипролин), метилирование (NH2-группы остатков лизина в гистонах), иодирование (остатки тирозина в составе тиреоглобулина) и др.
присоединение небелковых группировок при образовании сложных белков.
превращение пробелков в функционально активные молекулы путем отщепления от их полипептидных цепей строго определенной части молекулы - ингибиторного пептида. Данный механизм получил название ограниченный избирательный протеолиз. Например, пробелок трипсиноген превращается в каталитически активный трипсин или проинсулин превращается в инсулин.

ВЗАИМОСВЯЗЬ И РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ
60. Метаболизм как интегрированная система метаболических путей. Уровни взаимосвязи. Система центральных метаболических путей, ее биологическая роль.
В реальных клетках, органах и тканях все процессы интегрированы в единую систему, в которой нарушение работы одного из метаболических путей неизбежно сопровождается в качестве компенсаторной реакции перестройкой работы всей системы.
Можно выделить несколько уровней взаимосвязей обменных процессов: информационный, структурный, энергетический, уровень восстановительных эквивалентов или же уровень потока метаболитов
.Информационный уровень взаимосвязи
Говоря об информационном уровне взаимосвязи, имеют в виду, что в геноме клеток заложена информация о структуре, а следовательно, и о функциональной активности различных белков, принимающих участие в структурной и динамической организации живых систем.Принципиальная важность эффективного и правильного функционирования этого уровня взаимосвязи наглядно демонстрируется нарушениями метаболизма при том или ином генетическом дефекте возникает или то или иное наследственное заболевание, или врожденная предрасположенность к той или иной патологии.Структурный уровень взаимосвязи
Нормальное существование живых объектов, возможно лишь при определенном уровне их структурной организации. Интегрирующие функции присущи различным элементам клеточной структуры. Например мембраны выполняют разделительную функцию. Однако, всегда следует иметь ввиду, что мембранному аппарату клеток принадлежит важная роль в интеграции метаболизма, поскольку именно мембраны за счет контролируемой клеткой их избирательной проницаемости направляют поток веществ из одного компартмента в другой, связывая тем самым метаболические процессы, протекающие в разных отделах клетки. Более того, за счет изменения проницаемости мембран одно и тоже соединение может использоваться по разным направлениям, в зависимости от того, в каком компартменте клетки оно окажется
Энергетический уровень взаимосвязи и уровень восстановительных эквивалентов
Важная роль в интеграции клеточного метаболизма принадлежит соединениям с высоким термодинамическим потенциалом переноса атомов или атомных группировок. К ним, во-первых, относятся соединениям называемым макроэргами ( АТФ, ГТФ, креатинфосфат и др.), во-вторых, восстановленные формы коферментов НАД, НАДФ, тиоредоксин, адренодоксин и др.
Функционирование первой группы соединений связано с накоплением и переносом свободной энергии из цепей реакций, где она выделяется, в цепи реакций, где она используется. За счет этого переноса свободной энергии параллельно или последовательно идущие цепи реакции оказываются тесно связанными друг с другом. Соединения второй группы выступают в клетках в качестве переносчиков восстановительных эквивалентов, связывая в единое целое как последовательно, так и параллельно идущие метаболические процессы.
за счет наличия общих метаболитов и может осуществляться переключение потока вещества из одного метаболического пути в другой. Поскольку, с одной стороны, одно и то же соединение может быть узловым метаболитом для нескольких метаболических путей, а с другой стороны, в один и тот же метаболический путь может быть включено несколько узловых соединений, в клетках и в организме в целом создаются условия для формирования единой сети метаболических процессов
Если сопоставить все схемы взаимных превращений соединений различных классов, то становится достаточно очевидным, что в основе этих взаимных превращений лежит довольно узкий круг реакций, обеспечивающий переход углевод в липиды, аминокислот в углеводы и т.д. В этих реакциях преимущественно участвуют соединения, которые мы ранее назвали узловыми метаболитами или узловыми пунктами метаболизма. Набор этих реакций или система взаимных превращений узловых метаболитов известна под названием центральных метаболических путей. В систему центральных метаболических путей входят: превращение фосфотриоз в пируват, переход пирувата в оксалоацетат, окислительное декарбоксилирование пирувата в ацетилКоА, цикл трикарбоновых кислот Кребса, превращение оксалоацетата в фосфоенолпируват, а также три реакции связывания аммиака с образованием аланина, аспартата и глутамата, из которых лишь реакция образования глутамата играет существенную роль в клетках млекопитающих.
Эта группа метаболических путей составляет как бы стержень или остов метаболизма, на который надстраиваются все остальные обменные процессы. Наличие центральных метаболических путей в совокупности с конвергентным принципом организации катаболических процессов обеспечивает легкость перехода организма с одного типа питания на другой, увеличивая тем самым адаптационные возможности организма к изменяющимся условиям существования.
.
61. Ацетил-КоА как один из ключевых метаболитов клетки. Пути его образования и использования.
Ацетил-КоА, образующийся в процессе обмена углеводов, жиров и ряда аминокислот, служит пусковым субстратом как для синтеза жирных кислот, так и для ЦТК. Для окисления ацетил-КоА в этом цикле требуется оксалоацетат, который является вторым ключевым субстратом в ЦТК. Оксалоацетат может синтезироваться из пировиноградной кислоты и углекислого газа благодаря реакции карбоксилирования или образовываться из аспарагиновой кислоты путем трансаминирования. Две молекулы ацетил-коА конденсируясь образовывают ацетоуксусную кислоту, которая является источником бля кетоновых тел.
Эти же реакции конденсирования двух молекул ацетил-коА составляют начальные этапы синтеза холестерина, в свою очередь являющимся предшественником гормонов стероидной природы. Витамина Д3 и желчных кислот.

62. Гормоны, общая характеристика, химическая природа. Механизм действия гормонов белковой природы с цАмф в качестве «второго вестника».
ГОРМОНЫ - это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие.
Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами.
1) выделяются из вырабатывающих их клеток во внеклеточное пространство;
2) не являются структурными компонентами клеток и не используются как источник энергии.
3) способны специфически взаимодействовать с клетками, имеющими рецепторы для данного гормона.
4) обладают очень высокой биологической активностью.
Строение гормонов бывает разным. В настоящее время описано и выделено около 160 различных гормонов из разных многоклеточных организмов. По химическому строению гормоны можно классифицировать по трем классам:Белково-пептидные гормоны; Производные аминокислот; Стероидные гормоны
К гормонам, внутриклеточным мессенджером которых является цАМФ, относятся глюкагон, кортикотропин, вазопрессин, паратгормон, адреналин при его взаимодействии с (–адренорецепторами клеток и др.
После образования гормон-рецепторного комплекса происходит изменение конформации его цитоплазматического домена и последний приобретает способность к взаимодействию с локализованным в мембране Gs-белком.
Конформация Gs-белка изменяется, он теряет ГДФ и связывает в том же участке ГТФ и в таком виде приобретает способность к взаимодействию с аденилатциклазой. Аденилатциклаза переходит в активную форму и начинает синтезировать в цитозоле из АТФ - цАМФ.
цАМФ взаимодействует в клетке с ферментом цАМФ-зависимой протеинкиназой (или А-киназой). Неактивная протенкиназа представляет собой тетрамер, состоящий из 2 каталитических и 2 регуляторных субъединиц. При взаимодействии с цАМФ происходит диссоциация комплекса на регуляторные субъединицы, связанные с цАМФ, и свободные каталитические субъединицы, обладающие способность фосфорилировать различные внутриклеточные белки по остаткам серина или треонина.
Это фосфорилирование белков есть не что иное как ковалентная модификация, сопровождающаяся изменением их функциональной активности: меняется каталитическая активность ферментов, изменяется способность транспортных белков переносить свои лиганды через мембраны, а фосфорилирование белков, участвующих в работе механизмов, отвечающих за экспрессию генов, приводит к изменению и количеств отдельных белков в клетке. За счет этих изменений и формируется метаболический ответ клетки на воздействие гормона.
Следует отметить, что в наружных мембранах клеток имеются рецепторы, взаимодействие которых с соответствующим гормоном может сопровождаться снижением уровня цАМФ в клетке, ингибированием А-киназы и дефосфорилированием клеточных белков.
Так действует на клетки адреналин, через свои (2-адренэргические рецепторы. В этом случае образовавшийся гормон-рецепторный комплекс взаимодействует в мембране клетки с ингибиторным G-белком (Gi-белком). Активированный Gi-белок взаимодействует с аденилатциклазой, блокируя ее активность. Синтез цАМФ прекращается, а имеющаяся в клетке цАМФ расщепляется фосфодиэстеразой. В результате уровень цАМФ резко падает. Таким образом, один и тот же гормон адреналин в зависимости от типа рецепторов, имеющихся в наружной мембране клеток ((2-адренэргические или (-адренэргические рецепторы), может вызывать в клетках противоположные метаболические ответы.

63. Гомоны стероидной природы, их функции в организме. Механизм действия стероидных гормонов.
Гормоны стероидной природы обладают гидрофобными свойствами и могут проникать через наружную мембрану внутрь клеток. Связываясь со своими рецепторами в цитозоле или ядре, эти гормоны сами участвуют в формировании метаболического ответа клеток на внешний регуляторный сигнал, не нуждаясь в посредниках.
В основе структуры всех стероидных гормонов лежит лежит циклопентанпергидрофенантреновое ядро, имеющее в своем составе 17 атомов углерода и включающее в себя четыре цикла или кольца
Стероидные гормоны, проникая через наружную клеточную мембрану внутрь клетки, взаимодействуют в цитозоле со своими рецепторами. В рецепторе для любого стероидного гормона имеется три домена: С-концевой домен имеет в своей структуре центр, обеспечивающий связывание конкретного стероидного гормона; центральный домен обеспечивает связывание рецептора со специфическим участком ДНК в регуляторной зоне гена; N-концевой домен обеспечивает активацию или торможение транскрипции соответствующего гена.
В отсутствии гормона с центральным ДНК-связывающим доменом рецептора связан специальный белок-ингибитор, препятствующий проникновению рецептора в ядро через поры в ядерной мембране.
Связывание гормона с С-концевым доменом рецептора приводит к изменению конформации всей молекулы белка-рецептора, причем белок-ингибитор покидает рецептор. Это взаимодействие рецептора с гормоном получило название “активация рецептора”. Образовавшиеся гормон-рецепторные комплексы поступают в ядро, где и взаимодействуют с гормон-чувствительными сайтами в различных частях ДНК.
Ответ клетки на воздействие стероидного гормона часто двухстадийный.
На первом этапе под прямым влиянием гормон-рецепторных комплексов изменяется эффективность транскрипции небольшого количества генов, ответственных за синтез в клетке немногих регуляторных белков так называемый “первичный ответ”.
На втором этапе синтезированные регуляторные белки в свою очередь изменяют эффективность транскрипции других генов, в результате чего в клетке изменяется количество белков-ферментов, белков-переносчиков, структурных белков, отвечающих за формирование метаболического ответа клетки на воздействие гормона “вторичный ответ”.
В разных типах клеток один и тот же гормон может вызывать различные метаболические ответы. Дело в том, что каждый ген в клетке находится под контролем сразу нескольких регуляторных белков, одним из которых и является активированный стероидом рецептор. Поскольку в клетках разных типов гены находятся под контролем различных тканеспецифичных наборов белков-регуляторов, разные типы клеток и дают различный ответ на воздействие одного и того же гормона.

64. Гормоны передней доли гипофиза. Химическая природа гомонов, их регуляторные эффекты.
Соматотропин или гормон роста синтезируется в соматотрофах клетках передней доли гипофиза. По химической природе он представляет собой белок, состоящий из одной полипептидной цепи. В состав цепи входит 191 аминокислотный остаток.Концентрация гормона роста в передней доле гипофиза составляет 515 мг/г, что на несколько порядков выше, чем концентрация остальных гормонов. СТГ обладает выраженной видовой специфичностью, в связи с чем в клетках человека активность проявляет лишь соматотропин.
В свою очередь, под действием соматотропина в печени синтезируется гормон, получивший название ИФР1 инсулиноподобный фактор роста 1). Этот гормон опосредует ростстимулирующее действие соматотропного гормона.
Увеличение концентрации соматотропина в крови приводит к угнетению выделения соматолиберина гипоталамусом и, следовательно, к снижению продукции соматотропина гипофизом. Увеличение в крови концентрации ИФР1 также тормозит продукцию гипоталамусом соматолиберина, одновременно увеличивая выделение гипоталамусом соматостатина; с помощью этого механизма увеличение концентрации ИФР1 в крови приводит в конечном итоге к снижению поступления соматотропина из гипофиза в кровь. Соматотропин повышает содержание глюкозы в крови за счет нескольких эффектов. Вопервых, он снижает утилизацию глюкозы периферическими тканями, ингибируя гликолиз; вовторых , ряд авторов считает, что гормон снижает скорость транспорта глюкозы в клетки. В третьих, он стимулирует глюконеогенез в печени и увеличивает содержание гликогена в гепатоцитах. Следует также отметить, что ИФР1 стимулирует синтез гликозаминогликанов. Соматотропный гормон стимулирует липолиз в жировой ткани, увеличивая тем самым содержание высших жирных кислот в плазме крови и их поступление в клетки периферических тканей. Соматотропин при посредничестве ИРФ1, способствует положительному балансу кальция, магния и фосфата и вызывает задержку натрия, калия и хлора. Положительный баланс Са, Мg и Р, повидимому, связан со способностью соматотропина стимулировать рост длинных трубчатых костей.
Адренокортикотропный гормон. Молекула содержит 39 аминокислотных остатка. Предполагается наличие двух активных центра пептидной цепи, один из которых отвечает за связывание с рецептором, второй- за гомональный ответ. Повышает синтез глюкокортикоидов, минералокортикоидов в коре надпочечников. Так же нормализует тонус сосудов.
Фоллитропин и лютропин.фоллитропин вызывает сохревание фолликулов у самок и сперматогенез у самцов. Лютропин у самок стимулирует секрецию эстрогенов и прогестерона, а так же разрыв фолликулов и образование желтого тела. А у самцов секрецию тестостерона.
Так же выделяется пролактин и тиреотропный гормон, меланоцитостимулирующий.
65. Гормоны щитовидной железы. Общие представления о химической структуре, биосинтезе, влиянии на обмен веществ. Гипо- и гипертиреозы. Причины их возникновения.
Щитовидная железа вырабатывает два гормона 3,5,3трииодтиронин ( Т3) и 3,5,3,5тетраиодтиронин ( тироксин, Т4 ), играющие важную роль в регуляции общего метаболизма, развития и дифференцировки тканей. Образование этих гормонов происходит в ходе посттранскрипционного процессинга специфического белка тиреоглобулина, в ходе которого происходит органификация накапливающегося в клетках щитовидной железы иода.
Синтез иодированных тиронинов идет в клетках щитовидной железы тироцитах в составе белка иодтиреоглобулина. Иодтиреоглобулин представляет собой большой иодированный и гликолизилированный белок, состоящий из двух субъединиц. На долю углеводного компонента приходится 81% его общей массы, на долю иода от 0,2% до 1% общей массы в зависимости от содержания иода в пище. Он содержит 115 остатков тирозина, каждый из которых может быть иодирован. Около 70% иода входит в состав неактивных предшественников гормонов моноиодтирозина ( МИТ ) и дииодтирозина ( ДИД ), 30% в составе иодированных тиронинов Т3 и Т4. В состав молекулы иотиреоглобулина входит несколько молекул ( от 2 до 5 ) иодированных тиронинов, высвобождающихся при гидролизе белка. Отношение Т4/Т3 в в иодтиреоглобулине при достаточной обеспеченности организма иодом составляет 7:1.
Синтез тиреоглобулина происходит на рибосомах тироцита в базальной части клетки, далее в цистернах шероховатого эндоплазматического ретикулума, а затем в аппарате Гольджи происходит гликозилирование полипептидных цепей молекулы с присоединением порядка двух десятков олигосахаридных блоков. Сформированная молекула белка поступает путем экзоцитоза из апикальной части тироцита в фолликулярное пространство, где и происходит его иодирование.
Иод, необходимый для образования иодтиреоглобулина, поступает из плазмы крови в щитовидную железу в виде иона I путем активного транспорта с помощью так называемого I-насоса щитовидной железы, обеспечивающего в норме 25кратное повышение концентрации I в железе по сравнению с его концентрацией в плазме. Суточная потребность в иоде для взрослого человека составляет 150200 мкг.
В фолликулах щитовидной железы I при участии фермента тиреопероксидазы окисляется пероксидом водорода, поступающим из тироцитов, или до радикала I* или до I+. Окисленный иодид реагирует с тирозильными остатками тиреоглобулина, замещая атомы водорода в бензольном ядре, эта реакция называется органификацией иода.
Иодтиреоглобулин далее захватывается из фолликулов апикальной частью клеток путем пиноцитоза, далее он поступает в лизосомы, где подвергается гидролизу при участии кислых лизосомных протеиназ с выделением свободных Т3 и Т4. Образовавшиеся таким образом свободные гормоны путем облегченной диффузии поступают в ток крови и разносятся к органам и тканям.
Синтез и выделение иодированных тиронинов стимулируется тиреотропным гормоном (ТТГ) передней доли гипофиза. В свою очередь, выделение ТТГ контролируется гипоталамусом, вопервых, за счет выделения тиролиберина, стимулирующего выделение ТТГ гипофизом, и, вовторых, с помощью соматостатина, ингибирующего выделение ТТГ
Введение тироксина сопровождается развитием положительного азотистого баланса, увеличивает теплопродукцию и приводит к увеличению активности многих ферментных систем. К настоящему времени показано, что введение гормона приводит к повышению активности более 100 ферментов. Это увеличение активности большого числа ферментов скорее всего отражает резко выраженное стимулирующее действие гормона на синтез белка во многих органах и тканях.
Гипофункция щитовидной железы проявляется у людей в выраженном замедлении метаболических процессов, что проявляется, например, в снижении уровня основного обмена и температуры тела. Если гипотиреозом страдает новорожденный, то возникает кретинизм, характеризующийся в первую очередь карликовым ростом и задержкой умственного развития. При гипофункции щитовидной железы у взрослых развивается микседема. Для лиц с этой патологией характерны низкий уровень основного обмена, низкая частота сердечных сокращений, сонливость, вялость, сухость кожи и волос. У таких больных в крови снижен уровень тиреоидных гормонов, снижен уровень глюкозы, обычно увеличен уровень холестерола.
Гиперфункция щитовидной железы гипертиреоз характеризуется повышенной скоростью метаболических процессов: основной обмен выше нормы, у них наблюдается гипергликемия и глюкозурия, снижены показатели толерантности к глюкозе, у них наблюдается отрицательный азотистый баланс и гипохолестеринемия. Такие люди обычно легко возбудимы, у них часто увеличена щитовидная железа, повышена температура тела, характерным признаком является экзофтальмия.

66. Гормоны коркового слоя надпочечников: глюкокортикоиды, минералокортикоиды. Общие представления о химической структуре, биосинтезе, влиянии на обменные процессы.
Кора надпочечников выделяетдва основных класса стероидных гормонов в соответствии с их преобладающими регуляторными эффектами : глюкокортикоиды, минералокортикоиды. Основным глюкокортикоидом человека является кортизол: за сутки в надпочечниках синтезируется 1030 мг кортизола и 24 мг другого глюкокортикоида кортикостерона. Гормоны коры надпочечников, в особенности глюкокортикоиды, играют важную роль в адаптации к сильным стрессам
Глюкокортикоиды(кортикостерон, кортизон, гидрокортизон,11-дезоксикортизон). Минералокортикоиды (дезоксикортикостерон и альдостерон).
Основной путь биосинтеза кортикостероидов включает последовательное ферментативное превращение холестерина в прегнеолон, 17-оксипрегнеолон, 21-оксипрегнеолон и прогестерон. Ферменты осуществляют три последовательные реакции гидроксилирования и реакцию отщепления боковой цепи холестерина.
Первым этапом синтеза кортизола, как и других кортикостероидов, является укорочение боковой цепи холестерола при С17 с отщеплением углеродного фрагмента и образованием прегненолона. Это превращение холестерола катализируется митохондриальным ферментом цитохромом Р450 , отщепляющим боковую цепь (Р450обц), иначе этот фермент часто именуется десмолазой холестерола. Активность этого фермента стимулируется АКТГ.В качестве окислителя в гидроксилазных реакция используется О2 , косубстратом служит НАДФН+Н+. Превращение холестерола в прегненолон происходит в митохондриях, переход прегненолона в 11дезоксикортизол в эндоплазматическом ретикулуме и, наконец, переход 11дезоксикортизола в кортизол вновь осуществляется в митохондриях.
Стероидные гормоны практически не накапливаются в клетках коры надпочечников и секретируются в кровь по мере их синтеза.
Глюкокортикоиды оказывают разностороннее влияние на обмен веществ в разных тканях. Проявляют катаболическое действие и выхывают снижение проницаемости клеточных мембран и соответственно торможение поглощения глюкозы и аминокислот. Конечным итогом действия глюкокортикоидов является развитием гипергликемии, обусловленным глюконеогенезоми и снижением синтеза гликогена в мышцах, торможение окисления глюкозы в тканях и усиление распада жиров.
Минералокортикоиды главным образом регулируют содержание солей натрия, калия , хлора и воды. Они способствуют удержанию ионов натрия и хлора и выведению смочой ионов калия.

67. Гормоны поджелудочной железы: инсулин, глюкагон. Их химическая природа и влияние на обменные процессы.
Глюкагон представляет собой гормон полипептидной природы, выделяемый a-клетками поджелудочной железы
В состав полипептидной цепи глюкагона входит 29 аминокислотных остатков.Основным местом синтеза глюкагона являются a-клетки поджелудочной железы, однако довольно большие количества этого гормона образуются и в других органах желудочнокишечного тракта.
Синтезируется глюкагон на рибосомах aклеток в виде более длинного предшественника. В ходе процессинга происходит существенное укорочение полипептидной цепи,после чего глюкагон секретируется в кровь. В крови он находится в свободной форме. Период его полужизни равняется примерно 5 минутам. Основная часть глюкагона инактивируется в печени путем гидролитического отщепления 2 аминокислотных остатков с Nконца молекулы.
Рецепторы для гормона локализованы в наружной клеточной мембране. Образование гормонрецепторных комплексов сопровождается активацией аденилатциклазы и увеличением в клетках концентрации цАМФ, сопровождающимся активацией протеинкиназы и фосфорилированием белков с изменением функциональной активности последних.
Под действием глюкагона в гепатоцитах ускоряется мобилизация гликогена с выходом глюкозы в кровь. Следует заметить, что глюкагон, в отличие от адреналина, не оказывает влияния на скорость гликогенолиза в мышцах.Глюкагон активирует процесс глюконеогенеза в гепатоцитах. Глюкагон стимулирует липолиз в липоцитах, увеличивая тем самым поступление в кровь глицерола и высших жирных кислот. В печени гормон тормозит синтез жирных кислот и холестерола из ацетилКоА. Таким образом, глюкагон стимулирует кетогенез. В почках глюкагон увеличивает клубочковую фильтрацию.
Инсулин относится к гормонам белковой природы. Он синтезируется b-клетками поджелудочной железы. Инсулин является одним из важнейших анаболических гормонов. Связывание инсулина с клетками-мишенями приводит к процессам, которые увеличивают скорость синтеза белка, а также накопление в клетках гликогена и липидов, являющихся резервом пластического и энергетического материала.
Молекула инсулина состоит из двух полипептидных цепей А-цепи и В-цепи. В состав А-цепи входит 21 аминокислотный остаток, в состав В-цепи 30. Эти цепи связаны между собой двумя дисульфидными мостиками: один между А7 и В7, второй между А20 и В19. Третий дисульфидный мостик находится в цепи А, связывая А6 и А11..
Синтез инсулина в b-клетках поджелудочной железы начинается в шероховатом эндоплазматическом ретикулууме, причем на рибосомах образуется молекула предшественника препроинсулина, имеющего в своем составе 104 аминокислотных остатка. Затем в цистернах этой органеллы с Nконца отщепляется членная лидерная последовательность и образуется проинсулин с молекулярной массой 9 000, содержащий 81 аминокислотных остатков. В составе проинсулина происходит формирование всех дисульфидных мостиков будущей молекулы инсулина. Проинсулин поступает в аппарат Гольджи, в котором под действием двух различных протеиназ из средней части молекулы проинсулина отщепляется С-пептид и 4 дополнительных аминокислотных.
Сформированные молекулы инсулина вместе со свободными молекулами Спептида упаковываются в гранулы. В составе гранул молекулы инсулина образуют кристаллические структуры, в которых на каждые 6 молекул инсулина приходится 2 атома цинка
Инсулин переносится кровью в свободном виде, причем биологической активностью обладает только мономер. Спептид, также оказывающийся в русле крови, биологической активностью не обладает. Продолжительность периода «полужизни» молекул инсулина составляет 35 минут, его концентрация в сывортке 0,0290,18 нМ/л
Влияние инсулина на обмен углеводов можно охарактеризовать следующими эффектами:
1.Инсулин увеличивает проницаемость клеточных мембран для глюкозы в так называемых инсулинзависимых тканях за счет увеличения количества белкапереносчика в мембранах клеток. В 2.Инсулин активирует окислительный распад глюкозы в клетках за счет повышения активности ряда ферментов, таких как глюкокиназа, фосфофруктокиназа, пируваткиназа и др.
3.Инсулин ингибирует распад гликогена и активирует его синтез в гепатоцитах.
4.Инсулин стимулирует превращение глюкозы в резервные триглицериды.
5.Инсулин ингибирует глюконеогенез.
Инсулин оказывает анаболическое действие на обмен белков. Инсулин стимулирует пролиферацию и рост многих клеток, однако биохимические механизмы, лежащие в основе этих эффектов, не выяснены, возможно, этот эффект связан с анаболическим действием гормона.

68. Адреналин, норадреналин. Из образование и влияние на обмен веществ.
Хромафинные клетки мозгового вещества надпочечников продуцируют группу биологически активных веществ катехоламинов, к числу которых относятся адреналин, норадреналин и дофамин, играющие важную роль в адаптации организма к острым и хроническим стрессам. В ходе развития этой реакции в организме происходит экстренная мобилизация энергетических ресурсов: ускоряется липолиз в жировой ткани, активируется гликогенез в печени, стимулируется гликогенолиз в мышцах.
Все катехоламины синтезируются из аминокислоты тирозина. Синтез начинается с превращения тирозина в дигидроксифенилаланин (ДОФА), реакция катализируется ферментом тирозингидроксилазой. Простетической группой фермента является тетрагидробиоптерин.
Фермент тирозингидроксилаза играет важную роль в синтезе катехоламинов, поскольку, вопервых, именно этот фермент лимитирует скорость синтеза в целом, вовторых, он является регуляторным ферментом. Активность тирозингидроксилазы угнетается по конкурентному механизму высокими концентрациями катехоламинов (катехоламины способны связываться с тетрагидроптеридином с образованием неактивного производного ); кроме того, активность фермента может регулироваться путем его ковалентной модификации фосфорилирование увеличивает активность фермента.
В ходе следующей реакции ДОФА подвергается декарбоксилированию при участии фермента ДОФАдекарбоксилазы, простетической группой этого фермента служит пиридоксальфосфат. Далее при участии фермента ДОФамин-b-гидроксилазы ДОФамин превращается в норадреналин.
В ходе окисления в качестве донора электронов ( косубстрат реакции) используется аскорбиновая кислота.
В заключительной реакции идет метилирование норадреналина по аминогруппе с превращением его в адреналин, в качестве донора метильной группы используется Sаденозилметионин. Реакция катализируется ферментом фенилэтаноламинNметилтрансферазой (ФNMT):
При синтезе адреналина гидроксилирование тирозина и превращение ДОФА в ДОФамин происходят в цитозоле клеток мозгового вещества надпочечников. Затем ДОФамин поступает в гранулы, где он превращается в норадреналин. Большая часть норадреналина покидает гранулы и метилируется в цитозоле в адреналин, последний затем поступает в другую группу гранул, где и сохраняется до высвобождения.
Продолжительность существования адреналина в русле крови измеряется временем порядка 10 30 секунд; его концентрация в плазме крови в норме не превышает 0,1 мкг/л ( менее 0,55 нМ/л ). Инактивация адреналина, как и других катехоламинов, может идти путем их окислительного дезаминирования. Основными конечными продуктами инактивации адреналина, выделяющимися с мочой, являются метанефрин и ванилинминдальная кислота. .
Адреналин оказывает свое действие на клетки различных органов и тканей через 4 варианта рецепторов: вопервых, это a1 и a2 адренэргические рецепторы, вовторых, b1 и b2адренэргические рецепторы. Адреналин может взаимодействовать с любыми из этих рецепторов, поэтому его действие на ткань, содержащую различные варианты рецепторов, будет зависеть от относительного сродства этих рецепторов к гормону. Норадреналин может взаимодействовать только с a-рецепторами.
В случае действия адреналина через b2рецепторы идет стимуляция расщепления гликогена в печени с выходом глюкозы в кровяное русло, одновременно идет небольшая стимуляция глюконеогенеза в гепатоцитах. В мышцах через b2рецепторы адреналин стимулирует гликогенолиз. Через этот тип рецепторов адреналин повышает секрецию инсулина и глюкагона в поджелудочной железе или секрецию ренина в почках. В тоже время стимуляция липолиза в липоцитах осуществляется адреналином через b1рецепторы. В свою очередь, через взаимодействие с a2рецепторами катехоламины могут ингибировать липолиз, выделение инсулина и выделение ренина.
Адреналину приписывают в основном метаболические эффекты, тогда как норадреналину регуляцию сосудистого тонуса, хотя адреналин также может сильно влиять на состояние тонуса гладкомышечных элементов, причем может наблюдаться как расслабление так и сокращение в зависимости от типа рецепторов, через которые действует в конкретном случае гормон.

БИОХИМИЯ ПОЛОСТИ РТА

69. Функции и обмен кальция в организме человека. Содержание кальция в крови, гипо- и гиперфосфатемии.
Функции кальция: структурная (кости, зубы); сигнальная (внутриклеточный вторичный мессенджер-посредник); ферментативная (кофермент факторов свертывания крови); нейромышечная (контроль возбудимости, инициация мышечного сокращения). Главная роль в метаболизме кальция в организме человека принадлежит костной ткани. В костях кальций представлен фосфатами  Са3(РО4)2, карбонатами  СаСО3, солями органических кислот  лимонной и молочной. Вне скелета кальций содержится во внеклеточной жидкости и практически отсутствует в клетках. В состав плотного матрикса кости, наряду с коллагеном, входит фосфат кальция  кристаллическое минеральное соединение, близкое к гидроксилапатиту. Часть ионов Са2+ замещена ионами Mg2+, незначительная часть ионов ОН–  ионами фтора, которые повышают прочность кости. Минеральные компоненты костной ткани находятся в состоянии химического равновесия с ионами кальция и фосфата сыворотки крови. В крови уровень кальция  9-11 мг/100 мл, во внеклеточной жидкости  около 20 мг/100 мл. Регуляция обмена кальция между вне- и внутриклеточной жидкостью осуществляется паратгормоном, кальцитонином. При уменьшении концентрации ионов кальция возрастает секреция паратиреотропного гормона (ПТГ), и остеокласты увеличивают растворение содержащихся в костях минеральных соединений. ПТГ увеличивает одновременно реабсорбцию ионов Са2+ в почечных канальцах. В итоге повышается уровень кальция в сыворотке крови. При увеличении содержания ионов кальция секретируется кальцитонин, который снижает концентрацию ионов Са2+ за счет отложения кальция в результате деятельности остеобластов. В процессе регуляции участвует витамин D, он требуется для синтеза кальцийсвязывающих белков, необходимых для всасывания ионов Са2+ в кишечнике, реабсорбции его в почках. Постоянное поступление витамина D необходимо для нормального течения процессов кальцификации. Изменение уровня кальция в крови могут вызывать тироксин, андрогены, которые повышают содержание ионов Са2+, и глюкокортикоиды, снижающие его. Ионы Са2+ связывают многие белки, в том числе некоторые белки системы свертывания крови. В белках системы свертывания содержатся кальций-связывающие участки, образование которых зависит от витамина К. Ионы кальция важны для течения многих процессов: нервно-мышечного возбуждения; мышечного сокращения; свертывания крови; проницаемости клеточных мембран; активности многих ферментов и перекисного окисления липидов.
   Гиперкальциемия  результат повышенного поступления кальция во внеклеточную жидкость из резорбируемой костной ткани или из пищи в условиях снижения почечной реабсорбции. Наиболее частой причиной гиперкальциемии (90% случаев) являются первичный гиперпаратиреоз, злокачественные новообразования. К клиническим симптомам гиперкальциемии относятся: отсутствие аппетита, тошнота, слабость, утомляемость, снижение массы тела, мышечная слабость, ухудшение концентрации внимания.   Наиболее частой причиной снижения общей концентрации кальция в сыворотке является гипоальбуминемия. Обмен кальция в организме не нарушается, если содержание свободного кальция находится в пределах нормы. Концентрация свободного кальция в сыворотке снижается при гипопаратиреозе, резистентности к паратиреоидному гормону (псевдогипопаратиреозе), авитаминозе D, почечной недостаточности, остром панкреатите, некрозе скелетных мышц (рабдомиолизе). К клиническим проявлениям гипокальциемии относятся: парестезии, чувство онемения, судороги мышц, спазм гортани, отклонения в поведении, удлинение интервала Q-T на ЭКГ, катаракта. Умеренная гипокальциемия может быть бессимптомной. Гиперкальциурия развивается при повышенном потреблении кальция с пищей, передозировке витамина D (усиливается резорбция в кишечнике), канальцевых расстройствах (идиопатическая гиперкальциурия, почечные тубулярные ацидозы), при повышенном распаде костной ткани (миеломная болезнь, опухоли костной ткани, фосфатный диабет, остеопороз, гиперпаратиреоз).
Гипокальциурия наблюдается при гипопаратиреозе, гиповитаминозе D, гипокальциемии, снижении клубочковой фильтрации.
70. Функции и обмен фосфора в организме. Содержание фосфора в крови, гипо- и гиперфосфатемии.
В организме взрослого человека содержится около 670 г фосфора (1% массы тела), который необходим для образования костей и клеточного энергетического обмена. 90% фосфора, подобно кальцию, находится в скелете  костях и зубах. Вместе с кальцием они составляют основу твердого вещества кости. В костях фосфор представлен трудно растворимым фосфатом кальция (2/3) и растворимыми соединениями (1/3). Большая часть остального количества фосфора находится внутри клеток, 1%  во внеклеточной жидкости.
Фосфаты являются структурными элементами костной ткани, участвуют в переносе энергии в виде макроэргических связей (АТФ, АДФ, креатинфосфат, гуанинфосфат и других). Фосфор и сера  два элемента в организме человека, которые входят в состав различных макроэргических соединений. С участием фосфорной кислоты осуществляется гликолиз, гликогенез, обмен жиров. Фосфор входит в структуру ДНК, РНК, обеспечивающих синтез белка. Он участвует в окислительном фосфорилировании, в результате которого образуется АТФ, фосфорилировании некоторых витаминов (тиамина, пиридоксина и других). Фосфор важен также для функционирования мышечной ткани (скелетной мускулатуры и сердечной мышцы). Неорганические фосфаты входят в состав буферных систем плазмы и тканевой жидкости. Фосфор активирует всасывание ионов кальция в кишечнике. Суточная потребность в фосфоре составляет 30 ммоль (900 мг), у беременных она возрастает на 30-40%, в период лактации  в два раза. Потребность в фосфоре у взрослых  1600 мг в сутки, у детей  1500-1800 мг в сутки.
Всосавшийся фосфор поступает в печень, участвует в процессах фосфорилирования, частично откладывается в виде минеральных солей, которые затем переходят в кровь и используются костной и мышечной тканью (синтезируется креатинфосфат). От обмена фосфатов между кровью и костной тканью зависит нормальное течение процессов окостенения, поддержания нормальной костной структуры.
В крови фосфор находится в виде четырех соединений: неорганического фосфата, органических фосфорных эфиров, фосфолипидов и свободных нуклеотидов. Содержание неорганического фосфора в плазме крови взрослых людей  3,5-4 мг фосфора/100 мл, несколько выше оно у детей (4-5 мг/100мл) и у женщин после менопаузы.
Паратиреоидный гормон снижает уровень фосфора в сыворотке крови, угнетая реабсорбцию его в проксимальных и дистальных канальцах, усиливая выведение с мочой. Кальцитонин оказывает гипофосфатемическое действие, уменьшая реабсорцию и усиливая экскрецию. Инсулин стимулирует поступление фосфата в клетки и тем самым снижает его содержание в сыворотке крови. Гормон роста увеличивает реабсорбцию фосфатов, вазопрессин  экскрецию.
Гиперфосфатемия часто наблюдается при почечной недостаточности, встречается при гипопаратиреозе, псевдогипопаратиреозе, рабдомиолизе, распаде опухолей, метаболическом и респираторном ацидозе. Гиперфосфатемия подавляет гидроксилирование 25-гидроксикальциферола в почках. Тяжелая гипофосфатемия сопровождается нарушением функции эритроцитов, лейкоцитов, мышечной слабостью. Хроническая гипофосфатемия приводит к рахиту и остеомаляции.
Гипофосфатемия проявляется потерей аппетита, недомоганием, слабостью, парестезиями в конечностях, болью в костях. Гипофосфатурия наблюдается при остеопорозе, гипофосфатемическом почечном рахите, инфекционных заболеваниях, острой желтой атрофии печени, снижении клубочковой фильтрации, повышенной реабсорбции фосфора (при гипосекреции ПТГ).
71. Гормональная регуляция фосфорно-кальциевого обмена. Роль паратгормона, кальцитонина и кальцитриола.      
Важнейшую роль в регуляции содержания Са2+ в крови играет паратгормон. Он повышает уровень Са2+ в крови в результате воздействия на кишечник, кости и почки. Паратгормон повышает скорость растворения кости, т.е. вымывание из нее как органических так и неорганических компонентов, что обеспечивает переход кальция во внеклеточную жидкость и его поступление в кровь. Паратгормон снижает выведение кальция с мочой, стимулируя его реабсорбцию, причем под влиянием паратгормона уровень реабсорбции Са2+ из первичной мочи может достигать 98 и более процентов. Паратгормон стимулирует также образование в почках 1,25дигидроксихолекальциферола, косвенным образом через наработку этого производного витамина Д увеличивая эффективность всасывания кальция в кишечнике.
Кальцитонин, выделяемый парафолликулярными Кклетками щитовидной железы, тормозит резорбцию матрикса кости и тем самым снижает высвобождение из кости кальция и фосфата. Одновременно кальцитонин оказывает стимулирующий эффект на поступление в клетки кости и периостальную жидкость фосфата, сопровождающееся и входом в них кальция. Совместное действие этих механизмов и приводит к результирующему эффекту снижению содержания Са2+ в крови.
Основным эффектом кальцитриола является стимуляция всасывания Са2+ в кишечнике
       Обмен неорганического фосфора в организме контролируется гормонами: паратгормоном,кальцитонином и кальцитриолом. Паратгормон, под действием которого стимулируется резорбция кости, вызывает мобилизацию фосфора из костной ткани, в то же время паратгормон угнетает реабсорбцию фосфатов в канальцевом аппарате нефронов. Кальцитонин, наоборот, стимулирует вход фосфата в периостальную жидкость и клетки кости, способствуя тем самым отложению фосфата вместе с кальцием в костной ткани. Кальцитриол усиливает всасывание неорганического фосфата в кишечнике, он также оказывает влияние на отложение фосфора в костной ткани, однако механизм последнего эффекта остается не выясненным.
    Гипокальциемия стимулирует секрецию паратиреоидного гормона и тем самым увеличивает продукцию кальцитриола. В результате увеличивается мобилизация кальция и фосфатов из костей, их поступление из кишечника. Избыток фосфатов экскретируется с мочой (ПТГ оказывает фосфатурическое действие), а реабсорбция кальция в почечных канальцах возрастает, и концентрация его в крови нормализуется. Гипофосфатемия сопровождается усилением секреции только кальцитриола. Увеличение под действием кальцитриола его концентрации в плазме приводит к снижению секреции паратиреоидного гормона. Гипофосфатемия приводит к стимуляции абсорбции фосфата и кальция в кишечнике. Избыток кальция выводится с мочой, так как кальцитриол усиливает реабсорбцию кальция в незначительной мере (по сравнению с ПТГ). В результате описанных процессов нормальная концентрация фосфата в плазме крови восстанавливается независимо от концентрации кальция.
72. Волокнистые структуры соединительной ткани. Коллаген как главный белок коллагеновых волокон., особенности аминокислотного состава и структурной организации молекулы тропоколлагена., структура коллагенового волокна. Многообразие типов коллагена.
             В межклеточном матриксе находятся 2 типа волокнистых структур: КОЛЛАГЕНОВЫЕ и ЭЛАСТИНОВЫЕ ВОЛОКНА. Основным их компонентом является нерастворимый белок КОЛЛАГЕН. Молекула тропоколлагена это белок коллаген. КОЛЛАГЕН - сложный белок, относится к группе гликопротеинов, имеет четвертичную структуру, его молекулярная масса составляет 300 kDa. Составляет 30% от общего количества белка в организме человека. Его фибриллярная структура - это спираль, состоящая из 3-х альфа-цепей. Выявлено около 30 различных видов цепей различающихся по аминокислотному состау. Сочетание а-цепей позволяет формировать различные типы коллагена. Нерастворим в воде, солевых растворах, в слабых растворах кислот и щелочей. Это связано с особенностями первичной структуры коллагена. В коллагене 70% аминокислот являются гидрофобными. Аминокислоты по длине полипептидной цепи расположены группами (триадами), сходными друг с другом по строению, состоящими из трех аминокислот. Каждая третья аминокислота в первичной структуре коллагена - это глицин. аминокислотные группы в полипептидной цепи многократно повторяются. Необычна и вторичная структура коллагена: шаг одного витка спирали составляют только 3 аминокислоты (даже немного меньше, чем 3), а не 3.6 аминокислоты на 1 виток, как это наблюдается у других белков. Такая плотная упаковка спирали объясняется присутствием глицина. Эта особенность определяет высшие структуры коллагена. Молекула коллагена построена из 3-х цепей и представляет собой тройную спираль. Эта тройная спираль состоит из 2-х альфа-1-цепей и одной альфа-2-цепи. В каждой цепи 1.000 аминокислотных остатков. Цепи параллельны и имеют необычную укладку в пространстве: снаружи расположены все радикалы гидрофобных аминокислот. Известно несколько типов коллагена, различающихся генетически.

73. соотношение воды, орган
Какое строение минерал компонентов эмали. Виды апатитов.
Прочность и высокая плотность эмали объясняется высоким содержанием в ней минеральных компонентов примерно 95% на сухой вес. Минеральный компонент ткани представлен кристаллами гидроксиапатитов, карбонатапатитов, хлорапатитов, фторапатитов, цитратапатитов – кристаллиты. Из них превалирует более 70 гидроксиапатитов. Каждая кристаллическая решетка сост. из 18 ионов. Кристаллы гидроксиапатита в эмали значительно крупнее, чем в эмали, дентине и костях и расположены пучками.
В эмали также содержится около 2% неапатитных кристаллов – октокальцийфосфат, дикальцийфосфат и фосфат кальция.
Кристаллы гидроксиапатита имеют 6-гональную форму и размеры от 20*3-20*7 нм.
Поверхность всех кристаллитов костей и зубов составляет примерно 2 кв. км. В настоящее время минерализованные ткани рассматривают как ионообменные системы, кристаллы которых имеют
3 зоны:1.Внутреннюю2.Наружную (или поверхностную)3.Гидратную оболочку
Каждая из этих зон доступна для ионного обмена в различной степени. Практически любой ион из смешанной слюны, может проникать через гидратную оболочку, но только некоторые в ней концентрируются.
Более специфические ионы, такие как стронций, барий, магний, хром, кадмий, фтор могут проникать через поверхностную зону гидроксиапатитов и внедряться во внутреннюю зону кристаллов - остеотропы.



74. Особенности аминокислотного состава эластина и структурной организации эластических волокон. Общее представление об обмене эластина. Специфические маркеры деградации эластина.
Эластин - своеобразный белок, отличающийся от коллагена не только по электронномикроскопическим и гистохимическим характеристикам, но и по химическому составу и молекулярной структуре.
С одной стороны, первичная структура эластина имеет некоторые общие черты с первичной структурой коллагена. Почти таким же, как в коллагене, является содержание глицина (около 1/3 общего числа аминокислотных остатков) и пролина. Общим для эластина и коллагена является наличие оксипролина, хотя количество оксипролильных остатков в эластине примерно в 10 раз меньше, чем в коллагене. Как и в коллагене, в эластине содержится крайне мало цистина, метионина, гистидина и отсутствует триптофан.
Вместе с тем, по своему аминокислотному составу эластин обладает весьма существенными отличиями от коллагена. Он содержит значительно меньше аспарагиновой и глутаминовой кислот и аргинина, а также гораздо больше валина и аланина. Отсутствие триптофана, малые количества цистина и метионина, высокое содержание валина и низкое, по сравнению с коллагеном, содержание оксипролина являются четкими критериями для идентификации этого белка в различных образцах соединительной ткани.
Главной особенностью эластина, отличающей его от всех других белков, является исключительная насыщенность первичной структуры неполярными аминокислотами: около 90% аминокислотных остатков обладают неполярными боковыми группами, лишь 2-3% приходится на долю положительно заряженных остатков аминокислот, таких, как лизин и аргинин, и 6-7 % - на долю аминокислот с отрицательно заряженными остатками боковых цепей (глутаминовой и аспарагиновой). В этом и заключается специфичность аминокислотного состава эластина, которая обусловливает его инертность по отношению к воде и различным химическим реагентам. Эластин во много раз меньше набухает в воде по сравнению с коллагеном, довольно устойчив к гидротермическим воздействиям и не обнаруживает эффекта денатурации в процессе нагревания.
Первичная структура эластина расшифрована пока еще далеко не полностью. Установить последовательность остатков удалось лишь в небольших пептидных фрагментах молекулы растворимого предшественника зрелого эластина - тропоэластина. При этом были обнаружены несвойственные другим белкам последовательности, например, тетрапептид ГЛИ-ГЛИ-ВАЛ-ПРО-, пентапептид ПРО-ГЛИ-ВАЛ-ГЛИ-ВАЛ-, гексапептид ПРО-ГЛИ-ВАЛ-ГЛИ-ВАЛ-АЛА-. Найдены были также остатки аланина, связанные с остатками лизина: АЛА-АЛА-ЛИЗ- и АЛА-АЛА-АЛА-ЛИЗ. Во фрагментах молекул зрелого эластина, содержащих лизин, и полученных путем последовательной обработки эластинсодержащих тканей эластазой, папаином, карбоксипептидазой, были обнаружены необычные для других белков соединения - десмозины. Было установлено, что эти компоненты формируются в результате конденсации четырех остатков лизина. Молекулярные цепи эластина имеют очень большую длину. Подтверждением этому служит тот факт, что в 105 г эластина содержится только 0,29 моль N-концевых аминокислотных остатков. Предполагают, что длинные молекулярные цепи в эластине связаны между собой редкими межмолекулярными связями. По мнению ряда авторов, это обусловлено чрезвычайной бедностью первичной структуры эластина полярными (основными и кислотными остатками). Несомненно, эта особенность имеет отношение к основному механическому свойству эластина, поскольку обратная деформируемость фибриллярного белка возможна только при том условии, что отдельные фибриллы могут обладать достаточной кинетической свободой по отношению друг к другу.

75. Гликозаминогликаны и гликозаминопротеогликаны соединительной ткани. Их структура и выполняемые функции, особенности метаболизма. Химическая структура и роль фибронектина.
В соединительной ткани различают: МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО, КЛЕТОЧНЫЕ ЭЛЕМЕНТЫ, ВОЛОКНИСТЫЕ СТРУКТУРЫ (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.
Желеобразная консистенция основного вещества объясняется его составом. Основное вещество - это сильно гидратированный гель, который образован высокомолекулярными соединениями, составляющими до 30% массы межклеточного вещества. Оставшиеся 70% - это вода.
Высокомолекулярные компоненты представлены белками и углеводами. Углеводы по своему строению являются гетерополисахаридами - ГЛЮКОЗОАМИНОГЛИКАНЫ (ГАГ). Эти гетерополисахариды построены из дисахаридных единиц, которые и являются их мономерами.
По строению мономеров различают 7 типов ГАГ: Гиалуроновая кислота, Хондроитин-4-сульфат, Хондроитин-6-сульфат, Дерматансульфат, Кератансульфат ,Гепарансульфат, Гепарин
Мономеры различных ГАГ построены по одному принципу. Во первых, в их состав входят гексуроновые кислоты: бета-D-глюкуроновая кислота, бета-L-идуроновая кислота. В некоторых ГАГ вместо бета-D-глюкуроновой кислоты встречается бета-D-галактоза
Вторым компонентом мономера ГАГ является амин. Гексозамины представлены глюкозамином и галактозамином, а чаще их ацетильными производными: бета-D-N-ацетилглюкозамином, бета-D-N-ацетилгалактозамином.
В составе мономера гексуроновая кислота и гексозамин соединяются 1,3-бета-гликозидной связью. Исключение - гепарин (у него 1,3-альфа-гликозидная связь). Между мономерами 1,4-бета-гликозидная связь (гепарин - 1,4-альфа-гликозидная связь) Различаются ГАГ строением мономеров, их количеством, связями между ними.
Белковый компонент - это особый COR-белок. К нему при помощи трисахаридов присоединяются ГАГ. 1 молекула COR-белка может присоединить до 100 ГАГ.
В клетке протеогликаны связаны с гиалуроновой кислотой. Образуется сложный надмолекулярный комплекс. В его составе: гиалуроновая кислота, особые связующие белки, а также протеогликаны. Упругие цепи ГАГ в составе протеогликанов образуют образуют макромолекулярные сетчатые структуры. Такое химическое строение обеспечивает выполнение функции молекулярного сита с определенными размерами пор при транспорте различных веществ и метаболитов. Размер пор определяется типом ГАГ, преобладающим в данной конкретной ткани.
ГЛИКОПРОТЕИНЫ. Их углеводный компонент - это олигосахарид, состоящий 10 - 15 мономерных единиц. Этими мономерными единицами могут быть в основном минорные моносахариды: манноза, метилпентозы рамноза и фукоза, арабиноза, ксилоза. На конце этого олигосахарида имеется еще одно производное моносахаридов: сиаловые кислоты..ГЛИКОПРОТЕИНЫ делят на2группы:1.Растворимые2. Нерастворимые.
Углеводная часть гликопротеинов очень вариабельна. Важное значение имеет последовательность моносахаридов, как и последовательность аминокислот в белковой части.
Из гликопротеинов наиболее изучены растворимый фибронектин и нерастворимый ламинин.
РАСТВОРИМЫЕ гликопротеины представлены особым белком - ФИБРОНЕКТИНом. Молекулярная масса фибронектина - 440 kDa. Он состоит из двух полипептидных цепей, соединенных дисульфидным мостиком. Имеет центры связывания с протеогликанами, с волокнистыми структурами, гликолипидами клеточных мембран. Поэтому фибронектин называют "молекулярным клеем". Он обычно располагается на поверхности фибробластов и участвует в адгезии всех перечисленных клеточных структур, а, значит, и клеток. Известно, что при опухолевых заболеваниях количество фибронектина снижается, что способствует метастазированию опухоли.
К растворимым гликопротеинам также относятся COR-белок - компонент протеогликанов, связующие белки, а также целый ряд белков плазмы крови.
НЕРАСТВОРИМЫЕ гликопротеины образуют "каркас", "строму" межклеточного матрикса.
К нерастворимым гликопротеинам относится ЛАМИНИН. Молекулярная масса этого белка - 10000 kDa. Содержит такие же углеводные компоненты, как и ганглиозиды клеточных мембран.
Углеводные компоненты гликопротеинов также, как и углеводные компоненты гликопротеинов обладают свойствами тканевых антигенов.

76. Химический состав кости. Белки кости, их роль в минерализации.
Кости по праву считаю своеобразным депо минеральных веществ в организме. Здесь содержится примерно 99% Са, 87% Р, 50%Mg, 46%Na. В компактом веществе костей содержится в среднем 70% неорганических веществ, 20% органических и 10% воды. В губчатой кости соотношение иное: минеральные компоненты составляют 35-40%. органические 50-55% и вода 10-15%. Более 95% органического матрикса кости приходится на фибршшярный белок коллаген I типа. Коллаген костей имеет большое сходство с коллагеном мягких тканей: близость аминокислотного состава, идентичность строения полипептидкых цепей, однако здесь есть различия: а - больше оксилюиновых остатков, отсюда особая прочность поперечных сшивок.
б - серин чаще присутствует в виде фосфосерина.
в - в коллагеновые волокна входят так же пептиды богатые аспартатом и глутоматом.
Наличие фосфора а так же этих необычных пептидов считают, что имеют огромную значимость в процессах минерализации кости. Матрикс содержит так же примерно 16% неколлагеновых, специфичных для костной ткани белков: костный морфогенетический белок, глутоматные белки, связывающие Са, остеопонтин (фосфопротеин) остеокальцин, минералсвязывающие протеогликаны. В костной ткани всегда содержится альбумин, большинство тканиспецифичных неколлагеновых белков имеют сложный состав и относятся к гликопротеинам, фосфопротгинам, металлопротеинам и протеогликанам. Гликопротеиды костей содержат большее число сиаловой кислоты, чем гликопротеиды крови. Здесь практически нет уроновых кислот и сульфатов. В костях, а так же дентине, цементе и слюне найдены небольшие гамма карбоксиглутоматные белки. Они связаны с коллагеном а так же кристаллами гидроксиапатита. Эти белки легко образуют кальциевые соли и участвуют в регуляции связывания Са в кости, а так же зубной ткани. В органический метрике костной ткани входят гликозаминогликаны: основной представитель -хондроитин-4-сульфат, кератансульфат. Гликозаминогликаны принимают участие в формировании косного каркаса, Отложению минеральных солей обязательно предшествует синтез сульфатированных гликозаминогликанов. В костной ткани содержится гликоген является поставщиком энергии в процессе минерализации. Липиды кости принимают непосредственное участие в процессах минерализации. Много ферментов в частности лизосомаяьных, участвующих в резорбции кости. Фермента цикла Кребса. Характерна высокая активность щелочной фосфотазы и альдолазы.

77. Кальций, фосфор, фтор, стронций и др. микроэлементы. Их роль в обмене зуба и кости.
Повышение Са и F в воде препятствует аккумуляции стронция- Выводится стронций с мочой. Повышенное поступление стронция вызывает заболевание Уровская болезн. Кости деминерализируются, деформируются, так же нарушется синтез Са-связывающих белков.
Navia (1977) попытался распределить микроэлементы на три группы: заменимые, незаменимые и токсичные. Нужно отметить, что эта классификация нечеткая, поскольку один и тот же элемент может быть и токсичным, и незаменимым, например фтор и селен. Однако, с точки зрения незаменимости, подобная группировка элементов оправдана.
Микроэлементы как составные компоненты веществ, участвующих в обменных процессах а организме или
регулирующих их, могут оказывать опосредованное действие на резистентность или, наоборот, восприимчивость зубов к кариесу. Данные экспериментальных исследований позволили 1. М. Na-via (1977) распределить минеральные элементы в три группы по их отношению к кариесу зубов:
I группа элементы, способствующие возникновению кариеса(селен, магний, кадмий, свинец, кремний)
II группа элементы с выраженным (фтор и фосфор) и маловыраженным (молибден, ванадий, медь, стронций, бор, литий, золото) противокариозным действием;
III группа элементы, не оказывающие действия на возникновение кариеса (барий, алюминий, никель, железо, свинец, титан), и элементы, роль которых еще не изучена (марганец, цинк, бром, бериллий).
Кальций выполняет в организме человека ряд разнообразных и важных функций. Он входит в состав основного минерального компонента костной ткани оксиапатита, михрокристаллы которого образуют жесткую структуру костной ткани. Ионы кальция придают стабильность клеточным мембранам, образуя связи между отрицательно заряженными группами фосфолипидов, структурных белков и гликопротеидов. Важная роль принадлежит кальцию в осуществлении межклеточных сязей, обеспечивающих упорядоченную адгезши (слипание) клеток при тканеобразовании. Минеральный компонент костной ткани находится в состоянии постоянного обновления. В этом процессе участвуют два типа костных клеток: остеокласты, способствующие рассасыванию костного вещества и выходу освобождаемого кальция и фосфора в кровоток, и остеобласты, участвующие в процессах отложения фосфорно-кальцкевых солей, Еальцнфихацкк костной ткани. Следствием такого непрерывного обновления является рост костей скелета. У растущих детей скелет полностью обновляется за 1-2 года, у взрослых за 10 -12 лет. Следовательно, минеральный компонент костной ткани находится в состоянии динамического равновесия с ионизированным кальцием и фосфором, растворенными в плазме крови. У взрослого человека за сутки из костей выводится до 700 мг кальция и столько же откладывается в них вновь. Костная ткань является не только важнейшей опорной структурой, но и главным депо кальция и фосфора, из которого организм извлекает их при недостаточном поступлении с пищей.
Фосфор Структурная функция неорганического фосфата состоит в том, что он вместе с кальцием входит в состав основного минерального компонента костной ткани оксиапатита. Структурная функция принадлежит и
органелл: ядер, митохондрий, лизосом, а также таких мембранных структур, как миелин.
Фтор. Биологическая роль фтора связана главным образом с его участием в костеобразовании и процессах формирования дентина и зубной эмали. Достаточное потребление человеком фтора необходимо для предотвращения
оценки обеспеченности организма этим микроэлементом не разработаны.


78. Теории минерализации кости и зуба. Роль Са-связывающих белков, фосфатов и лимонной кислоты в минерализации.
В кости содержится большое количество цитрата. В скелете сосредоточено примерно 90% все лимонной кислоты организма. Накапливается за счет цитратсинтазы одонтобластов. Важное свойство цитрата - вывсокая комплекеообразующая активность с ионами Са. Цитрат активирует кислые лизосомальные гидролазы Участвуют в процессах отложения солей Са и Р).
Минерализации кости предшествует синтез белков, гпикозаминогликанов, различных ферментов, макроэргов и др. Кости в отличии от твердых тканей зуба обладают способностью к минерализации. Полагали что кальцификация - простой процесс осаждения минеральных солей подчиняющихся законам
классической физической химии, при этом считали, что основным условием являются соответствущие концентрации
ионов Са и Р. Но кальцификация является сложным процессом в который вовлекается целый ряд соединений в том
числе белки и ферменты. В дальнейшем появились ферментативные теории осеофикиции.
1923 г.. Ведущую роль в процессе осеофикации принадлежит щелочной фосфотазе, т.е. под действием щелочной
фосфотазы происходит разрушение органических фосфосодержащих субстратов(глицерофосфат) и в результате
создается высокая концентрация ионов явление перенасыщения и последующее образование костной соли. Слабость теории: костная ткань содержит мало органических фосфатов, многие ткани содержат щелочную фосфатазу, но однако не все минерализуются.
Угнетение ферментов гликолиза и щикогенолиза сопровождается угнетением кальцнфнкации. была доказана необходимость АТФ для минерализации, поэтому появились другие теории сотяасно которым кристаллизацию инициируют компоненты органического матрикса обызвествляемых тканях. 1 Изучение функции коллагена в процессах минерализации позволило показать, что коллаген может инициировать нуклеацию апатитовых кристаллов на макромолекулах коллагеновых фибрилл, т.е. способен вызывать образование центров кристаллизации апатитов из
растворов фосфатов Са.
2 Свободный или связанный с белками хондроитинсульфат. Они интенсивно секретируются наряду с гликозаминогликанами, а затем подвергаются расщеплению лизосомальными гидролазами в образованием высокоактивных анионов. Предполагают, что биохимич., основу образования зародышевых кристаллов гидроксиапатита составляет реакция образования комплекса между коллагеном, АТФ, Са и хондроитинсульфатов Начало процесса минерализации объясняют в настоящее время усилением в остеобластах процессов распада гликогена и поступлением ацетилКоА в цикл Кребса, что приводит к выделению в окружающую среду цитрата и малата. Они способствуют растворению аморфоного фосфата Са. Во-вторых они создают оптимальную среду для деятельности кислых гидролаз выделяемых из лизосом остеобластов. Лизосомальные ферменты перестраивают органический матрикс кости.

80. Органические и минеральные компоненты эмали зуба. Особенности обменных процессов органического и минерального компонентов эмали зуба.
Органические вещества эмали (1,6%) представлены в основном белками, кроме них в эмали содержаться лилиды, углеводы, лактат, цитрат и свободные аминокислоты. Белки органического матрикса эмали по аминокислотному составу преимущественно относятся к кератиноподобным белкам, но в отличие от кератина они богаты серином в основном в виде серин-фосфата и имеют небольшой молекулярный вес. Коллаген в эмали обнаружен в виде следов.
Сравнительно недавно в структуре эмали доказано наличие гликопротеидов, а так же небольшое количество Са-связывающего белка эмали (гаммокарбоксиглутоматный белок), этот белок с достаточно высокой емкостью и склонностью агрегации до тетрамеров в нейтральной среде. Содержание белков в эмали составляет 1,3%.
Углеводный состав эмали и дентина представлен в основном гликогеном. Из углеводных компонентов в эмали обнаружили глюкозу, маннозу, фруктозу, ксилозу и рамнозу. Обычно они связаны с белками, т.е. входят в состав гликопротеидов эмали, частично в свободном виде. В поверхности эмали содержится в 10 раз больше углеводов чем в глубоких слоях это говорит о том, что приток идет за счет ротовой жидкости. Гликопротенды играют существенную роль и особенно в дентине, где их больше в динамической устойчивости твердых тканей зуба, поскольку именно гликопротеиды осуществляют химическую связь с белками, углеводами, и минеральными компонентами твердых тканей зуба, все это имеет значение в реминерализации.
Липиды эмали. 0,2% так же участвуют в процессах минерализации и ременирализации. Считают, что реминералгоация эмали в том числе при кариесе возможна только при сохранившейся структуре органического матрикса. Среди химических компонентов эмали и дентина в сравнительно большом количестве обнаружен цитрат. В эмали его примерно 0,1% в дентине 0,9%. Обнаружен лактат. Оба принимают участие в процессах минерализации.
Прочность и высокая плотность эмали объясняется высоким содержанием в ней минеральных компонентов примерно 95% на сухой вес. Минеральный компонент эмали представлен кристаллами гидроксиапатитов, карбонатапатитов, хлорапатитов, фторапатитов, цитратапатитов - кристаллиты. Из них превалируют более 70% гидроксиапатитов. Каждая кристаллическая решетка состоит из 18 ионов. Кристаллы гидрогсиапатита в эмали
В эмали так же содержится около 2% неапатнтных кристаллов - октокльцийфосфат, дикальнийфосфат, фосфат кальция Белки эмали
О наличии белков в составе эмали и дентина было известно уже более 100 лет назад, однако аминокислотный состав белков расшифрован лишь в последние два десятилетия с появлением соответствующих методов исследования. Важнейшей составной частью белка является коллаген. Благодаря проведению тончайшего аминокислотного анализа стало возможным определить структуру коллагена зубов. Гидролизат коллагена содержит 18 аминокислот, в том числе 26% глицина, 15% пролина и 14% гидроксипролина. Различия в структуре коллагена определенных тканей заключаются в пропорциональном соотношении лизина и гидроксилизина, хотя количество этих аминокислот остается постоянным (3 4%). Коллаген принадлежит к группе волокнистых белков, его молекула построена из цепочек аминокислот (две цепочки одинаковые, а третья отличается по составу аминокислот).
Тем не менее основной состав органического вещества эмали изучен. М. Stack (1954), работы которого стали классическими, показал, что в эмали существует кислоторастворимая фаза органических веществ (белки и пептиды) и кислотонерастворимая. Обе фазы содержат углеводные группы (галактоза, глюкоза, манноза, глюкуроновая кислота со следами фукозы и ксилозы), которые выявляют методом хроматографни.


81. Проницаемость эмали зуба, факторы на нее влияющие. Созревание эмали.
Проницаемость эмали снижается под действием химических факторов: KCl, KNO, фтористых соединений. F создает барьер для глубокого проникновения многих ионов и веществ. Свойства проницаемости зависят от состава смешанной слюны. Так, слюна по-разному действует на проницаемость эмали. Это связывают с действием ферментов, которые есть в слюне. Например, гиалуронидоза > проницаемость Са и глицина, особенно в области кариезного пятна. Хемотрипсин и целочная фосфатоза < проницаемость для CaF и лизина. Кислая фосфатоза > проницаемость для всех ионов и веществ.
Доказано, что в эмаль зуба проникают аминокислоты (лизин, глицин), глюкоза, фруктоза, галактоза, мочевина, гормоны.
Проницаемость зависит от возраста человека: самая большая после прорезывания зуба, она снижается к моменту созревания тканей зуба и продолжает снижаться с возрастом. От 25 до 28 лет > резистентность к кариесу, происходит сложный обмен при сохранении постоянства состава эмали.
РН слюны, а также снижение рН под зубным налетом, где образуются органические кислоты, проницаемость увеличивается вследствие активации деминерализации эмали кислотами.
На стадии белого и пигментированного пятна больше проницаемость, больше возможность проникновения различных ионов и веществ, а также Са и фосфатов это компенсаторные реакции в ответ на активную деминерализацию. Не каждое кариозное пятно превращается в кариозную полость, кариес развивается в течение очень длительного времени. Гипосаливация приводит к разрушению эмали. Кариес, который возникает ночью это ночная болезнь.
После прорезывания зуба в течение 3-5 лет происходит так называемое созревание эмали. В течение этого периода в эмаль поступают соединения кальция, фосфаты, микроэлементы и другие вещества, способствующие ее минерализации и повышению прочности. Процесс "созревания" эмали связан с ее проницаемостью для органических и неорганических веществ, поступающих из окружающей зуб слюны, пищи и питья. В известной степени проницаемость эмали регулирует пульпа зуба. Физиологическая проницаемость эмали обеспечивает обновление минеральных компонентов и постоянство ее состава за счет поступления из слюны макро- и микроэлементов. С возрастом проницаемость эмали уменьшается. В период созревания эмали профилактические мероприятия, и, прежде всего гигиенический уход за полостью рта очень действенны, так как способствуют процессу физиологической минерализации эмали.

82. Дентин – основной по массе компонент зуба, его химический состав. Характеристика минеральных и органических компонентов дентина. Химический состав дентиновой жидкости.
Основной по массе компонент зуба менее обызвествленный по сравнению с эмалью. Минеральных вещ-в в дентине примерно 70%. Главнейшими компонентами минеральной фазы является гидроксиапатит и карбонатапатит. Имеются так же фтор и хлор апатиты. Как и в эмали здесь сравнительно немного неапатитовых кристаллов. Кроме Са (24,8%) и фосфата (15,8%) в минеральной фракции дентина содержатся и другие остеотропные элементы Mg, К, Na, и анионы хлориды, фториды, карбонаты, ион-гидроксония. В дентине больше Mg, Na, F, карбоната по сравнению с эмалью. Воды здесь содержится больше (9,1%). Органические вещества дентина составляют 20,9% и представлены белками, липидами и углеводами причем в количественном отношении их больше чем в эмали. Из белков дентина основным
является коллаген, который содержит типичный для коллагена кости (коллаген 1-го типа) аминокислотный состав.
Большое количество глицина, пролина имеется оксипролин, аланин, отсутствуют серусодержащие аминокислоты -триптофан. Коллаген дентина связан с кислыми протеогликанами содержащими хондроитинсульфаты, они в свою очередь
содержит Са. Обнаружены здесь также различные гликопротеиды: сиалогликопротеид, группа белков - анилины.
фосфопротеины. Углеводный компонент органического матрикса дентина представлен в основном гликогеном. Одновременно здесь есть гетероолигосахариды гликопротеидов, хондроитинсульфаты, а так же галактоза и глюкоза,
Необходимо отметить, что структура и химический состав дентина могут изменяться в зависимости от состояния организма человека. Например нарушение структуры дентина наблюдаются при рахите и особенно при рахите устойчивом, резистентном к витамину D. Аналогичные нарушения структуры наблюдаются при отравлении солями свинца.
Липидов в дентине примерно 0,6% практически они малоизучены.


83. Особенности химического состава и обменных процессов цемента. Клеточный и бесклеточный цемент. Характеристика органических и минеральных компонентов цемента.
Цемент зуба - обызвествленная ткань зуба, сходная с костной, но, в отличие от нее, лишенная сосудов и не подверженная постоянной перестройке. Цемент покрывает корни и шейку зуба. По данным большинства исследователей, он в 60-70% частично заходит на эмаль (так называемый коронковый цемент), в 10% не доходит до нее (рис. На-в).
Согласно сведениям, полученным в последние годы, непосредственный контакт эмали с цементом встречается значительно чаще, чем считали ранее, а область, наблюдаемая в 10% зубов на светооптическом уровне в виде зазора между цементом и эмалью, в действительности покрыта очень тонким слоем цемента.
Толщина слоя цемента минимальна в области шейки зуба (20-50 мкм) и максимальна у верхушки корня (100-1500 мкм и более, толще в молярах).
Вследствие продолжающегося в течение всей жизни непрерывного ритмического отложения цемента на поверхности корня зуба толщина его слоя утраивается с 20 до 60-70 лет. Прочность полностью обызвествленного цемента несколько ниже, чем расположенного под ним дентина. Он является наименее минерализованной из твердых тканей зуба, но все же содержит больше неорганических веществ (около 60%, преимущественно гидроксиапатита), чем костная ткань (порядка 50%).
Функции цемента зубов:
1) входит в состав поддерживающего аппарата зуба, обеспечивая прикрепление к зубу волокон периодонтальной связки;
2) защищает дентин корня от повреждающих воздействий;
3) выполняет репаративные функции при образовании так называемых резорбционных лакун и при переломе корня зуба;
4) откладываясь в области краев новообразованных волокон регенерирующей периодонтальной связки после ее повреждения, способствует восстановлению ее прикрепления к корню зуба;
5) откладываясь в области верхушки корня, обеспечивает сохранение общей длины зуба, компенсирующее стирание эмали в результате ее изнашивания (пассивное прорезывание).
Строение цемента зубов
Цемент состоит из клеток (присутствуют не везде) и обызвествленного межклеточного вещества (матрикса), включающего коллагеновые волокна и основное вещество. Его питание осуществляется диффузно со стороны периодонтальной связки. Цемент подразделяется на бесклеточный (первичный) и клеточный (вторичный).
Бесклеточный (первичный) цемент образуется первым в ходе развития и покрывает поверхность корней зуба в виде слоя незначительной (30-230 мкм) толщины минимальной в области цементо-эмалевой границы и максимальной у верхушки зуба. Он является единственным слоем цемента, покрывающим шейку зуба, а в некоторых зубах (например, нижних передних резцах) он почти целиком покрывает и корень. Бесклеточный цемент не содержит клеток и состоит из обызвествленного межклеточного вещества, включающего плотно расположенные коллагеновые волокна и основное вещество. На его поверхности располагается слой необызвествленного органического материала прецемент (цементоид) толщиной 0,25-5,0 мкм, который содержит коллагеновые фибриллы. В нем выявляется исчерченность, направленная перпендикулярно поверхности корня (образована вплетающимися в цемент волокнами периодонтальной связки), а также слоистость, параллельная поверхности корня зуба (вследствие периодичности отложения самого цемента). Линии роста в бесклеточном цементе располагаются близко друг к другу, а его граница с дентином выражена нечетко.
Клеточный (вторичный) цемент покрывает апикальную треть корня и область бифуркации корней многокорневых зубов. Он располагается поверх бесклеточного цемента, однако иногда (в отсутствие последнего) непосредственно прилежит к дентину. Граница между ними (в отличие от таковой с бесклеточным цементом) выражена отчетливо. Толщина слоя клеточного цемента варьирует в широких пределах (100-1500 мкм) и наиболее значительна в молярах.
Клеточный (вторичный) цемент состоит из клеток (цементоцитов и цементобластов) и обызвествленного межклеточного вещества.
Цементоциты лежат в особых полостях внутри цемента лакунах и построению сходны с остеоцитами. Между их плазмолеммой и обызвествленной стенкой лакуны находится перицементоцитарное пространство, заполненное органическим материалом. Цементоциты представляют собой уплощенные клетки с умеренно развитыми органеллами и относительно крупным ядром.
Их многочисленные (до 30) ветвящиеся отростки диаметром около 1 мкм достигают в длину 12-15 мкм и связывают соседние клетки благодаря наличию многочисленных щелевых контактов (нексусами) и плотных соединений. Отростки ориентированы преимущественно в сторону периодонтальной связки (источника питания). Канальцы, связывающие лакуны и содержащие отростки цементоцитов, образуют непрерывную систему, которая протягивается от внутренней до наружной поверхностей слоя цемента.
Цементобласты клетки, участвующие в образовании цемента и располагающиеся на его поверхности в периферических участках периодонтальной связки вокруг корня зуба. Описание этих клеток приведено выше.
При формировании бесклеточного цемента цементобласты отодвигаются кнаружи от выработанного ими межклеточного вещества, а при образовании клеточного цемента замуровываются в нем. В последнем случае, погружаясь в цемент, эти клетки постепенно превращаются в цементоциты, уменьшаясь в объеме и утрачивая значительную часть органелл.
Межклеточное вещество клеточного цемента включает волокна и основное вещество. Волокна цемента образованы коллагеном I типа и подразделяются на "собственные", или "внутренние", т. е. образованные клетками цемента и идущие преимущественно параллельно поверхности корня зуба, и "внешние", к которым относят волокна периодонтальной связки шарпеевские волокна (ориентированы перпендикулярно поверхности корня).
Соотношение между волокнами обоих типов варьирует в широких пределах в различных участках цемента. В цементе человека и животных, подобно костной ткани, обнаруживается ряд неколлагеновых белков (сиалопротеин и остеопонтин), протеогликаны (верзикан, декорин, бигликан и люмикан), гликозаминогликаны (в бесклеточном цементе отсутствуют).
Межклеточное вещество цемента зуба человека содержит особый белок САР, который обусловливают адгезию периодонтальных фибробластов, цементный фактор роста (англ. Cementum-Derived Growth Factor CGF), обладающий выраженной митогенной активностью. Помимо этого, цемент, как и костная ткань, содержит высокие концентрации факторов роста таких, как ИФР-1, ИФР-П, ТФР-(31 и ТРФР, которые выделяются в значительных количествах, в особенности, после повреждения и способствуют регенерации этой ткани.


84. Пульпа зуба как вариант рыхлой соединительной ткани. Химический состав и роль пульпы в обмене твердых тканей зуба.
Вариант рыхлой соединительной ткани. Клеточные элементы пульпы отличаются разнообразием. Помимо одонтоболастов здесь имеются фиброблатсы, макрофаги, плазматические клетки. Одонтобласты принимают участие в обменных процессах дентина и эмали. Они располагаются преимущественно в наружном слое пульпы, а их отростки
проникают в дентинные канальцы и идут на всем их протяжении.
Содержание воды в пульпе составляет примерно 72-74% остальное приходится на долю сухого остатка, состоящего из органических и неорганических компонентов.
Основными белками внеклеточного матрикса пульпы являются коллагеновые белки, формирующиеся в коллагеновые волокна. Эластические волокна в пульпе не найдены. Пульпа корневых каналов отличается от коронковой пульпы большим содержанием пучков коллагеновых волокон. В состав межклеточного матрикса входят протеогликаны, гликопротеиды, фосфопротеиды и нгокомолекулярные пептиды. Особенно богата гликопротеидами базальная мембрана сосудов пульпы зуба. Из углеводных компонентов преобладают здесь хондроитинсульфаты.
гетероолигосахариды, гликоген, глюкоза, уроновые кислоты.
Пульпа как любая ткань содержит липиды и различные метаболиты. Макромолекулы ткани пульпы зуба (белки и входящие в состав протеогликанов хондроитинсульфаты) обладают амфотерными свойствами. При физиологических значениях рН карбоксильные группы коллагена, гликопротеидов, протеогликанов создают отрицательный заряд межклеточного матрикса, это обуславливает не только поглощение чужеродных веществ, но и катионов Са, К, Na
Содержание белка в пульпе зуба составляет 52 3 мг/г. Гликогена 0,42 мг/г Особенность метаболизма пульпы.
1. Пульпа зуба является относительно высокой по сравнению с другими тканями интенсивностью окислительно-восстановительных процессов, а от сюда высокое потребление кислорода, т.е. интенсивное дыхание.
2. О высоком уровне обменных процессов свидетельствует наличие здесь пентозофосфатного цикла окисления глюкозы (интенсивно идут биосинтетическеие процессы). Наиболее высокий уровень этого цикла определяется в период активной продукции одонтобластами дентина, например при образовании вторичного цемента.
С помощью радиоизотопных методик 5 пульпе обнаружены активные процессы синтеза РНК, а значит и синтез соответствующих белков. Раскрыты закономерности функционирования одонтобластов в норме и при патологии.
Пульпа зуба богата ферментами с достаточно высокой активностью, что так же свидетельствует об интенсивном метаболизме данной ткани. Доказано, что углеводный обмен протекает здесь со значительной интенсивностью. В пульпе обнаружены практически все ферменты углеводного обмена (альдолаза, ЛДГ, гексокиназа, амилаза, фосфорилаза.) Обнаружены здесь дыхательные ферменты, ферменты цикла Кребса, различные формы эстераз, щелочная и кислая фосфотаза, здесь найдена глюкозо-6-фосфотаза (гликоген который здесь расщепляется может в виде глюкозы поступать в дентинную жидкость). Обнаружена АТФ-аза, аминопептидаза, трансферазы АлАт и АсАт, холиностераза и др. ферменты.
Обнаруженный комплекс ферментов позволяет характеризовать пульпу как ткань с высокой метаболической
активностью, что и обуславливает высокий уровень трофики, реактивности и защитные механизмы данной ткани зуба. Об этом свидетельствует например повышение активности многих ферментов пульпы при кариесе, пульпитах и др. патологических состояниях. При среднем и глубоком кариесе в ir/льпе повышается содержание гликогена.


85. Влияние питания на состояние зубов. Роль белков, микроэлементов и витаминов. Роль рафинированных углеводов пищи в деминерализации эмали.
Метаболически незаменимые компоненты пищи не могут синтезироваться в организме и должны постоянно поступать извне. Дефицит незаменимых элементов немедленно сказывается на развитии тех органов, в состав которых они
входят или в образовании которых участвуют. При этом наблюдаются многочисленные патологические изменения,
включая атрофию мышц, слабость, потерю массы тела, анемию, лейкопению, отеки, пониженную способность образовывать антитела, определенные гормоны и ферменты, пониженную сопротивляемость инфекциям, медленное заживление ран, истощение организма.
Ткани полости рта также очень чувствительны к дефициту определенных компонентов пищи. Достаточно отметить, что десна, зубы, язык, слизистая оболочка щек являются тканями-мишенями, которые исторически использовались для диагностики дефицита белков в пище. Дефицит протеинов в период развития зубов приводит к уменьшению их размера и массы, нарушению структуры эмали зубов. Более выраженные изменения происходят в мягких тканях, где наблюдаются дегенерация соединительной ткани десны и периодоптальной связки, замедленное заживление ран и
атрофия эпителия языка. Остеопороз развивается в результате
пониженного отложения солей, уменьшения количества остеобластов и замедления морфодифференциации клеток соединительной ткани в остеобласты. Избыток углеводов в питании, особенно в период до прорезывания зубов, приводит к повышенной восприимчивости зубов к кариесу. Повышенное содержание в пище углеводов н недостаточное содержание белкс-в превращает диету человека в кариесогенную.
В результате экспериментов и клинических наблюдений установлено, что и интенсивность, и экстенсивность кариеса зубов зависят от частоты употребления ферментированных углеводов. Обширные исследования, проведенные в Швеции, показали, что у лиц, которые потребляли в год 94 кг сахара, гораздо чаще обнаруживали кариес зубов, чем у индивидуумов, съедавших за год 85 кг сахара. Сходные исследования провел , обследовав детей, находящихся в школах-интернатах Австралии. У школьников, в диете которых были резко ограничены сладости, кариес зубов наблюдался гораздо реже, чем у детей, поедавших сладости без ограничений. В экспериментах на животных установлено, что моно- и днсахариды обладают большей кариесогенностью, чем крахмал. Существует мнение, что из всех Сахаров сахароза наиболее кариесогенна. Не исключена возможность, что этот вывод часто делают потому, что
именно сахароза больше всего потребляется человеком. Об этом свидетельствует работы, в которых изучался зффект
замены сахарозы фруктозой или глюкозой. Результаты мало чем отличались: кариес зубов почти с одинаковой частотой встречался как у людей, потреблявших во время эксперимента сахарозу, так и у получавших иные сахара. Патогенетическая роль Сахаров сводится к созданию условий роста кариесогенных микроорганизмов, которые в свою очередь формируют зубной налет, способный аккумулировать кислоты как продукт их жизнедеятельности.
Данные литературы свидетельствуют о том, что большинство микроэлементов не оказывает специфического действия на распространенность стоматологических заболеваний. Исключением является фтор, роль которого & возникновении кариеса зубов доказана (при содержании в питьевой воде менее 0,7 мг/л). Однако многие вопросы, касающиеся микроэлементов, изучены еще недостаточно.


86. Влияние витаминов на состояние и обмен тканей полости рта и зуба.
Витамин А Важную роль в нормальном развитии зубов играют витамины.Saliey (1959) отметил у крыс при недостатке витамина А гиперфункцию костных клеток альвеолярного отростка, что вызывает его утолщение. С дефицитом витамина А связано появление гиперкератоза и пролиферации базального слоя слизистой оболочки. Избыток витамина А приводит к аномалиям развития челюстей, языка и губ, а в зубах значительно уменьшается плотность дентина. Децифит витамина А сам по себе не вызывает специфических изменений мягких тканей пародонта.
К группе витаминов, играющих большую роль в возникно-вении заболеваний зубов и пародонта, относятся витамины D, К, Р. Существенный недостаток витамина D приводит к первичному поражению метаболизма кальция при формировании зубов и костей. Дефицит витамина D вызывает увеличение объема органического матрикса дентина из-за нарушения минерализации, задержку развития дентина, увеличение количества интерглобулярного дентина. Недостаток витамина D приводит также к нарушению формирования эмали и гипопластическим изменениям в ней. Витамин К необходим для образования протромбина в печени. При его недостатке отмечается тенденция к кровоточивости, в том числе и из десен после чистки, зубов или спонтанно У лзодей витамин К синтезируется бактериями в желудочно-кишечном тракте. Витамин К можно использовать для предотвращения кровотечения в ротовой полости.
Витамин Р обеспечивает целость капилляров, предотвращая их ломкость [Bourne О., 1943]. Его также используют в терапевтической практике для профилактики кровотечений. S. Kreshover и S. Burket (1946) предположили, что хрупкость капилляров, часто встречаемая у больных с пародонтозом, может быть частично обусловлена недостатком витамина Р. Однако использование его для лечения заболеваний пародон-та все еще находится в стадии эксперимента.
В результате экстирпации субмаксиллярных и сублингвальных слюнных желез при недостатке витамина Е у
животных происходило кровотечение из десен, расшатывание больших коренныз зубов и выделение гноя из карманов.
[Goldbach Н., 1946]. Отмечена благоприятная реакция при использовании витамина Е у больных, страдающих выраженным пародонтозом с минимумом местных раздражающих факторов [Lieb Н| Mathis H., 1950].
Витамины группы В, фолиевая кислота, витамины РР и С В работах А. Э, Шарпенака и Э. П. Травите доказана роль дефицита витамина В1 в возникновении кариеса зубов. Гиповитаминоз В1 приводит к повышенной чувстви тельности слизистой оболочки полости рта, нередко на ней обнаруживают маленькие пузырьки, симулирующие лишай. При недостатке витамина В2 (арибофлавиноз) могут развиваться воспалительные изменения в мягких тканях в виде глоссита, хейлита, себорейного дермита, а также поверхностного сосудистого кератита [ScbrcJ! 'A'., 1939]. Воспаление языка сопровождается атрофией сосочков. Степень исчезновения сосочков языка зависит от выраженности недостатка витамина В2.
Хейлит - одно из патологических изменений, чаще всего диагностируемое при недостатке витамина В2.
Недостаток витамина В2 не единственная причина хей-лита. Недостаток витамина В6, никотиновой кислоты, всего комплекса витаминов группы В, пантотеката кальция иди железа может вызывать сходные изменения.
Воспаление языка и стоматит могут быть самыми ранними клиническими признаками недостатка в организме витамина PP. В острой форме наблюдаются гиперемия языка, увеличение сосочков, за которыми следуют атрофические изменения и в результате образуется глянцевая поверхность. Язык при остром недостатке витамина РР ярко-красный, болезненный. При хроническом недостатке его язык может быть утонченным, с наличием трещин на поверхности, зубчатыми края-
Y человека при недостатке фолиевой кислоты наблюдается стоматит, который может сопровождаться
язвенным глосситом, хейлитом и хейлозом. Язвенный стоматит является ранним признаком токсического действия
антагонистов фолиевой кислоты, используемых для лечения лейкемии.
Витамин С, влияние на обмен тканей полости рта.
При недостатке витамина С происходит нарушение образования коллагена основного вещества мукополисахаридов и межклеточного цементирующего, субстрата в мезенхимных тканях. При этом отмечаются замедленное образование кости и остеопороз. Недостаток витамина С приводит также к увеличению проницаемости капилляров, подверженности к травматическим кровотечениям гипореактивности сокращающихся элементов периферических кровеносных сосудов и замедленному кровотоку. Гингивит на фоне выраженного отека и кровоточащие голубовато-красные десны описаны как классические признаки'недостатка витамина С. Однако не у всех больных, испытывающих недостаток витамина С, имеется гингивит. Он отсутствует, если нег местного раздражителя зубного налета. ГипошПамнноз может, ухудшить реакцию десен на местное раздражение, увеличить отек и кровоточивость десен .Вероятно, недостаток витамина С является причиной заболеваний пародонта, которые так распространены во всех возрастах. Однако попытки установить зависимость меаау уровнем аскорбиновой кислоты в крови и распространенностью и тяжестью гингивита вызвали разнородные мнения. Некоторые утверждают, что действительно существует такая взаимосвязь, но большинство других с этим не согласны. Высказано предположение, что у людей замедление развития альвеолярной кости происходит в^результате недостатка витамина С, но эпидемиологические исследования не подтвердили этой связи. При оценке результатов клинических исследований, в которых определяли уровень аскорбиновой кислоты в 'крови, отмечена ненадежность метода определения"ё во всей крови или в лейкоттитах. Изменения в тканях пародонта при недостатке витамина С детально изучены у экспериментальных животных. В результате острого недостатка витамина С возникают отек тканей пародонта и кровотечение из них, развивается остеопороз альвеолярной кости. Однако острый недостаток витамина С не вызывает воспаления десен. Местное рачфа*ение является обязательным условием возникновения гингивита у экспериментальных жиьотных. Недостаток витамина изменяет реакцию на раздражение так, что десна становится отечной и кровоточивой. Недостаток витамина С также замедляет нормализацию пародонта. Выло установлено, что при дефиците витамина С не образуются пародонтапьные карманы. Для того чтобы они появились, необходимы также местные раздражители. При гипо витаминозе С кярмяны имеют большую глубину, чем в других условиях. В результате острого недостатка витамин С реакция пародонта изменяется до такойстепени, что деструктивный процесс заканчивается выпадением зубов.
С неоостатком витамина С в организме многие исследователи слизывают возникновение и развитие некоторых стоматологических заболеваний, в частности кариеса зубов. Так, Вольгоф еще в 1929 году в опытах на животных показал, что при недостаточном содержании витамина С в пищевом рационе в первую очередь нарушается структура дентина. При этом в нем уменьшается содержание известковых солей, изменяется структура внутреннего слоя дентина расширяется слой предентина. Недостаток витамина С в организме нарушает синтез коллагена и превращения проколлагена в коллаген, имеющий очень большое сходство с субстанцией, образующей дентин зуба Задержка формирования коллагена связана с недостаточным образованием важной его составной части гидро-оксипролина, который, в свою очередь, образуется из аминокислоты пролина под влиянием витамина С. Некоторые авторы считают, что при недостатке витамина С в организме происходят дегенеративные превращения высокоспедашгизированных клеток (одонтобластов и остеобластов) в соединительнотканные. В результате вместо прочного дентина образуется неустойчивый хрупкий материал. По данным Гоу, напротив, зубные ткани не способна удержжать соли кальция. Автор высказывает мысль о том, что применение препаратов кальция для предупреждения кариеса бесцельно без одновременного введения, в организм необходимых количеств витамина С. В современном аспекте кариес рассматривается учеными к исследователями как одно из проявлений нарушения общего состояния организма, поэтому интерес к витамину С, принимающему участие в окислительно-восстановительных процессах, особенно велик. У детей с "цветущим" кариесом выделение витамина С в моче было меньше, чем у детей, не имеющих кариеса. Это пониженное выделение аскорбиновой кислоты авторы объясняют изменением обменных процессов в организме, в частности белкового обмена, связанного с развитием кариеса. Изучая влияние кариесогенной диеты на содержание аскорбиновой кислоты в крови и тканях, этим же авторам удалось показать, что возникновение кариеса неизменно сопровождается снижением содержания аскорбиновой кислоты как в крови, так и в тканях. На основании полученных данных исследователи пришли к выводу, что дефицит аскорбиновой кислоты в организме имеет несомненное патогенетическое значение при кариесе. С-авитаминоз (ЦИНГА) Цинга кровавая болезнь. Она подкрадывается к человеку исподволь, незаметно. Очень часто люди не обращают внимания на легкое недомогание, головную боль, быструю утомляемость, потерю аппетита, плохой сон. А эти признаки свидетельствуют о начале первой стадии болезни. Люди продолжают работать, а состояние их все больше ухудшается и постепенно переходит во вторую стадию болезни. Вторая стадия характеризуется подавленным настроением, болезненными сердцебиениями и одышкой, ноющими болями в суставах и мышцах, напоминающими ревматизм. Кожные покровы бледнеют, наступают частые носовые кровотечения, а на коже, особенно нижних конечностей, около волосяных фолликулов появляются точечные кровоизлияния. Особенно характерным является разрыхление десен и кровоточивость их во время еды и при чистке зубов. В третьей стадии нарастают новые, еще более неприятные симптомы болезни. Мелкоклеточные кровоизлияния на коже сливаются в обширные кровоподтеки. Эти кровоподтеки возникают и в мышцах, и в суставах, и во внутренних органах. Из-за них мышечные боли становятся невыносимыми, суставы распухают, и больные лишаются возможности передвигаться слизистая оболочка ротовой полости подвергается омертвению, десны изъязвляются и кровоточат, зубы начинают выпадать. Четвертая, последняя стадия болезни характеризуется появлением обширных кровоизлияний в полость плевры, в сердечную сумку и в стенки кишечника. Деятельность жизненно важных органов больного становится затрудненной и при крайнем истощении организма наступает смерть.

87. Витамины группы Д. 7-дегидрохолестерин как провитамин Д. Химическая структура, недостаточность, роль витамина Д в процессах минерализации.
Витамин D группа биологически активных веществ (в том числе эргокальциферол и холекальциферол). Витамины группы D являются незаменимой частью пищевого рациона человека.
Растворим в жирах. Состоит из феролов, приобретающих активность при ультрафиолетовом облучении. В организме этот процесс осуществляется в коже. Дефицит витамина D явление очень распространенное, и может вызвать проблемы роста клеток органов, наибольшим из которых является кожа. Ученые также занимаются поисками доказательства того, что долговременный дефицит витамина D приводит к заболеванию раком.
Источники
Синтез в организме: холекальциферол образуется в коже под воздействием ультрафиолетовых лучей солнечного света
Животные: сливочное масло, сыр и другие молочные продукты, яичный желток, рыбий жир, икра
Растительные: люцерна, хвощ, крапива, петрушка, грибы
Функции
Основная функция витамина D обеспечение нормального роста и развития костей, предупреждение рахита и остеопороза. Он регулирует минеральный обмен и способствует отложению кальция в костной ткани и дентине, таким образом, препятствуя остеомаляции (размягчению) костей.
Поступая в организм, витамин D всасывается в проксимальном отделе тонкого кишечника, причем обязательно в присутствии желчи. Часть его абсорбируется в средних отделах тонкой кишки, незначительная часть в подвздошной. После всасывания кальциферол обнаруживается в составе хиломикронов в свободном виде и лишь частично в форме эфира. Биодоступность составляет 60-90 %.
Витамин D влияет на общий обмен веществ при метаболизме Ca2+ и фосфата (НРО2-4). Прежде всего, он стимулирует всасывание из кишечника кальция, фосфатов и магния. Важным эффектом витамина при этом процессе является повышение проницаемости эпителия кишечника для Ca2+ и Р.
Витамин D является уникальным это единственный витамин, действующий и как витамин, и как гормон. Как витамин он поддерживает уровень неорганического Р и Са в плазме крови выше порогового значения и повышает всасывание Са в тонкой кишке.
В качестве гормона действует активный метаболит витамина D 1,25-диоксихолекациферол, образующийся в почках. Он оказывает влияние на клетки кишечника, почек и мышц: в кишечнике стимулирует выработку белка-носителя, необходимого для транспорта кальция, а в почках и мышцах усиливает реабсорбцию Ca++.
Витамин D3 влияет на ядра клеток-мишеней и стимулирует транскрипцию ДНК и РНК, что сопровождается усилением синтеза специфических протеидов.
Однако роль витамина D не ограничивается защитой костей, от него зависит восприимчивость организма к кожным заболеваниям, болезням сердца и раку. В географических областях, где пища бедна витамином D, повышена заболеваемость атеросклерозом, артритами, диабетом, особенно юношеским.
Он предупреждает слабость мускулов, повышает иммунитет (уровень витамина D в крови служит одним из критериев оценки ожидаемой продолжительной жизни больных СПИДом), необходим для функционирования щитовидной железы и нормальной свертываемости крови.
Так, при наружном применении витамина D3 уменьшается характерная для псориаза чешуйчатость кожи.
Есть данные, что, улучшая усвоение кальция и магния, витамин D помогает организму восстанавливать защитные оболочки, окружающие нервы, поэтому он включается в комплексную терапию рассеянного склероза.
Витамин D3 участвует в регуляции артериального давления (в частности, при гипертонии у беременных) и сердцебиения.
Витамин D препятствует росту раковых клеток, что делает его эффективным в профилактике и лечении рака груди, яичников, предстательной железы, головного мозга, а также лейкемии.

"О 7-дегидрохолестерине
Предположение о двойном контроле над пролиферацией кератиноцитов со стороны нервной и лимфоидной ткани подразумевает наличие определенного механизма, с помощью которого может осуществляться этот контроль. Настоящая работа является попыткой представить 7-дегидрохолестерин регулятором скорости пролиферации кератиноцитов. Известно, что в кератиноцитах эпидермиса из холестерина образуется 7-дегидрохолестерин (7-ДГХ, провитамин D3 ). Далее под влиянием ультрафиолетового облучения (УФО) из 7-ДГХ образуется превитамин D3 , который в результате термической изомеризации под влиянием температуры тела превращается в холекальциферол (вит D3 , кальциол). Известно также, что образовавшийся кальциол связывается с витамин D-связывающим белком и удаляется из кератиноцитов с помощью тучных клеток. Далее в печени кальциол превращается в кальцидиол, который, в свою очередь, попадая в почки, превращается в кальцитриол, обладающий гормональной активностью. Известно также, что наибольшая концентрация 7-ДГХ в глубоких слоях эпидермиса, недоступных для УФО. А содержание 7-ДГХ, доступного для синтеза кальциола, в верхних слоях быстро истощается - через 15 минут после УФО количество превитамина D3 достигает максимума (около 15% от исходного уровня 7-ДГХ) и при продолжении экспозиции остается постоянным, но накапливаются люмистерин и тахистерин (до 50% от исходной концентрации 7-ДГХ), не обладающие гормональной активностью [2]. Известно, что большинство млекопитающих имеют хорошо выраженный шерстяной покров, защищающий кожу от прямого воздействия УФО. Можно предположить, что превращение 7-ДГХ в кальциол свидетельствует о нестойкости 7-ДГХ под действием УФО и температуры и наиболее физиологичным можно считать лишь образование 7-ДГХ. В жирах печени рыб обнаруживают большие количества 7-ДГХ и кальциола [6], но в коже рыб содержание 7-ДГХ ничтожно мало [2]. Известно, что вышеупомянутые соединения регулируют содержание кальцийсвязывающего белка, который осуществляет транспорт ионов кальция [2, 6]. Поступление кальция непосредственно из воды занимает ведущее место в балансе минеральных веществ у водных животных. Интенсивность поглощения кальция рыбами пропорциональна концентрации его в воде [19]. Кальций всасывается через жабры[10] и выводится из организма рыб с желчью [19]. При повышении концентрации кальция в воде увеличивается содержание его в мышцах, печени и почках [10]. При дефиците витамина D3 у рыб в первую очередь страдают мышцы, зольность скелета при этом не нарушается [2]. Таким образом можно думать о том, что 7-ДГХ и кальциол в печени рыб выполняют функцию удаления излишков кальция из организма. Известно, что в Y-органе ракообразных из экзогенного холестерина синтезируются стероидные гормоны - экдизоны, которые в черезвычайно малых концентрациях оказывают сильное физиологическое действие: инициируют смену покровов тела (линьку хитинового панциря) [6]. Можно думать о том, что у млекопитающих произошло эволюционное объединение двух функций стероидов: участие в обмене кальция у рыб и участие в смене покровов тела у ракообразных. Среди многих функций кальция обращают на себя внимание следующие: кальций необходим для клеточной пролиферации - он стимулирует синтез ДНК; кальций обеспечивает образование клеточной адгезии - в отсутствии кальция ткани теряют свою целостность и разобщаются на отдельные клеточные элементы; стимулируя рост и митоз клеток, кальций тем самым задерживает их дифференцировку и созревание [2]. Как уже упоминалось, синтез 7-ДГХ в кератиноцитах стимулирует образование кальцийсвязывающего белка. Можно думать о том, что связывание кальция в кератиноцитах сопровождается прекращением их пролиферации, их дифференцировкой, увеличением активности трансглутаминазы, катализирующей образование поперечных сшивок в ороговевающей оболочке зрелых кератиноцитов (что коррелирует с усилением образования роговых чешуек), а также разрушением межклеточных связей и отшелушиванием [2, 9]. Пролиферация кератиноцитов находится под сдерживающим влиянием комплекса кейлон-адреналин. Удаление одной из составляющих этого комплекса сопровождается усилением пролиферации кератиноцитов. Так, при длительном УФО клетки Лангерганса мигрируют из эпидермиса, содержание кейлона снижается и увеличивается пролиферация кератиноцитов. Истощение симпатико-адреналовой системы может привести к снижению содержания катехоламинов в эпидермисе и, как следствие, усилению пролиферации кератиноцитов и нарушению их созревания и отшелушивания. Все это позволяет думать о том, что комплекс кейлон-адреналин стимулирует синтез 7-ДГХ в кератиноцитах. К гипертрофированному состоянию кератиноцитов относят псориаз [7]. При псориазе в пролиферацию вовлекаются не только базальные, но и парабазальные клетки [15]. Извлеченные же из псориатического эпидермиса кератиноциты, по одним данным, ведут себя в культуре как нормальные [22]. По другим данным, такие кератиноциты быстро вовлекаются в генеративный цикл, тогда как здоровые находятся в состоянии покоя. Это объясняется отличием в структуре рецепторов к активаторам пролиферации (интерферон-гамма, молекулы адгезии, ростовые факторы). Нормальные кератиноциты на них не реагируют [17]. При псориазе отмечается утолщение эпидермиса и в неповрежденной коже [22]. У здоровых людей (до 100%) обнаруживают антитела (АТ) к антигенам (АГ) рогового слоя (клеточная мембрана и межклеточное вещество) и сыворотка здоровых людей обладает цитотоксичностью по отношению к аутологичным кератиноцитам. Также у здоровых людей могут выявляться АТ к мембране и цитоплазме базальных клеток [8]. Также показано, что JgG участвуют в метаболизме и морфогенезе кератиноцитов здоровых людей [18]. Образование иммунных комплексов (ИК) - нормальный физиологический процесс; при нарушении регуляции образование ИК может возрасти [4]. В норме кератиноциты продуцируют интерлейкин-6 (ИЛ-6) [17] и ИЛ-7 [23]. Различные клетки иммунной системы (лимфоциты, клетки Лангерганса) и АТ могут индуцировать апоптоз кератиноцитов [1], который играет важную роль в поддержании гомеостаза здоровой кожи [7]. При псориазе же отмечается активация двух разных процессов - пролиферации и апоптоза [22]. При псориазе не удалось выявить специфические нарушения иммунной системы [22]. Отмечается увеличение уровня ИК [3,14,22], повышение содержания JgG и JgA в крови[18,22], появление АТ к АГ базальной мембраны, причем раньше, чем проявлялись высыпания [8]. Также отмечается проникновение лимфоцитов в эпидермис [17] и взаимодействие их с кератиноцитами [11]. Но лимфоциты в кожу мигрируют после развития очагов поражения. Приток их сопровождается увеличением числа клеток Лангерганса [1,22], лимфоциты располагаются в базальном слое в тесном контакте с клетками Лангерганса [22]. В крови отмечается лимфоцитопения, снижение их функциональной активности [14,22] и сдвиг в сторону преобладания Т-хелперного звена [5,22]. Отмечается дефицит метаболизма кейлонов [15,20]. Возрастает концентрация в кератиноцитах ИЛ-6 [17] и ИЛ-7 [23]. Все вышеизложенное позволяет думать о том, что при псориазе возрастает регулирующая активность лимфоидной ткани, направленная в основном на подавление пролиферации кератиноцитов. При псориазе отмечается резкое снижение концентрации адреналина и норадреналина в коже [20], полное отсутствие катехоламинов в сосочковом слое дермы, также отмечается снижение уровня катехоламинов в крови и существенное снижение активности симпатико-адреналовой системы. Псориаз протекает при сниженном уровне кортикостероидов [22] и на фоне выраженной стимуляции коркового слоя надпочечников [21]. Показан также высокий уровень соматотропного гормона (СТГ) [21]. Отмечено, что псориаз в ряде случаев связан с гипокальциемией [9,13]. Дефицит витамина Д серологически при этом не определялся [9]. При исследовании связи псориаза с другими заболеваниями установлены высокодостоверные положительные ассоциации между псориазом и сахарным диабетом, псориазом и бронхиальной астмой, псориазом и язвенной болезнью желудка [16]. В числе причин возникновения инсулинзависимого сахарного диабета можно думать о свойстве нервной системы, проявляющейся повышенной реакцией нервной клетки на стимул [12]. Можно предположить, что это же обстоятельство может быть причиной развития псориаза: гиперстимуляция может привести к истощению симпатико-адреналовой и опиоидергической системы и к преобладанию влияния парасимпатической нервной системы, что приводит к повышению выделения СТГ и кортикотропин-рилизинг-фактора и снижению уровня катехоламинов и проявляется снижением ингибирующей и повышением стимулирующей составляющей регуляторного влияния нервной ткани на пролиферацию кератиноцитов. Можно думать о том, что такое нарушение равновесия может привести к повышению активности регуляторного влияния лимфоидной ткани, направленного на подавление пролиферации и инициацию апоптоза кератиноцитов эпидермиса. Таким образом можно считать 7-ДГХ регулятором скорости пролиферации и созревания кератиноцитов, а воздействие на его синтез комплексом кейлон-адреналин - механизмом влияния нервной и лимфоидной ткани на эти процессы.

89. Физико-химические параметры слюны: плотность, вязкость, осмотическое давление, буферная емкость, рН, поверхностное натяжение, их функциональное значение.
Смешанная слюна (полученная отплевыванием слюна называется ротовой жидкостью) представляет собой вязкую, мутноватую жидкость с относительной плотностью 1,001 - 1,007, вязкость ее 1,10 - 1,32 пуаза. рН смешанной слюны 5,8 - 7,4; рН слюны околоушных желез ниже (5,81), чем подчелюстных (6,39). С увеличением скорости секреции рН слюны повышается до 7,8. Снижение рН слюны приводит к быстрому развитию кариеса. Вязкость слюны, обусловленная муцином, важна для склеивания пищевых частиц в пищевой комок, который, будучи ослизненным, легче проглатывается. Этому способствует также пенообразование. Слизь слюны выполняет и защитную функцию, обвалакивая нежную слизистую оболочку рта и пищевода. Буферная емкость слюны способствует нейтрализовать кислоты и щелочи. Установлено,что прием в течение длительного времени углеводистой пищи снижает, а прием высокобелковой--повышает буферную емкость слюны. Высокая буферная емкость слюны - фактор, повышающий устойчивость зубов к кариесу.


90. Минеральные компоненты слюны, их функции. Мицеллярная форма фосфорно-кальциевых солей. Буферные системы смешанной слюны. Характеристика основных представителей органических веществ слюны. Факторы, влияющие на химический состав слюны.
На 97,5-99,5% состоит из воды, 0,5-2,5 приходится на сухой остаток около 2/3 которого составляют органические вещества и 1/3 минеральные. Общая концентрация минеральных составных частей в слюне ниже чем в плазме крови, т.е. слюнные железы выделяют гипотаническую жидкость. К минеральным компонентам относятся Са| К, Na, Fe, Si, Al, Zn, Cr, Mn, Си и др. катионы, а так же анионы - хлориды, фосфаты, бикарбонаты, проданиды, йодиды, сульфаты, бромиды и фториды.
В смешанной слюне Mg Содержание магния с возрастом увеличивается.
При ношении металлических коронок в слюне обнаруживаются ионы серебра, титана, никеля, свинца и др. в виде хлоридов, бикарбонатов, фосфатов и сульфатов.
Основными органическими веществами слюны являются белки, отличающиеся по происхождению. 1 Часть синтезируемая в слюнных железах. Белки железистого происхождения 2 Сывороточного происхождения ЗМикробного происхождения 4 Лейкоцитарного происхождения
5. Изнарушенных эпителиальных клеток слизистой оболочки полости рта.
При электрофорезе на бумаге белки слюны разделяются на отдельные фракции
Лизоцин, Альбумины, а1,а2 ,в, у глобулины
При электрофорезе в полиакриламидном геле удалось получить 17 фракций белков слюны. В зависимости от аминокислотного состава кх условно подразделили на 4 группы.
1. Кислые (большое кол-во аспартата и гяутомата) 2. Основные (лизин, аргинин, гистидин) 3. Богатые тирозином 4 Богатые гастидином - гистатины.
Белки первой и второй группы участвуют в образовании приобретенной пелликулы на поверхности эмали.
Белки третей группы препятствуют росту кристаллов и слюны перенасыщенные Са и Р. Четвертая группа бе ов обладает антимикробным действием.
Главными группами белков слюны являются гликопротеины и муцины, а так же фосфопротеины. Более половины всего содержания белков слюны составляют муцины. Функции муцинов Все муцины смешанной слюны
1. Смазывают слизистые оболочки полости рта и поверхности зубов, а значит защищают их от различных повреждений.
2. Связывают Са слюны. 3. Участвуют в поддержании постоянства рН.
Слюна содержит так же видоспецифические антигены и антитела. По содержанию агглютинина в слюне можно
подбирать доноров с определенной группой крови. В слюне содержится Са-связывающий белок, который обладает
высоким сродством к гидроксиаппатиту.
Буферные системы смешанной слюны. В полости рта после каждого приема углеводов слюна становится недонасыщенной кальцием, что способствует его выходу из эмали. Нейтрализация кислот и щелочей возможна благодаря буферным системам слюны (бикарбонатной, фосфатной и белковой), которая служит защитным механизмом против воздействия кислых продуктов. Слюна обладает двумя важными буферными системами - бикарбонатной и фосфатной. Последний буфер менее важен в периоды образования кислоты в бляшке. Бикарбонатный буфер играет важную роль в развитии кариеса. Бикарбонат образуется из околоушной железы и подчелюстной. При увеличении секреции слюны повышается сождержание бикарбоната в слюне, а также уровень рН. Это влияет на уровень рН бляшки, если стимуляторы слюны (например, пища) не содержит чрезмерное количество сахара, т.к. бикарбонат диффундирует в юляшку и нейтрализует органичемкие кислоты. Таким образом, продлевается период реминерализации уже деминерализованных участков зуба.

91. Химический состав ротовой жидкости. Характеристика и роль ферментов слюны.
В слюне смешанной открыто более 100 фврментоя различного происхождения.
1. Железистого 2 Лейкоцитарного Z Микробного 4 Клеточного.
К ферментам собственно железистого происхождения относится амилаза, некоторые
аминотрансферазы, пероксидаза, ЛДГ, мальтаза, кислая и щелочная фосфотазы и др.
Исследование химического состава амилазы слюны доказало ее полную идентичность структуре панкреатической амилазе. Амилаза слюны как и амилаза панкреатическая расщепляет а-1,4-гликозидные связи в молекулах крахмала и гликогена, при этом образуются декстрины и небольшое количество мальтоз. Активатором .^илазь: слюны являются ионы хлора, повышают активность так же йодиды и цианиды. Наличие
Лейкоцитарное происхождение имеют следующие ферменты ротовой жидкости: I. ЛДГ 2-лизоцин 3-хондроитинсульфатаза 4.липаза 5-альдолаза 6.перокисдазы 7.различные протеиназы в том числе коллагеназа Ферменты микробного происхождения.
1.Каталаза 2.ЛГД 3.мальтаза 4.сахараза 5.хондроитинсульфатаза 6.амилаза 7.коллагеназа 8.различные протеиназы 9.альдолаза и др.
Некоторые ферменты появляются в ротовой жидкости за счет нескольких источников сразу. По мнению ряда исследователей ферменты гиулоронидаза и калийкреин увеличивает проницаемость клеток эмали для Са и органических соединений, а слюна является одним из важнейших источников калийкреина.
Наибольшей активностью обладают ферменты слюны различного происхождения,
участвующие в катаболизме углеводов. Амилаза, мальтаза сахараза, ферменты гликолиза,
цикла Кребса и др. Слюна содержит так же особые ингибиторы протеиназ, которые
относятся к аl и а2 макроглобулинам.
В слюне обнаружен фермент супероксиддисмутаза, причем изоферментный набор этого
Обнаружены так же фирониктин (адгезивный белок), обнаружены статерины, протромвин, антигепариновые вещества и другие факторы свертывающей и антисвертывающей системы крови. Количество и качественный состав белков крайне разнообразен.
Слюна как биологическая жидкость.
Слюна это сложная биологическая жидкость вырабатываемая специализированными железами и выделяемая в ротовую полость. В основном именно химический состав слюны определяет состояние и функционирования зубов и слизистой оболочки полости рта. Необходимо различать - слюна как секрет слюнных желез и слюна как ротовая жидкость. Последняя помимо секретов различных слюнных желез содержат микроорганизмы, спущенные эпителиальные клетки, мигрировавшие через слизистую оболочку полости рта лейкоциты (слюнные тельца) и др. компоненты.
Объем смешанной слюны дополняется жидкостью, которая диффундирует через слизистую оболочки полости рта, а
так же гингивальной жидкостью.
Гингивальная жидкость.
Имеет сложный состав: НЮ, белки, ферменты, различные органические вещества, электролиты, лейкоциты, служенные эпителиальные клетки. Десневая жидкость - местный фактор защиты полости тра. Защитное действие обусловлено наличием лейкоцитов, иммуноглобулинов, ферментов. Наличие постоянного тока десневой жидкости способствует механическому удалению микробов, веществ, басктерий. Десневая жидкость - трансудат сыворотки. В течении суток при интактном пародонте в полость рта поступает 0,2-2,5 мл гингивальной жидкости. Ее количество увеличивается в предвослалительной стадии. За счет осмотического градиента и резко увеличивается при воспалительной эксудации. рН 6,3-7,93 и не зависит от степени воспаления. Белковый состав гингивальной жидкости и сыворотки крови практически одинаков: альлбумины, трансферин, 7-глобулины. Десневая жидкость - важный источник иммуноглобулинов IgA, IgG; IgM; антитела. Обнаружена система комплемента: -фибриноген, фибринолдизин, плазмоген, брагикинин, ферменты. Существует зависимость между активностью ферментов и воспалением в тканях пародонта. Гингивальная жидкость содержит все 5 ферментов: ЛДГ, р-глюкоронидазу (активация увеличивается при пародонтитах), лизоцин, лактоферрин, пероксидаза и глюкоронидаза. Обнаружены протеолитические ферменты (протеиназы, элластазы, аминопептидазы) Активация увелич. при воспалении пародонта. Обнаружены и другие органические вещества: глюкоза, фосфолипиды, уроновые кислоты, нейтральные липиды, лактат, мочевина. Электролитный состав: Na, К - выше по сравнению с сыворот., а соотношение Na/K ниже. Na увелич
при воспалении пародонта. Десневая жидкость один из источников F в полости рта. Содержится так же Ca, P, сера, Zn


92. Химический состав и биологическая роль пелликулы. Общая характеристика зубного налета, биологическое значение и особенности химического состава: содержание воды, органических и минеральных веществ. Специфические полисахариды зубного налета.
Пелликула-это тонкая, прозрачная пленка, углеводно-белковой природы. В строении обнаруживается 3 слоя: 2 на поверхности эмали, а третий в поверхностном слое эмали. Пелликула покрывает зубной налет. Зубной налет белая мягкая пленка, находится в области шейки и на всей поверхности. Удаляется во время чистки и жесткой пищей. Это кариесогенный фактор.
Если центрифугировать зубной налет и пропустить его через фильтр, то выделяется 2 фракции, клеточная и бесклеточная. Клеточная эпителиальные клетки, стрептококки (15 %), дифтероиды, стафиллококки, дрожжеподобные грибы 75 %.
В зубном налете 20 % сухого вещества, 80 % НО. В сухом веществе есть минеральные вещества, белки, углеводы, липиды. Из минеральных веществ: Са - 5 мкгр/в 1 г сухого вещества зубного налета. Р 8,3, Na 1,3, К 4,2. Есть микроэлементы Са, Str, Fe, Mg, F, Se. F .Одни микроэлементы снижают восприимчивость зубов к кариесу F, Mg, другие снижают устойчивость к кариесу Se, Si. Белки из сухого налета 80 %. Белковый и аминокислотный состав не идентичен таковым смешанной слюны. По мере созревания аминокислот они изменяются. Исчезает гли, арг, лиз, > глутомата.
В зубном налете содержатся стрептококки: Str. mutans, Str. sanguis, Str. salivarius, для которых характерно анаэробное брожение. В этом процессе субстратом для бактерий, в основном, являются углеводы и аминокислоты. Сахароза - дисахарид, состоящий из фруктозы и глюкозы, которому принадлежит ведущая роль в возникновении кариеса.
Бактерии, как и другие клетки, содержат биополимеры (нуклеиновые кислоты, белки, полисахариды, липиды и др.), необходимые для их жизнедеятельности. Важная роль в жизнедеятельности кариесогенных микроорганизмов принадлежит синтезу полисахаридов. Зубной налет продуцирует внеклеточные полисахариды, содержащие леваны и декстрины. Гликаны обеспечивают адгезию бактерий друг с другом и поверхностью зуба. Потеря способности синтезировать этот полимер мутагенным штаммом Str. mutans ведет к уменьшению кариеса. Продуцирование гликанов ведет к утолщению зубного налета.
Декстран является резервным полисахаридом. В процессе расщепления декстрана микроорганизмами образуются органические кислоты, которые и оказывают деминерализирующее влияние на эмаль зуба.
Леван - это тоже биополимер. В процессе его расщепления также образуются органические кислоты. Однако леван больше используется микроорганизмами зубного налета в качестве источника энергии.
Зубной налёт, минерализуясь, превращается в зубной камень. Особенно с возрастом, при некоторых видах патологии у детей отложения зубного камня связано с врожденными поражениями сердца.

93. Роль зубного налета в развитии кариеса и образовании зубного камня. Факторы, влияющие на химический состав и количество зубного налета. Факторы, способствующие образованию зубного камня. Общая характеристика химического состава зубного камня. Роль зубного камня в развитии пародонта.
Зубной камень - отвердевший зубной налёт, образующийся на поверхности зубов. Зубной камень достаточно тёмный, что объясняется тем, что в его состав входят остатки пищи, отмершие клетки, бактерии, соли фосфора, железа и кальция. Причины и механизмы возникновенияНачалом образования зубного камня служит образование мягкого зубного налёта (зубная бляшка), состоящий из остатков пищи, бактерий и слизи, которая склеивает все это в сплошную массу. В первую очередь зубной камень образуется в местах скопления мягкого зубного налёта (зубной бляшки), на тех участках зубов, где нет необходимого самоочищения при жевании пищи. После происходит пропитка отложения минеральными компонентами, что приводит к образованию твёрдой массы зубного камня. Как правило, образование зубного камня продолжается от 4,5 до 6 месяцев. Нередко зубной камень появляется у детей-подростков, с возрастом его количество увеличивается, особенно при плохой гигиене полости рта.
Зубной камень откладывается на шейках зубов, может покрывать часть коронки и корня. Но он может образовываться и на зубных протезах, если за ними отсутствует должный уход.Причины возникновения зубного камня:
Человек нерегулярно чистит зубы или чистит их неправильно.
В рационе человека преобладает мягкая пища.
Жевание производится только одной стороной челюсти (левой или правой).
Использование некачественных зубных щёток и паст.
У человека нарушен обмен веществ, в первую очередь солевой.
Причиной возникновения зубного камня может быть неправильное положение зубов, шероховатая поверхность вследствие пломб, ортодонтических и ортопедических конструкций.Зубной налет на поверхности зуба образуется микроорганизмами полости рта. Продуктами жизнедеятельности микрофлоры зубного налета являются различные кариесогенные факторы: органические кислоты, аминокислоты, ферменты. Их образование в значительной мере стимулируется наличием легкоусвояемых углеводов в пище. В образовании зубной бляшки и развитии кариеса большое значение имеют факторы ротовой среды, создающие условия для микробного обитания. Среди них важная роль отводится плохому гигиеническому уходу за зубами, что способствует накоплению мягкого налета с последующим образованием на зубах микробной бляшки.
Зрелая зубная бляшка представляет собой структурно сложное полимикробное образование толщиной до 200 мкм. Она очень опасна для эмали зуба, т.к. разрушает ее. В зрелом зубном налете могут произойти изменения состава микроорганизмов, снижение продукции кислоты и увеличение рН, накопление кальция и его отложения в виде фосфорнокислых солей, т.е. зубной налет превращается в зубной камень.

94. Десневая (гингивальная) жидкость, ее химический состав и роль. Белки и ферменты десневой жидкости в норме и при патологии. Изменение состава десневой жидкости при пародонте.
Десневая жидкость - сывороточный экссудат из сосудистого сплетения расположенного под соединительным эпителием, который, диффундируя, проникает на дно десневой борозды. При клинически здоровой десне десневую жидкость не обнаруживают или она появляется в незначительном количестве. С возрастанием интенсивности воспаления десны количество десневой жидкости в десневой борозде значительно увеличивается.
Десневая жидкость, принимающая участие в механическом омывании борозды, представляет собой питательную среду для микроорганизмов поддесневого налета, а в связи с наличием в ее составе иммуноглобулинов и клеток, обладает антимикробным действием.
Кроме того, в десневой жидкости имеются такие неклеточные составные, как электролиты, белки плазмы, фибрин, фибринолитические факторы и ферменты, а также десквамированные эпителиальные клетки и микроорганизмы.

95. Влияние характера питания, особенностей химического состава слюны и твердых тканей зуба на состояние зубов и развитие кариеса. Биохимические аспекты профилактики кариеса.
Метаболически незаменимые компоненты пищи не могут синтезироваться в организме и должны постоянно поступать извне. Дефицит незаменимых элементов немедленно сказывается на развитии тех органов, в состав которых они
входят или в образовании которых участвуют. При этом наблюдаются многочисленные патологические изменения,
включая атрофию мышц, слабость, потерю массы тела, анемию, лейкопению, отеки, пониженную способность образовывать антитела, определенные гормоны и ферменты, пониженную сопротивляемость инфекциям, медленное заживление ран, истощение организма.
Ткани полости рта также очень чувствительны к дефициту определенных компонентов пищи. Достаточно отметить, что десна, зубы, язык, слизистая оболочка щек являются тканями-мишенями, которые исторически использовались для диагностики дефицита белков в пище. Дефицит протеинов в период развития зубов приводит к уменьшению их размера и массы, нарушению структуры эмали зубов. Более выраженные изменения происходят в мягких тканях, где наблюдаются дегенерация соединительной ткани десны и периодоптальной связки, замедленное заживление ран и
атрофия эпителия языка. Остеопороз развивается в результате
пониженного отложения солей, уменьшения количества остеобластов и замедления морфодифференциации клеток соединительной ткани в остеобласты. Избыток углеводов в питании, особенно в период до прорезывания зубов, приводит к повышенной восприимчивости зубов к кариесу. Повышенное содержание в пище углеводов н недостаточное содержание белкс-в превращает диету человека в кариесогенную.
В результате экспериментов и клинических наблюдений установлено, что и интенсивность, и экстенсивность кариеса зубов зависят от частоты употребления ферментированных углеводов. Обширные исследования, проведенные в Швеции, показали, что у лиц, которые потребляли в год 94 кг сахара, гораздо чаще обнаруживали кариес зубов, чем у индивидуумов, съедавших за год 85 кг сахара. Сходные исследования провел , обследовав детей, находящихся в школах-интернатах Австралии. У школьников, в диете которых были резко ограничены сладости, кариес зубов наблюдался гораздо реже, чем у детей, поедавших сладости без ограничений. В экспериментах на животных установлено, что моно- и днсахариды обладают большей кариесогенностью, чем крахмал. Существует мнение, что из всех Сахаров сахароза наиболее кариесогенна. Не исключена возможность, что этот вывод часто делают потому, что
именно сахароза больше всего потребляется человеком. Об этом свидетельствует работы, в которых изучался зффект
замены сахарозы фруктозой или глюкозой. Результаты мало чем отличались: кариес зубов почти с одинаковой частотой встречался как у людей, потреблявших во время эксперимента сахарозу, так и у получавших иные сахара. Патогенетическая роль Сахаров сводится к созданию условий роста кариесогенных микроорганизмов, которые в свою очередь формируют зубной налет, способный аккумулировать кислоты как продукт их жизнедеятельности.
Данные литературы свидетельствуют о том, что большинство микроэлементов не оказывает специфического действия на распространенность стоматологических заболеваний. Исключением является фтор, роль которого & возникновении кариеса зубов доказана (при содержании в питьевой воде менее 0,7 мг/л). Однако многие вопросы, касающиеся микроэлементов, изучены еще недостаточно.

V. Медицинская биохимия.

96. общий белок плазмы крови и его фракции, их содержание в крови здоровых взрослых людей. Гипо-, гипер- и диспротеинемии. Значение определения содержания общего белка и белковых фракций для диагностики.
Белок общий в плазме - 65 - 85гр/л.Подразделяются на:
n альбумины 40-50гр/л
n глобулины 20-30гр/л
n Фибриноген 2-4гр/л
Функции белков.
-n транспортная. Соединяясь с рядом веществ (холистерин, билирубин и др.), а так же с рядом лекарственных веществ (пинициллин) они (белки) переносят их в ткани
-n поддержание рН
-n резерв аминокислот
-n защитная. Принимают активное участие в свертывании крови. Фибриноген - основной компонент системы свертывания крови. Важная роль в процессах иммунитета.
-n поддержание уровня катионов
-n поддержание осмотического давления (0,02 атм плазмы крови). Являясь коллоидами, связывают воду и задерживают ее, не позволяя выходить из кровяного русла
Белки: Трансферин. Гемопексин. С-реактивный белок. g-Глобулины. Фибриноген плазмы. Церулоплазмин
Изменение белков при патологии.
Гиперпротеинемии. Увеличенное содержание белков плазмы крови. Возникают при больших потерях воды вследствие ожогов, диарея у детей, рвота при непроходимости верхних отделов кишечника. Резкое увеличение g-глобулинов при миеломной болезни (интенсивно образуются миеломные белки). Содержание белка может достигать 150-160 гр/л, т.е. увеличиваться в 2 раза по сравнению с нормой.
Гипопротеинемия. Снижения содержания общего белка в плазме крови. Развивается за счет снижения содержания альбуминов. Общий белок может снижаться до 3-4- гр/л. Причины. Голодание, тяжелое поражение печени, нефрозы, увеличение проницаемости стенок капилляров.
Диспротеинемии. Нарушение % соотношения отдельных фракций. Часто оно характерно для тех или иных заболеваний
Причины появления в моче.
При ряде заболеваний в моче появляется белок протеинурия.
1. Внепочечные протеинурии наблюдаются при циститах, пиелитах, простатитах, уретритах и т. д. Количество белка, как правило, не превышает 1%.
2. Почечные протеинурии при функциональных, нарушениях неорганического поражения паренхимы, повышена проницаемость почечного фильтра. Это может быть при охлаждении, физическом и психическом напряжении.
Ортастатическая протеинурия развивается чаще у детей дошкольного и школьного возраста.
Органические протеинурии поражена паренхима и увеличена проницаемость клубочковых капилляров, наблюдается при острых и хронических гломерулонефритах, нефрозах, инфекционных и токсических состояниях, застойных явлениях в почках.

97. Остаточный азот крови, его основные компоненты. Азотемии, причины их возникновения. Значение биохимических методов исследования в установлении причины развития азотемии.
Остаточный азот - небелковый азот крови, т.е. остающийся в фильтрате после осаждения белков. В крови - 14,3-28,6 мМ/л
Общий азот мочи включает в себя весь азот белка, продуктов белкового распада и других органических соединений азота (но не соединений азотной кислоты).
Повышение остаточного азота крови (азотемия) может возникать в результате нарушения азотовыделительной функции почек, т. е. вследствие почечной недостаточности. Такое повышение остаточного азота называют ретенционным. Это наиболее частая причин азотемии, которая наблюдается при хронических воспалительных заболеваниях почек (гломерулонефрит, пиелонефрит), гидронефрозе, поликистозе, туберкулезе почек, гипертонической болезни с поражением почек, нефропатии беременных, задержке мочи какими-либ препятствиями в мочевыводящих путях (камень, опухоль) и др.
Продукционная азотемия возникает при избыточном поступлении азотсодержащих веществ в кровь вследствие усиленного распада тканевых белков. Функция почек при этом обычно не нарушается.
Продукционная азотемия может наблюдаться при лихорадочных состояниях, распаде опухоли. Синдром, раздавливания (размозжения) тканей, отравления солями ртути, дихлорэтаном и другими токсическими веществами с некротическим поражением почечной ткани сопровождаются азотемией смешанного характера, т. е. продукционная азотемия сочетается с ретенционной.
В этих случаях возникает гиперазотемия резкое повышение остаточного азота в 10-20 раз по сравнению с нормой. Гиперазотемия наблюдается и при тяжелых явлениях почечной недостаточности. Начальные нарушения функции почек могут не приводить к повышению остаточного азота крови.
Увеличение общего азота в моче указывает на ухудшение его усвоения в организме в связи с некачественным белком пищи. Избыток белка в пище приводит к высокому содержанию в моче мочевины.

98. Образование желчных пигментов. Значение определения желчных пигментов для диагностики болезней печени, желчевыводящих путей и крови.
ЖЕЛЧНЫЕ ПИГМЕНТЫ, красящие в-ва, входящие в состав желчи.
Цвет желчных пигментов от желто-оранжевого до сине-зеленого. В организме человека и высших животных желчные пигменты образуются в результате окислит. расщепления a-метиновой связи гема (простетич. группы гемоглобина) в печени и др. органах. Первичный продукт расщепления гема биливердин , темные сине-зеленые кристаллы, т. пл. > 300 °С; плохо раств. в метаноле, хлороформе и эфире.При восстановлении биливердинредуктазой превращается в билирубин II (мол. м. 584), желто-оранжевые или коричневые кристаллы, при нагр разлагаются без плавления, плохо раств. в этаноле и эфире.
Восстановление билирубина в мягких условиях под действием HI в СН3СООН приводит к образованию бесцв. дипиррольных продуктов.
Содержание билирубина в крови.
Билирубин общий 1,7-20,5 мкМ/л
прямой 0,9 - 4,5 мкМ/л
непрямой 1,7 - 17,0 мкМ/л
Причина изменения содержания билирубина в крови.
При распаде гемоглобина образуется билирубин. В печени он связывается с глюкуронатом и в виде диглюкуронида экскретируется с желчью. Билирубин накапливается в плазме при печеночной недо­статочности, закупорке желчевыводящих путей, при повышенном распаде гемоглобина. Изменение концентрации может быть связано с дефектом ферментных систем, участвующих в метаболизме билирубина (например, при отсутствии глюкуронил-трансфера зы).
Прямой и непрямой билирубин сыворотки повышены при остром и хроническом гепатите, закупорке желчевыводящих путей (на уровне желчных протоков или
общего желчного протока), при токсической реакции на многие лекарственные препараты, химические вещества, токсины, при синдромах Дабин Джонса и Ротора.
Непрямой билирубин сыворотки повышен при гемолитических анемиях, других гемолитических реакциях, при отсутствии или дефиците глюкуронилт-рансфера зы (например, при синдромах Жильбера и Криглера Наджара).
Прямой и общий билирубин могут быть значительно повышены у здоровых людей после 2448 ч голодания (иногда даже после 12 ч), при длительной низкокалорийной диете.
Причины появления в моче.
Билирубин. В норме моча содержит минимальные количества билирубина, которые не могут быть обнаружены обычными качественными пробами. Повышенное выделение билирубина, при котором обычные качественные пробы на билирубин в моче становятся положительными, называется билирубинурией. Она встречается при закупорке желчного протока и заболевании паренхимы печени.
Выделение билирубина в мочу особенно сильно выражено при обтурационных желтухах. При застое желчи переполненные желчью канальцы травмируются и пропускают билирубин в кровяные капилляры. Если поражена паренхима печени, билирубин проникает через разрушенные печеночные клетки в кровь. Кстати, непрямой билирубин не может пройти через почечный фильтр. Это становится возможным при значительных поражениях почек.
Уробилин (уробилиноген) полное отсутствие уробилина указывает на обтурационную желтуху. Появление уробилина в больших количествах может быть при гемолитических состояниях (гемолитическая желтуха, гемоглобинурия, рассасывание больших кровоизлияний, обширные инфаркты миокарда, малярия, скарлатина) при заболеваниях печени (гепатиты, цирроз печени, отравления), при кишечных заболеваниях, при токсических заболеваниях печени.

99. Ферменты плазмы крови. Диагностическое значение определения активности аминотрансфераз, изоферментов лактатдегидрогеназы, креатинкиназы в сыворотке крови при инфаркте миокарда и болезнях печени.
Кровь содержит множество ферментов, но их количество бывает настолько минимально, что их не удается обнаружить в качестве отдельной электрофоретической фракции. По происхождению ферменты крови принято разделять на три группы:
1. Собственные ферменты крови (секреторные). Ферменты, выполняющие определенные функции в крови. Ферменты свертывающей и антисвертывающей системы крови. Фермент липопротеидлипаза (атакует ЛП), триглицеридлипаза, лицитинхолистеролаци лтран сфераза (ЛХАТ) катализирует реакцию этерефикации холистерола
2. Ферменты, поступающие в кровь из тканей в результате гибели клеток или утечки через мембрану. Индикаторные ферменты.
3. Ферменты, поступающие в кровь из выводных протоков различных желез. Экскреторные ферменты. Амилаза и липаза (из поджелудочной железы), щелочная фосфотаза (из печени).
В целом активность ферментов в крови и определяется соотношением процессов
1. Увеличивается утечка через поврежденные мембраны.
2. Некроз ткани 3. Повышенный синтез 4. Высокая активность5. Старение и отмерание клеток
Уменьшение1. Инактивация2. Экскреция3. Поглощение клетками ретикулоэндотелиальн ой системы.
На регистрируемую величину активности влияет период полужизни ферментов в крови. Оказывается, для каждого фермента он индивидуален. АсАТ период полужизни составляет 17±5 часов. АлАТ - 47±10 часов. Холиностераза - 10 суток, липаза 3-6 часов.
Энзимодиагностика.
Определение активности ферментов с целью диагностики и контроля за проводимым лечением.
Для энзимодиагностики используются в настоящее время определение активности более 50 ферментов. Наиболее известны - ЛДГ, альдолаза, трансаминаза, креатинкиназа, амилаза, кислая и щелочная фосфотаза, глутоматдегидрогиназ а. Определяют активность ферментов всех групп (секреторных, индикаторных, экскреторных), но наиболее значение имеет определение органоспецифичных ферментов.

100. Нормальное содержание глюкозы в крови. Гипо- и гиперглюкоземии, их основные причины. Сахарные кривые (проба на толерантность к глюкозе), диагностическое значение определения.
Глюкоза - 3,3-5,5 мМ/л
Так как глюкоза в крови - это основной источник энергии для органов и тканей в организме человека, то, когда ее уровень становится ниже нормы (это состояние называется гипогликемией), могут развиваться серьезные изменения со стороны головного мозга, вплоть до развития комы
Постоянная концентрация глюкозы в крови - есть результат очень сложного баланса процессов поступления глюкозы в кровь и процессов ее утилизации в органах и тканях.
Важную роль в поддержании концентрации глюкозы играет эндокринная система человека. Целый ряд гормонов повышает содержание глюкозы в крови: глюкагон, адреналин, соматотропин (СТГ), йодированные тиронины, глюкокортикоиды (кортизол).
Повышение показателя имеет место при диабете, гипертиреозе, аденокортицизме (гиперфункции коры надпочечников), гиперпитуитаризме, иногда при заболеваниях печени. Гипогликемии могут развиваться у здоровых людей при длительном голодании, а также у больных при нарушении всасывания углеводов (при заболеваниях желудка и кишечника, демпинг-синдроме и т. д.), при хронических болезнях печени и некоторых эндокринных заболеваниях (недостаточность функции гипофиза, надпочечников, щитовидной железы). Иногда гипогликемические состояния отмечаются у людей, страдающих заболеваниями центральной нервной системы: распространенном атеросклерозе сосудов головного мозга, последствиях инсультов.
Снижение показателя имеет место при гиперин-сулинизме, недостаточности функции надпочечников, гипопитуитаризме при печеночной недостаточности (иногда), функциональной гипогликемии и при приеме гипогликемических препаратов.
В моче Глюкоза в нормальной моче имеется в виде следов и не превышает 0,02 %, что обычными качест венными методами не определяется. Появление сахара в моче (глюкозурия) может быть в физиологических условиях обусловлено пищей с больших содержанием углеводов, после лекарств, например диуретин, кофеин, кортикостроиды. Патологическая глюкозурия чаще всего бывает при сахарном диабе те, реже при тиреотоксикозе, синдроме Иценко Кушинга и т. д.
Содержание глюкозы - 3,3-5,5 ммоль/л
Сахапные кривые здорового человека (1) в больных скрытым (2) и явным
(3) сахарным диабетом.
У здорового человека (1) исходное содержание сахара в крови нормальное (<5 ммоль/л). После приема нагрузки в течение часа вследствие всасывания глюкозы содержание сахара в крови умеренно возрастает. В ответ на развивающуюся гипергликемию усиливается секреция инсулина, глюкоза переходит в ткани и содержание её в крови к 3 часам снижается до исходного уровня или даже несколько ниже.
V больного скрытым сахарным диабетом (2) исходное содержание глюкозы в крови на верхней границе нормы (5,7 ммоль/л). После нагрузки подъем сахара в крови выражен в большей степени и к 3-му часу не достигает исходного содержания вследствие недостаточной выработки инсулина.
У больного явны.и сахарные диабетом (3) натощак определяется гнперглнкемня (9 ммоль/л). К 1-му часу выраженный подъем глюкозы в крови (15 ммоль/л) и к 3-му часу снижение незначительно, не достигает исходной величины вследствие инсулиновой недостаточности.


102 . Патологические составные части мочи, их происхождение. Методы обнаружения в моче глюкозы, белка, ацетоновых тел, кровяных и желчных пигментов.
Белок. В нормальной моче человека содержится минимальное количество белка, присутствие которого не может быть доказано обыкновенными качественными пробами на белок. При ряде заболеваний, особенно болезнях почек, содержание белка в моче может резко возрасти (п ротеинури я). Источником белка мочи являются белки сыворотки крови, а также в какой-то степени белки почечной ткани. Протеинурии делятся на две большие группы: почечные и внепочечные. Кровь. В моче кровь может быть обнаружена либо в форме красных кровяных ( клеток (гематурия), либо в виде растворенного кровяного пигмента (гемогло-бинури я). Гематурии бывают почечные и внепочечные. Почечная процессах или травмах мочевых путей.. Глюкоза. Нормальная моча человека содержит минимальные количества глюкозы, которые не обнаруживаются обычными качестьенными пробами. Однако при патологических состояниях содержание глюкозы в моче увеличивается (глюкозурия). Например, при сахарном диабете количество глюкозы, выделяемое с мочой, может достигать нескольких десяткой граммов в сутки (см. главу 9). Кетоновые (ацетоновые) тела. В нормальной моче зги соединения встречаются лишь в самых ничтожных количествах (не больше 0,01 г в сутки). Они не обнаруживаются обычными качественными пробами (нитропруссидные пробы Легаля, Ланге н др.). При. выделении больших количеств кетоновых тел качественные пробы становятся положительными это явление патологически и называется кетону-рией. Например, при сахарном диабете ежедневно может выделяться до 150 г кетоновых тел.
Наряду с сахарным диабетом кетоновые тела выделяются с мочой при голодании, исключении углеводов из пиши, Бвлирубнн. В норме моча содержит минимальные количества бипирубина, которые не могут быть Обнаружены обычными качественными пробами. Повышенное выделение билирубина, при котором обычные качественные пробы
желчного протока и заболевании паренхимы печени. Выделение билирубина в мочу особенно сильно выражено при обтурационных, желтухах.
Уробилин. Уробилин, точнее стеркобилин, всегда находится в незначительном количестве в моче, однако концентрация его резко возрастает при гемолитической и печеночной желтухах.
Иорфирины. В норме моча содержит лишь очень малые количества порфиринов I типа (до 300 мкг в суточном количестве). Однако выделение порфиринов может резко возрастать (в 10 12 раз) при заболеваниях печени и периициозной анемии.
Глюкозурня появление глюкозы в моче, развивается при повышении содержания глюкозы в крови свыше 10 ммоль/л. Как и гипергликемии, глюкозурии могут быть физиологическими и патологическими. на почве стрессовых состояний.
Во вторую группу входят глюкозурии, возникающие в результате нарушений углеводного обмена, например, при сахарном диабете, остром панкреатите и др. Реже встречается глюкозурия почечного происхождения, связанная с неполной реабеорбцией глюкозы в почечных кзнальцах (почечный дшбет стероидный диабет, вторичная ренальная глюкозурю при хронических заболеваниях, почек). Как временное явление глюкозурия возникает при некоторых острых инфекциях и нервных заболеваниях, после приступов эпилепсии, сотрясения мозга. Отражения морфином, стрихнином, фосфором также могут сопровождаться глюхозурией.
Снижение содержания глюкозы в крови менее 3,3 ммоль/л оассматоивается как гипогликемия.
Почечный порог 9,0 млмлоль/л Изменения в крови и появление в моче.
Повышение показателя имеет место при диабете, гипертиреозе, аденокортицизме (гиперфункции коры надпочечников), гиперпитуитаризме, иногда при заболеваниях печени. Снижение показателя имеет место при гиперин-сулинизме, недостаточности функции надпочечни ков, гапопитуитаризме при печеночной недостаточности (иногда), функциональней гипогликемии и при приеме гипогликемических препаратов.
В моче
Глюкоза в нормальной моче имеется в виде следов и не превышает 0,02 %, что обычными качест венными методами не определяется. Появление сахара в моче (глюкозурия) может быть в физиоло гических условиях обусловлено пищей с больших содержанием углеводов, после лекарств, например диуретин, кофеин, кортикостроиды. Патологическая глюкозурия чаще всего бывает при сахарном диабе те, реже при тиреотоксикозе, синдроме Иценко Кушинга и т. д.
Белок в нормальной моче находится в -виде следов, которые не открываются обычными реакциями, применяемыми в клинической лаборатории. При ряде заболеваний с мочой начинает выделяться заметное количество белка, начиная с долей грамма до 25 г в сутки. Появление белка в моче называется протеинурией или альбуминурией, поскольку моча содержит в основном сывороточный альбумин и лишь частично сывороточный глобулин. Нротеинурия может быть истинной или ложной. При истинной, или почечной, протеинурии белки сыворотки крови попадают в мочу через почки. Случайная, или ложная, протеинурия наблюдается при попадании в мочу слизи, крови, гноя, но не из почек, а из мочевыводящих путей.
Моча здоровых людей обладает низкой амилазнои активностью по сравнению с амилазой слюны. Определение активности а-амидазы в моче и сыворотке крови широко используется в клинике при диагностике заболеваний поджелудочной железы. В 1-е сутки заболевания амилазная активность увеличивается в моче и сыворотке кровк в десятки раз, а затем постепенно возвращается к норме. При почечной недостаточности амилаза в моче отсутствует. -
В детском возрасте увеличение активности амилазы наблюдается при эндемическом паротите, что указывает на одновременное поражение поджелудочной железы вирусом паротита. Вирус гриппа также поражает поджелудочную железу, но реже.








Приложенные файлы

  • doc 18468682
    Размер файла: 893 kB Загрузок: 0

Добавить комментарий