Plan_otveta_makropreparata

План ответа макропрепарата.
Название
Ингредиенты
Назначение
Наблюдаемый результат

Рост кишечных палочек на среде Эндо.
Среда Эндо – дифференциально-диагностическая среда. В составе среды: лактоза и индикатор кислотности - фуксин. Среда предназначена для выделения (преимущественно из кала и мочи) и дифференциации микроорганизмов семейства Enterobacteriaceae. Лактозопозитивные кишечные палочки, входящие в состав нормальной микрофлоры кишечника растут колониями малиново-красного цвета с металлическим блеском, так как расщепляют лактозу и изменяют рН среды. Лактозоотрицательные микроорганизмы (некоторые патогенные кишечные палочки, шигеллы, сальмонеллы) растут колониями белого или светло-розового цвета.

Рост кишечных палочек и дизентерийных палочек на среде Плоскирева.
Среда Плоскирева – дифференциально-диагностическая среда. Это селективная среда для выделения шигелл и сальмонелл. Готовая среда прозрачна, имеет розовато-желтоватый цвет. Среда Плоскирева относится к плотным средам для выделения чистых культур. В состав среды Плоскирева входят ингибирующие вещества (желчные соли, бриллиантовый зеленый, йод), вследствие чего она должна полностью подавлять рост грамположительной флоры, значительно задерживать (первые 24 ч) рост эшерихий и другой сопутствующей микрофлоры, подавлять роение протея. Дифференцирующие свойства агара Плоскирева основаны на изменении рН в кислую сторону при росте лактозоферментирующих бактерий, которые образуют колонии брусничного цвета (индикатор нейтральный красный). Лактозоотрицательные бактерии вырастают в виде бесцветных или слабоокрашенных колоний.

3. Рост стафилококка на кровяном агаре.
Кровяной агар (КА) – сложная плотная питательная среда для культивирования прихотливых видов микроорганизмов и выявления гемолизинов (определения у МО одного из факторов вирулентности – гемолитической активности). На 100 мл расплавленный и остуженный до 450С мясо-пептонный агар (МПА) добавляют 5 мл отмытых эритроцитов барана или эритроцитарной массы крови человека (I группы), аккуратно перемешивают, разливают в чашки Петри. На поверхность застывшего и подсушенного КА засевают чистую культуру исследуемых микроорганизмов, после суточной инкубации при 370С определяют зоны гемолиза вокруг выросших колоний. Зоны гемолиза виды в виде полного (
·-гемолиз) или частичного (
·-гемолиз) просветления вокруг колоний. На данной чашке видны колонии стафилококков бело-серого цвета с зонами полного просветления вокруг, что свидетельствует о наличии у этих микроорганизмов гемолитической активности.

4. Реакция преципитации в агаре для определения токсигенности дифтерийной палочки.
Реакция преципитации относится к реакции иммунитета между антигенами (АГ) и антителами (АТ). Детерминанта АГ связывается с активным центром АТ. Соединение АГ и АТ осуществляется посредством водородных и гидрофобных связей, взаимодействия ионов, кулоновских и ван-дер-вальсовых сил. Прочность соединения АГ с АТ обеспечивается не только силами связывания, но и оптимальной стерической адаптацией активного центра АТ к АГ-детерминанте.
Серологические реакции протекают в две фазы. Первая – специфическая невидимая, - заключается во взаимодействии АГ с АТ. Вторая фаза – видимая, - проявляется в зависимости от типа реакции, который определяется свойствами АГ, АТ и другими ингридиентами реакций. В реакции преципитации (РП) участвует растворенный антиген. При контакте с антителами – преципитинами образуется осадок. Реакцию преципитации можно проводить в жидкой среде (в пробирках) и в геле (в чашках Петри).
Одной из разновидностей РП в геле является реакция определения токсигенности дифтерийной палочки. Для этого в чашку Петри на питательную среду помещают полоску стерильной фильтровальной бумаги, пропитанную антитоксической противодифтерийной сывороткой. Эта сыворотка содержит АТ к дифтерийному токсину, получается путем иммунизации животного (кролика) анатоксинами (токсин лишенный вирулентности-токсигенности, но сохранивший иммуногенность-антигенность). Затем на плотнуб питательну среду в чашке высевают испытуемые культуры в виде пятачков на расстоянии 0,6-0,8 см от края фильтровальной бумаги. Чашки инкубируют при 370С в течение суток. При наличии токсигенной культуры в месте взаимодействия токсина с антитоксином образуются линии преципитации в виде дуг. Дуга – это визуальное отображение взаимодействия АТ диффундирующих из фильтровальной бумаги и АГ - экзотоксинов, выделяемых токсигенными культурами.

Определение фаготипов брюшнотифозных палочек.
Фаготипирование - это определение принадлежности выделенного бактериального штамма к тому или иному фаготипу. Фаготип - это совокупность бактериальных штаммов, характеризующихся одинаковой чувствительностью к типовому набору бактериофагов. Бактериофаг - это вирус, способный инфицировать бактериальную клетку, репродуцироваться в ней и вызывать ее лизис. Фаготипирование применяется, как правило, в интересах эпидемиологического анализа - это сопоставление эпидемиологических, клинических, лабораторных и других данных применительно к определенной инфекционной болезни с целью установления причин ее распространения, определения характера и масштабов необходимых противоэпидемических мер.
Фаготипирование проводится по следующей методике. На чашки Петри засевают шпателем взвеси исследуемых культур. На засеянную поверхность агара пипетками наносят аккуратными каплями индикаторные бактериофаги различных типов. Места нанесения фагов маркируют на дне чашки. Пипетки и шпатель помещают в стакан с дезраствором. Посевы помещают в термостат на 24 часа. Через сутки учитывают результат. На поверхности выросших исследуемых культур определяют зоны лизиса бактерий соответствующим типом фага. Сравнивают фаготипы культур, выделенных из разных источников.
В данном случаев даны две культуры: выделенная от больного и из водного источника. На чашках видно, что лизис культур происходит при действии одного и того же вида фага Д5. Фаготип обеих выделенных культур - Д5, значит, выделенные культуры микроорганизмов идентичны по фаготипу больной мог заразиться при употреблении инфицированной воды.

Цветная проба.
Один из методов обнаружения вируса в исследуемом материале, идентификация вируса и обнаружения антител в сыворотке крови обследуемого пациента.
Общим принципиальным положением при выделении вирусов является их культивирование в живой клетке (культура ткани, куриный эмбрион, организм животного). В основе идентификации вирусов лежит принцип нейтрализации, т.е. взаимодействие вируса со специфической иммунной сывороткой, в результате которого вирус утрачивает способность проявлять свою активность в действии на субстрат (клетки культуры ткани, эритроциты, куриный эмбрион и т.п.).
Культура клеток – клетки какой-либо ткани животных или человека, способные расти и размножаться в искусственных условиях. Культуры клеток широко применяются при диагностике вирусных инфекций, в производстве вакцин, незаменимы при проведении научных исследований в области вирусологии. Для успешного получения клеточных культур и последующего размножения в них вирусов культивируемые клетки должны постоянно находиться в сбалансированной физиологической среде, содержащей все необходимые компоненты для их жизнедеятельности и размножения. Питательные потребности клеток обеспечиваются наличием незаменимых аминокислот (таких, как глутамат, лейцин, изолейцин, валин, фенилаланин, аргинин, гистидин, метионин, треонин, цистин, тирозин), витаминов (особенно комплекса В), глюкозы и сыворотки крови. Изотоничность и буферность среды поддерживается с помощью неорганических солей. Оптимальным является рН 7,2-7,4, при длительном культивировании клеток значение рН должно оставаться в пределах 6,8-7,8. Постоянство рН в течение нескольких дней обеспечивается присутствием карбонатного и фосфатного буферов. Стабилизации значения рН способствует выращивание культур в пробирках и флаконах, закрытых резиновыми пробками, вследствие чего не улетучивается СО2 (в противном случае это привело бы к сдвигу рН в щелочную сторону). Контроль за реакцией среды осуществляется путём добавления индикатора фенолрот: при рН 6,8-7,2 среда имеет жёлтый цвет, при рН 7,2-7,4 – оранжево-розовый, при рН 7,4-7,6 – красный, при рН 7,7-7,8 – красно-фиолетовый.
Индикацию вирусов в культуре клеток проводят на основании феномена цитопатического действия (ЦПД). «Цветная» проба. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе своего метаболизма выделяют кислые продукты, что ведет к изменению рН среды и цвета индикатора фенолового красного на желтый. При продукции вирусов нормальный метаболизм клеток нарушается, клетки гибнут, и среда сохраняет свой первоначальный (красный) цвет. Таким образом, красный цвет среды указывает на наличие вируса и прекращение жизнедеятельности клеток.
Для идентификации вирусов используется феномен задержки цитопатического действия (ЗЦПД). При этом можно определить соответствие вируса и вируснейтрализующей сыворотки, если их предварительно смешать и эту смесь после инкубации внести в культуру клеток. Специфическая сыворотка нейтрализует вирус, он не оказывает цитопатическое действие на клетки культуры, клетки остаются живы, изменяется рН и цвет среды становиться желтым.
Тот же феномен (ЗЦПД) лежит в основе серологических реакций. В пробирку вноситься среда 199, культура клеток и смесь вирусного диагностикума (известный АГ) и сыворотки крови обследуемого (неизвестные АТ). При соответствии АТ вирусному АГ происходит реакция нейтрализации, культура клеток остается жизнеспособной и изменяется цвет среды на желтый.

Реакция связывания комплемента.
Эта реакция относится к реакциям иммунитета между антигенами (АГ) и антителами (АТ). Детерминанта АГ связывается с активным центром АТ. Соединение АГ и АТ осуществляется посредством водородных и гидрофобных связей, взаимодействия ионов, кулоновских и ван-дер-вальсовых сил. Прочность соединения АГ с АТ обеспечивается не только силами связывания, но и оптимальной стерической адаптацией активного центра АТ к АГ-детерминанте.
Серологические реакции протекают в две фазы. Первая – специфическая невидимая, - заключается во взаимодействии АГ с АТ. Вторая фаза – видимая, - проявляется в зависимости от типа реакции, который определяется свойствами АГ, АТ и другими ингридиентами реакций. В основе РСК лежит реакция лизиса антигена (цитолиза или бактериолиза) под действием антител с участием комплемента.
Ингредиенты реакции: 3 (три) системы, 5 (пять) компонентов. Бактериологический (вирусологический) метод. Диагностическая система: антиген (первый компонент) не известен – выделенная чистая культура; антитело (второй компонент) известен – диагностическая сыворотка (содержит известные АТ, получена путем иммунизации животного известным АГ). Комплемент (вторая система, третий компонент) – получается из сыворотки крови морской свинки. Индикаторная система (здесь все известно): эритроциты барана (антиген) (четвертый компонент) и гемолитическая сыворотка (антитела, получаемся путем иммунизации кролика эритроцитами барана) (пятый компонент).
Серологический метод. Диагностическая система: антиген (первый компонент) известен – диагностикум; антитело (второй компонент) не известен –сыворотка крови обследуемого (содержит не известные АТ). Комплемент (вторая система, третий компонент) – получается из сыворотки крови морской свинки. Индикаторная система (здесь все известно): эритроциты барана (антиген) (четвертый компонент) и гемолитическая сыворотка (антитела, получаемся путем иммунизации кролика эритроцитами барана) (пятый компонент).
Система комплемента представлена большой группой взаимодействующих между собой белков (20 белков идентифицированы иммунологически) и гликопротеидов сыворотки крови, обозначаемых символом «С», а девять основных компонентов комплемента – цифрами: С1, С2, С3, С9. Каждый компонент расщепляется на субъединицы, обозначаемые буквами – Сlq, C3a, C3b и т.д. Вырабатываются белки комплемента макрофагами, нейтрофилами, клетками печени и составляют 5-10% всех белков сыворотки. В организме комплемент находится в неактивном состоянии и активируется рядом факторов. После активации его действие носит каскадный характер, что приводит к образованию мембраноатакующего комплекса и последующему лизису клетки мишени.
Функция системы комлемента: Лизис чужеродных клеток и бактерий; Опсонизация чужеродных клеток, включая бактерии, которые становятся более доступными для макрофагов благодаря феномену иммунного прилипания (обусловлен фиксацией С3b компонента на бактериях и наличием рецептора для С3b на макрофагах). Стимуляция хемотаксиса. Стимуляция фагоцита (обусловлена присоединением к иммунному комплексу Cq или C3b). Опосредует процесс воспаления (повышение сосудистой проницаемости – С5а, С3а; усиление выброса биологичеси активных веществ- анафилотоксинов – С5а, С3а).
Известны два основных пути активации комплемента: классический (активируется комплексом антиген-антитело – IgG, Ig M); альтернативный (индуцируется ЛПС, антигенами вирусов, грибов, простейших, иммунными комплексами с Ig A, Ig E и т.д.). С3 компонент комплемента играет центральную роль в обоих путях активации комплемента.
Реакция основана на способности комплемента – комплексной системы белков нормальной сыворотки позвоночных, фиксироваться на комплексе АГ-АТ и последующем лизисе антигена. Самого комплемента ровно столько, чтобы он связался только с одной системой (опытной или индикаторной).
Если АГ и АТ в опытной системе соответствуют друг другу (комплементарны), то результатом этого взаимодействия является связывание комплемента. Комплемент лизирует этот комплекс и расходуется, поэтому эритроциты хоть и связываются с гемолитической сывороткой, но не могут лизироваться, так как нет комплемента и выпадают на дно пробирки в виде осадка. Таким образом, отсутствие гемолиза – положительный результат.
Индикаторная система выявляет свободный, не связавшийся комплемент. Если АГ и АТ опытной системы не соответствуют друг другу (некомплементарны) комплемент остался свободным, и он свяжется с комплексом эритроциты – гемолитическая сыворотка и будет лизировать эритроциты. Визуально видна «лаковая» кровь. Это (наличие гемолиза) означает отрицательный результат РСК.

Реакция Видаля.
Реакция Видаля – это реакция агглютинации, применяемая для диагностики брюшного тифа. Предложена в 1896 французским врачом Ф. Видалем (F. Widal, 18621929). Эта реакция относится к серологическим реакциям иммунитета между антигенами (АГ) и антителами (АТ). Детерминанта АГ связывается с активным центром АТ. Соединение АГ и АТ осуществляется посредством водородных и гидрофобных связей, взаимодействия ионов, кулоновских и ван-дер-вальсовых сил. Прочность соединения АГ с АТ обеспечивается не только силами связывания, но и оптимальной стерической адаптацией активного центра АТ к АГ-детерминанте.
Серологические реакции протекают в две фазы. Первая – специфическая невидимая, - заключается во взаимодействии АГ с АТ. Вторая фаза – видимая, - проявляется в зависимости от типа реакции, который определяется свойствами АГ, АТ и другими ингридиентами реакций.
Реакция Видаля основана на способности антител (агглютининов), образующихся в организме в течение болезни и длительно сохраняющихся после выздоровления, вызывать склеивание брюшнотифозных микроорганизмов. Если при добавлении к сыворотке крови человека культуры возбудителя происходит агглютинация, реакция считается положительной. Для диагностики брюшного тифа реакцию ставят многократно, учитывая её показания в динамике и в связи с анамнезом. Визуально при положительной реакции при встряхивании пробирки видны белые хлопья агглютинации поднимающиеся в виде змейки со дна пробирки и на прозрачном фоне жидкости эти хлопья видны отдельными частицами. При отрицательном результате встряхивание пробирки при водит в образованию равномерного помутнения жидкости.

11. Реакция непрямой (пассивной) гемагглютинации (РНГА).
Эта реакция относится к серологическим реакциям иммунитета между антигенами (АГ) и антителами (АТ). Детерминанта АГ связывается с активным центром АТ. Соединение АГ и АТ осуществляется посредством водородных и гидрофобных связей, взаимодействия ионов, кулоновских и ван-дер-вальсовых сил. Прочность соединения АГ с АТ обеспечивается не только силами связывания, но и оптимальной стерической адаптацией активного центра АТ к АГ-детерминанте.
Серологические реакции протекают в две фазы. Первая – специфическая невидимая, - заключается во взаимодействии АГ с АТ. Вторая фаза – видимая, - проявляется в зависимости от типа реакции, который определяется свойствами АГ, АТ и другими ингридиентами реакций.
Реакция непрямой гемагглютинации (РНГА; син. реакция пассивной гемагглютинации) - метод обнаружения и идентификации антигенов или антител, основанный на возникающем в их присутствии феномене агглютинации эритроцитов, на поверхности которых были предварительно адсорбированы соответствующие специфические антитела или антигены.
Серологический метод. Сыворотка крови обследуемого пациента (содержит неизвестные (искомые) АТ). Эритроцитарный диагностикум – содержит известный антиген, адсорбированный на поверхности эритроцита. Образование комплекса АГ-АТ влечет за собой и склеивание эритроцитов, что легко учитывать. Таким образом, эритроциты не участвуют непосредственно в образовании комплекса АГ-АТ, служат для укрупнения корпускула и соответственно являются индикаторами наличия комплекса АГ-АТ. РНГА более чувствительна, чем РА.
РНГА может использоваться как экспресс-метод, например при диагностике чумы или газовой гангрены. Ингредиенты: исследуемый материал – неизвестный АГ, диагностикум эритроцитарный антительный (содержит известные АТ адсорбированные на поверхности эритроцита). Образование комплекса АГ-АТ влечет за собой и склеивание эритроцитов, что легко учитывать.

12. Реакция задержки гемагглютинации.
Реакция задержки (торможения) гемагглютинации (РЗГА, РТГА) широко применяется в практике как для выявления и определения титра антител в сыворотке крови больных и вакцинированных животные, так и для идентификации выделенных вирусов по известной сыворотке. Ставить эту серологическую реакцию можно только с теми вирусами, которые обладают гемагглютинирующими свойствами.
Агглютинация эритроцитов при вирусных инфекциях обнаруживается в результате прямого взаимодействия вируса с поверхностью эритроцитов (реакция гемагглютинации - РГА). РГА наступает непосредственно в смеси гемагглютинирующего вируса с эритроцитами. РГА может быть нейтрализована, если перед взаимодействием с эритроцитами к гемагглютинирующему вирусу добавить специфическую иммунную сыворотку (реакция торможения, задержка гемагглютинации - РТГА, РЗГА).
РГА и РТГА впервые были предложены для обнаружения вируса гриппа и титрования противогриппозных антител. Вскоре появились сообщения о гемагглютинирующей активности вирусов осповакцины, ложной чумы кур, паротита, оспы, пневмонии мышей, кори, арбо-, адено- и парагриппозных, а также кишечных вирусов. Миксовирусы агглютинируют эритроциты многих видов животных и птиц, вирусы оспы и вакцины эритроциты петухов, арбовирусы и вирус кори эритроциты обезьян и гусей, большинство неполиомиелитных кишечных вирусов эритроциты человека.
Реакция гемагглютинации визуально видна в виде хлопьев красного цвета («зонтик») – положительная реакция. При этом осадок эритроцитов – это отрицательная реакция.
Реакция торможения гемагглютинации визуализируется в виде осадка эритроцитов («пуговка») – положительная реакция. При этом хлопья агглютинации – это отрицательная реакция.

13. Определения чувствительности бактерий к антибиотикам методом индикаторных дисков.
Важное значение в лечении и профилактике инфекционных заболеваний принадлежит химиотерапии и химиопрофилактике, эффективность которых в значительной степени зависит от чувствительности микроорганизмов к антимикробным препаратам. Среди химиотерапевтических средств, используемых для лечения больных с гнойно-септическими инфекциями, ведущее место занимают антибиотики.
Для определения чувствительности выделенных микроорганизмов к антибиотикам широко используется диско-диффузионный метод. Исследуемую культуру суспензируют в стерильном физиологическом растворе приготовляя 1-миллиардную взвесь по стандарту мутности. Бактериальную взвесь (1 мл) стерильной пипеткой наливают на поверхность плотной питательной среды в чашку Петри и равномерно распределяют шпателем. Избыток жидкости удаляют пипеткой. Шпатель и пипетки помещают в стакан с дезраствором. На засеянную поверхность стерильным пинцетом помещают на одинаковом расстоянии друг от друга и отступя 2 см от края чашки бумажные диски, содержащие определенные дозы разных антибиотиков. Посевы инкубируют при 37°С до следующего дня. По диаметру зон задержки роста исследуемой культуры бактерий судят о ее чувствительности к антибиотикам. Для получения достоверных результатов необходимо применять стандартные диски и питательные среды, для контроля которых используются эталонные штаммы соответствующих микроорганизмов. Метод дисков не дает надежных данных при определении чувствительности микроорганизмов к плохо диффундируюшим в агар полипептидным антибиотикам (например, полимиксин, ристомицин).

14. Рост стафилококка на желточно-солевом агаре.
Для приготовления 20% желточно-солевой агар к 100 мл расплавленного и остуженного до 600С мясо-пептонного агара (рН=7.2) с 10% хлорида натрия прибавляют 20 мл взвеси желтка куриного яйца в стерильном физиологическом растворе. На желточно-солевом агаре обнаруживается лецитовителлазная активность (ЛецА) (способность разрушать лецитовителлин яичного желтка) испытуемых микроорганизмов. Результат оценивается после 24 часовой инкубации в термостате при 370С по образованию вокруг колоний зоны помутнения с радужным венчиком. Учитывают в отраженном свете

15. Персистентные свойства микроорганизмов – антилизоцимная активность (АЛА).
АЛА – секреторный фактор персистенции. Изучают АЛА по методике О.В. Бухарина с соавт. (1984). Для этого к 1,5% питательному агару добавляют различные дозы яичного лизоцима (от 1 до 5 мкг) и разливают в чашки Петри. После застывания среды на подсушенную поверхность наносят каплю 1 млрд. взвеси суточной агаровой культуры изучаемого микроорганизма. Чашки инкубируют в термостате при 370С 24 часа, после этого выросшие колонии подвергаются обработке парами хлороформа в течение 20 минут, затем наслаивается слой 0,7% питательного агара с 0,1 мл 1 млрд. взвеси суточной агаровой культуры Micrococcus luteus (lysodeikticus) АТСС 15307 (ГИСК им. Тарасевича) чувствительной к литическому действия лизоцима. Учет результатов проводится через 24 часа инкубации в термостате по наличию зоны роста микрококка вокруг тех штаммов, которые нейтрализуют внесенный в слой агара яичный лизоцим. Антилизоцимную активность выражают в мкг инактивированного в среде лизоцима.
На данной чашке видны колонии АЛА+ и АЛА- штаммов микроорганизмов. Над колониями АЛА+ штаммов есть рост микрококка в виде мелких желтых колоний.

16. Лизоцимная активность.
Лизоцим – термостабильный белок, фермент, разрушает клеточную стенку преимущественно грамположительных бактерий, разрывая
·-гликозидные связи между аминосахарами пептидогликана, что способствует образованию протопластов с последующим их лизисом. Содержится во всех тканевых жидкостях, в лейкоцитах, макрофагах и других фагоцитирующих клетках. Продуцируется лизоцим преимущественно клетками моноцитарно/макрофагального ряда. Лизоцим усиливает антибактериальную активность комплекса антиген (микроб)-антитело-комплемент, способствуя лизису пептидогликана клеточной стенки бактерий. Помимо животного раличают растительный и микробный лизоцим.
Микробный лизоцим является одним из факторов колонизации. Лизоцимная активность (ЛА) определяется путем посева исследуемой культуры микроорганизма на питательную среду, содержащую 1 млрд. суспензию суточной агаровой культуры Micrococcus luteus (lysodeikticus) АТСС 15307 (ГИСК им. Тарасевича). Результат оценивается после инкубации при 370С в течение суток по зоне лизиса в толще среды индикаторного штамма микрококка вокруг изучаемых колоний.

17. Иммуноферментный метод
Иммуноферментный анализ (сокращённо ИФА, англ. enzyme-linked immunosorbent assay, ELISA) лабораторный иммунологический метод качественного или количественного определения различных соединений, макромолекул, вирусов и пр., в основе которого лежит специфическая реакция антиген-антитело. Выявление образовавшегося комплекса проводят с использованием фермента в качестве метки для регистрации сигнала.
ИФА появился в середине 60-х годов и первоначально был разработан как метод для идентификации антигена в гистологическом препарате, а также для визуализации линий преципитации в тесте иммунодифузии и иммуноэлектрофореза, а затем стал использоваться для количественного определения антигенов и антител в биологических жидкостях. В разработке метода принимали участия Е. Энгвалл и Р. Пэлман, а также независимо от них В. Ван Вееман и Р. Шурс.
Метод основан на специфическом связывании антитела с антигеном, при этом один из компонентов конъюгирован с ферментом, в результате реакции с соответствующим хромогенным субстратом образовывается окрашенный продукт, количество которого можно определить спектрофотометрически.
Открытие возможности иммобилизации антигена и антитела на различных носителях с сохранением их связывающей активности позволило расширить использование ИФА в различных областях биологии и медицины.
Появление моноклональных антител послужило дальнейшему развитию ИФА, что позволило повысить его чувствительность, специфичность и воспроизводимость результатов.
Теоретически ИФА основывается на данных современной иммунохимии и химической энзимологии, знании физико-химических закономерностей реакции антиген-антитело, а также на главных принципах аналитической химии. Чувствительность ИФА и время его проведения определяется несколькими основными факторами: кинетическими, термодинамическими характеристиками реакции антиген-антитело, соотношением реагентов, активностью фермента и разрешающей способностью методов его детекции. В общем виде реакция антиген-антитело может быть описана простой схемой: [AT]+[АГ][АТАГ]
Разнообразие объектов исследования от низкомолекулярных соединений до вирусов и бактерий, а также необычайно широкий круг задач, связанных с многообразием условий применения ИФА, обусловливают разработку чрезвычайно большого количество вариантов этого метода.
Любой вариант ИФА содержит 3 обязательные стадии:
1. стадия узнавания тестируемого соединения специфическим к нему антителом, что ведет к образованию иммунного комплекса;
2. стадия формирования связи конъюгата с иммунным комплексом или со свободными местами связывания;
3. стадия превращения ферментной метки в регистрируемый сигнал.

Принципальная схема иммуноферментного анализа для выявления АТ является следующей. Известный АГ (вирус, белок) – диагностикум фиксируется на твердой фазе. К нему добавляют сыворотку обследуемого с неизвестными АТ. После инкубации и промывки на антигене остаются специфичные к нему АТ, если таковые имелись в сыворотке обследуемого. Для обнаружения комплекса АГ-АТ, к нему добавляют кроличью антиглобулиновую сыворотку меченую ферментом (АГС-Ф). Для получения данной сыворотки иммунизируют кролика глобулинами человека. Полученную от кролика сыворотку метят каким-либо ферментом, например, пероксидазой хрена. Если в обследуемой сыворотке есть АТ к АГ (диагностикум), то они будут служить антигеном для антиглобулиновой сыворотки. После второй промывки образовавшийся комплекс АГ+АТ+АГС-Ф можно обнаружить, добавив субстрат на фермент (перекись водорода) и индикатор на продукты расщепления субстрата (хромоген на активные формы кислорода). Изменение цвета индикатора свидетельствует о наличии искомых АТ в сыворотке обследуемого.

18. Среда Китта-Тароцци.
Питательный бульон с глюкозой и кусочками свежих органов животных. Глюкоза и кусочки органов обладают редуцирующей способностью. Сверху среду заливают слоем стерильного масла, которые не пропускает кислород из воздуха в среду. В результате создаются условия для культивирования анаэробных микроорганизмов.

19. Среда контроля стерильности (СКС)
Эту среду предложил Бревер (Brewer) в 1940 году для быстрого культивирования аэробов, а также анаэробов (ввиду добавления редуцирующего вещества и небольшого количества агар-агара). Рекомендуется среда для тестов на стерильность антибиотиков, биоматериала, пищевых продуктов, а также для определения фенолового коэффициента и спороцидных свойств дезинфектантов.
Среда тиогликолевая предназначена для контроля стерильности лекарственных препаратов. Состав: глюкоза, панкреатический гидролизат казеина, натрия хлорид, агар микробиологический, дрожжевой экстракт, L-цистин, тиогликолевая кислота (редуцент О2), вода дистиллированная. Глюкоза, гидролизат казеина, дрожжевой экстракт, мясной экстракт и L-цистин дают питательные вещества для размножения бактерий. Тиогликолят натрия снижает окислительно-восстановительный потенциал, а также нейтрализует бактериостатический эффект соединений ртути и других тяжелых металлов, находящихся в исследуемом материале. Любое повышение концентрации кислорода сопровождается изменением цвета специального индикатора редокс-потенциала (резазурина) на красный. Низкий редокс-потенциал помогает поддерживать небольшое количество агара в среде.



9 и 10 – наборы диагностических и лечебно профилактических препаратов описание позже (.
15

Приложенные файлы

  • doc 18395589
    Размер файла: 95 kB Загрузок: 0

Добавить комментарий