Koz_2

Глава 2

НАЗНАЧЕНИЕ И УСТРОЙСТВО КОМПРЕССОРНЫХ СТАНЦИЙ


2.1. Особенности дальнего транспорта природных газов

Основные месторождения газа в России расположены на значительном расстоянии от крупных потребителей. Подача газа к ним осуществляется по газопроводам различного диаметра. При прохождении газа возникает трение потока о стенку трубы, что вызывает потерю давления. Например, при расходе газа 90 млн.нм/сут по трубе 1400 мм давление убывает с 7,6 до 5,3 МПа на участке = 110 км. Поэтому транспортировать природный газ в достаточном количестве и на большие расстояния только за счет естественного пластового давления нельзя. Для этой цели необходимо строить компрессорные станции (KС), которые устанавливаются на трассе газопровода через каждые 100 -150 км.
Перед подачей газа в магистральные газопроводы его необходимо подготовить к транспорту на головных сооружениях, которые располагаются около газовых месторождений. Подготовка газа заключается в очистке его от механических примесей, осушки от газового конденсата и влаги, а также удаления при их наличии, побочных продуктов: сероводорода, углекислоты и т.д.
При падении пластового давления около газовых месторождений строят так называемые дожимные компрессорные станции, где давление газа перед подачей его на КС магистрального газопровода поднимают до уровня 5,5-7,5 МПа. На магистральном газопроводе около крупных потребителей газа сооружаются газораспределительные станции для газоснабжения потребителей.
Все это свидетельствует о том, что транспорт газа на большие расстояния представляет собой весьма сложную техническую задачу, от решения которой во многом зависит развитие газовой промышленности и экономики страны в целом.
На газопроводах в качестве энергопривода КС используются газотурбинные установки, электродвигатели и газомотокомпрессоры - комбинированный агрегат, в котором привод поршневого компрессора осуществляется от коленчатого вала двигателя внутреннего сгорания.
Вид привода компрессорных станций и ее мощность в основном определяются пропускной способностью газопровода. Для станций подземного хранения газа, где требуются большие степени сжатия и малые расходы, используются газомотокомпрессоры, а также газотурбинные агрегаты типа "Солар" и ГПА-Ц-6,3, которые могут обеспечивать заданные степени сжатия. Для газопроводов с большой пропускной способностью наиболее эффективное применение находят центробежные нагнетатели с приводом от газотурбинных установок или электродвигателей.
Режим работы современного газопровода, несмотря на наличие станций подземного хранения газа, являющихся накопителями природного газа, характеризуется неравномерностью подачи газа в течение года. В зимнее время газопроводы работают в режиме максимального обеспечения транспорта газа. В случае увеличения расходов пополнение системы обеспечивается за счет отбора газа из подземного хранилища. В летнее время, когда потребление газа снижается, загрузка газопроводов обеспечивается за счет закачки газа на станцию подземного хранения газа.
Оборудование и обвязка компрессорных станций приспособлены к переменному режиму работы газопровода. Количество газа, перекачиваемого через КС, можно регулировать включением и отключением числа работающих газоперекачивающих агрегатов (ГПА), изменением частоты вращения силовой турбины у ГПА с газотурбинным приводом и т.п. Однако во всех случаях стремятся к тому, чтобы необходимое количество газа перекачать меньшим числом агрегатов, что приводит естественно к меньшему расходу топливного газа на нужды перекачки и, как следствие, к увеличению подачи товарного газа по газопроводу.
Регулирование пропускной способности газопровода отключением работы отдельных КС при расчетной производительности газопровода обычно не практикуется из-за перерасхода энергозатрат на компремирование газа при такой схеме работы. И только в тех случаях, когда подача газа по газопроводу заметно снижается сравнительно с плановой (летом), отдельные КС могут быть временно остановлены.
Переменный режим работы компрессорной станции приводит к снижению загрузки газоперекачивающих агрегатов и, как следствие, к перерасходу топливного газа из-за отклонения от оптимального КПД ГПА.
Характерный вид графиков переменного режима работы газопровода при изменении его производительности показан на рис. 2.1. Из рисунка видно, что наибольшее влияние на режим работы КС и отдельных ГПА оказывают сезонные изменения производительности газопровода. Обычно максимум подачи газа приходится на декабрь-январь, а минимум - на летние месяцы года.



Рис. 2.1. Схема сезонного колебания расхода газа крупного промышленного центра:
А - ТЭЦ; Б - промышленность (включая котельные); В - отопление; Г - коммунально-бытовые потребители

Расход газа, млн.нм/сут, через трубопровод длиной км определяется следующей формулой (при давлении 0,1013 МПа и 20°С):

, (2.1)

где - внутренний диаметр газопровода, мм; и - давление газа соответственно в начале и конце участка газопровода, МПа; 0,009 - коэффициент гидравлического сопротивления; - относительная плотность газа по воздуху; - средняя температура по длине газопровода. К; - средний по длине газопровода коэффициент сжимаемости газа; - длина участка газопровода, км.
На основании этой формулы можно вычислить пропускную способность газопровода на участке между двумя КС.
Зависимость пропускной способности газопровода от давления показана на рис. 2.2.
Затраты мощности КС можно определить по формуле

; (2.2)

где - показатель адиабаты; - адиабатический КПД нагнетателя; - температура газа на входе в нагнетатель, К. При = 46 кг·м/кг·К, =1,31, = 293 K, L = 100 км, = 0,82, = 0,6; 1,36·10 - переводной коэффициент, с использованием соотношений (2.1) и (2.2) получаем зависимость изменения мощности от производительности.

Расчеты показывают, что для прокачки = 90 млн.нм/сутки, на участке трубопровода 1400 мм, = 100 км необходимо затратить мощность = 50МВт. При увеличении производительности на 30 % от проектной, мощность необходимо увеличивать в два с лишним раза при сохранении конечного давления.

С ростом пропускной способности газопроводов за счет увеличения диаметра трубы и рабочего давления растет температура газа, протекающего по трубопроводу. Для повышения эффективности работы газопровода и прежде всего для снижения мощности на транспортировку газа необходимо на выходе каждой КС устанавливать аппараты воздушного охлаждения газа. Снижение температуры необходимо еще и для сохранения изоляции трубы.

Важным фактором по снижению энергозатрат на транспорт газа является своевременная и эффективная очистка внутренней полости трубопровода от разного вида загрязнений. Внутреннее состояние трубопровода довольно сильно влияет на изменение энергетических затрат, связанных с преодолением сил гидравлического сопротивления во внутренней полости трубопровода. Создание высокоэффективных очистных устройств с большим моторесурсом позволяет стабильно поддерживать производительность газопровода на проектном уровне, снижать энергозатраты на транспорт газа примерно на 10-15%.

Для уменьшения затрат мощности КС на перекачку газа, увеличения пропускной способности газопровода и экономии энергоресурсов на перекачку газа всегда выгодно поддерживать максимальное давление газа в трубопроводе, снижать температуру перекачиваемого газа за счет его охлаждения на станциях, использовать газопроводы большего диаметра, периодически осуществлять очистку внутренней полости трубопровода.


2.2. Назначение и описание компрессорной станции

При движении газа по трубопроводу происходит потеря давления из-за разного гидравлического сопротивления по длине газопровода. Падение давления вызывает снижение пропускной способности газопровода. Одновременно понижается температура транспортируемого газа, главным образом, из-за передачи теплоты от газа через стенку трубопровода в почву и атмосферу.
Для поддержания заданного расхода транспортируемого газа путем повышения давления через определенные расстояния вдоль трассы газопровода, как отмечалось выше, устанавливаются компрессорные станции.
Перепад давления на участке между КС определяет степень повышения давления в газоперекачивающих агрегатах. Давление газа в газопроводе в конце участка равно давлению на входе в газоперекачивающий агрегат, а давление в начале участка равно давлению на выходе из АВО газа.
Современная компрессорная станция (КС) - это сложное инженерное сооружение, обеспечивающее основные технологические процессы по подготовке и транспорту природного газа.
Принципиальная схема расположения КС вдоль трассы магистрального газопровода приведена на рис. 2.2, где одновременно схематично показаны изменения давления и температуры газа между компрессорными станциями.

Компрессорная станция - неотъемлемая и составная часть магистрального газопровода, обеспечивающая транспорт газа с помощью энергетического оборудования, установленного на КС. Она служит управляющим элементом в комплексе сооружений, входящих в магистральный газопровод. Именно параметрами работы КС определяется режим работы газопровода. Наличие КС позволяет регулировать режим работы газопровода при колебаниях потребления газа, максимально используя при этом аккумулирующую способность газопровода.




Рис. 2.2. Схема газопровода и изменения давления и температуры газа вдоль трассы




Рис. 2.3. Принципиальная схема компоновки основного оборудования компрессорной станции

На рис. 2.3 показана принципиальная схема компоновки основного оборудования компрессорной станции, состоящей из 3 ГПА. В соответствии с этим рисунком в состав основного оборудования входит: 1 - узел подключения КС к магистральному газопроводу; 2 - камеры запуска и приема очистного устройства магистрального газопровода; 3 - установка очистки технологического газа, состоящая из пылеуловителей и фильтр-сепараторов; 4 - установка охлаждения технологического газа; 5 - газоперекачивающие агрегаты; 6 - технологические трубопроводы обвязки компрессорной станции; 7 - запорная арматура технологических трубопроводов обвязки агрегатов; 8 - установка подготовки пускового и топливного газа; 9 - установка подготовки импульсного газа; 10 - различное вспомогательное оборудование; 11 - энергетическое оборудование; 12 - главный щит управления и система телемеханики; 13 - оборудование электрохимической защиты трубопроводов обвязки КС.
На магистральных газопроводах различают три основных типа КС: головные компрессорные станции, линейные компрессорные станции и дожимные компрессорные станции.
Головные компрессорные станции (ГКС) устанавливаются непосредственно по ходу газа после газового месторождения. По мере добычи газа происходит падение давления в месторождении до уровня, когда транспортировать его в необходимом количестве без компремирования уже нельзя. Поэтому для поддержания необходимого давления и расхода строятся головные компрессорные станции. Назначением ГКС является создание необходимого давления технологического газа для его дальнейшего транспорта по магистральным газопроводам. Принципиальным отличием ГКС от линейных станций является высокая степень сжатия на станции, обеспечиваемая последовательной работой нескольких ГПА с центробежными нагнетателями или поршневыми газомото-компрессорами. На ГКС предъявляются повышенные требования к качеству подготовки технологического газа.
Линейные компрессорные станции устанавливаются на магистральных газопроводах, как правило, через 100-150 км. Назначением КС является компремирование поступающего на станцию природного газа, с давления входа до давления выхода, обусловленных проектными данными. Тем самым обеспечивается постоянный заданный расход газа по магистральному газопроводу. В России строятся линейные газопроводы в основном на давление = 5,5 МПа и = 7,5 МПа.
Дожимные компрессорные станции (ДКС) устанавливаются на подземных хранилищах газа (ПХГ). Назначением ДКС является подача газа в подземное хранилище газа от магистрального газопровода и отбор природного газа из подземного хранилища (как правило, в зимний период времени) для последующей подачи его в магистральный газопровод или непосредственно потребителям газа. ДКС строятся также на газовом месторождении при падении пластового давления ниже давления в магистральном трубопроводе. Отличительной особенностью ДКС от линейных КС является высокая степень сжатия 2-4, улучшенная подготовка технологического газа (осушители, сепараторы, пылеуловители), поступающего из подземного хранилища с целью его очистки от механических примесей и влаги, выносимой с газом.
Около потребителей газа строятся также газораспределительные станции (ГРС), где газ редуцируется до необходимого давления (= 1,2; 0,6; 0,3 МПа) перед подачей его в сети газового хозяйства.


2.3. Системы очистки технологического газа на КС


Система подготовки технологического газа служит для очистки газа от механических примесей и жидкости перед подачей его потребителю в соответствии с требованиями ГОСТ 5542-87.

При добыче и транспортировке в природном газе содержатся различного рода примеси: песок, сварной шлам, конденсат тяжелых углеводородов, вода, масло и т.д. Источником загрязнения природного газа является призабойная зона скважины, постепенно разрушающаяся и загрязняющая газ. Подготовка газа осуществляется на промыслах, от эффективности работы которых зависит и качество газа. Механические примеси попадают в газопровод как в процессе его строительства, так и при эксплуатации.

Наличие механических примесей и конденсата в газе приводит к преждевременному износу трубопровода, запорной арматуры, рабочих колес нагнетателей и, как следствие, снижению показателей надежности и экономичности работы компрессорных станций и в целом газопровода.

Все это приводит к необходимости устанавливать на КС различные системы очистки технологического газа. Первое время на КС для очистки газа широко использовали масляные пылеуловители (рис. 2.4), которые обеспечивали достаточно высокую степень очистки (до 97-98%). Масляные пылеуловители работают по принципу мокрого улавливания разного рода смесей, находящихся в газе. Примеси, смоченные маслом, сепарируются из потока газа, само масло очищается, регенерируется и вновь направляется в масленый пылеуловитель. Масляные пылеуловители чаще выполнялись в виде вертикальных сосудов, принцип действия которых хорошо иллюстрируется схемой рис. 2.4.








Рис. 2.4. Вертикальный масляный пылеуловитель:
1 - сепараторное устройство; 2 - выходной патрубок; 3, 4, 5 - контактные и дренажные трубки; 6 - люк; 7 - входной патрубок; 8 - отбойный козырек




















Рис. 2.5. Циклонный пылеуловитель:
1 - верхняя секция; 2 - входной патрубок; 3 - выходной патрубок; 4 - циклоны; 5 - нижняя решетка; 6 - нижняя секция; 7 - люк-лаз; 8 - дренажный штуцер; 9 - штуцеры контролирующих приборов; 10 - штуцеры слива конденсата


Очищаемый газ поступает в нижнюю секцию пылеуловителя, ударяется в отбойный козырек 8 и, соприкасаясь с поверхностью масла, меняет направление своего движения. При этом наиболее крупные частицы остаются в масле. С большой скоростью газ проходит по контактным трубкам 3 в осадительную секцию II, где скорость газа резко снижается и частицы пыли по дренажным трубкам стекают в нижнюю часть пылеуловителя I. Затем газ поступает в отбойную секцию III, где в сепараторном устройстве 1 происходит окончательная очистка газа.
Недостатками масляных пылеуловителей являются: наличие постоянного безвозвратного расхода масла, необходимость очистки масла, а также подогрева масла при зимних условиях эксплуатации.
В настоящее время на КС в качестве первой ступени очистки широко применяют циклонные пылеуловители, работающие на принципе использования инерционных сил для улавливания взвешенных частиц (рис. 2.5). Циклонные пылеуловители более просты в обслуживании нежели масляные. Однако эффективность очистки в них зависит от количества циклонов, а также от обеспечения эксплуатационным персоналом работы этих пылеуловителей в соответствии с режимом, на который они запроектированы. На рис. 2.6 показан график зависимости производительности пылеуловителя при различных перепадах давления на аппарате . Наибольшая очистка газа достигается при обеспечении работы этого пылеуловителя в зоне, ограниченной кривыми и , а при выходе рабочей точки из этой зоны эффективность очистки резко падает.




Рис. 2.6. График зависимости производительности пылеуловителя от давления при различных перепадах давления на аппарате


Циклонный пылеуловитель (см. рис. 2.5) представляет собой сосуд цилиндрической формы, рассчитанный на рабочее давление в газопроводе, со встроенными в него циклонами 4.
Циклонный пылеуловитель состоит из двух секций: нижней отбойной 6 и верхней осадительной 1, где происходит окончательная очистка газа от примесей. В нижней секции находятся циклонные трубы 4.
Газ через входной патрубок 2 поступает в аппарат к распределителю и приваренным к нему звездообразно расположенным циклонам 4, которые неподвижно закреплены в нижней решетке 5. В цилиндрической части циклонных труб газ, подводимый по касательной к поверхности, совершает вращательное движение вокруг внутренней оси труб циклона. Под действием центробежной силы твердые частицы и капли жидкости отбрасываются от центра к периферии и по стенке стекают в коническую часть циклонов и далее в нижнюю секцию 6 пылеуловителя. Газ после циклонных трубок поступает в верхнюю осадительную секцию 1 пылеуловителя, и затем, уже очищенный, через патрубок 3 выходит из аппарата.
В процессе эксплуатации необходимо контролировать уровень отсепарированной жидкости и мехпримесей с целью их своевременного удаления продувкой через дренажные штуцеры. Контроль за уровнем осуществляется с помощью смотровых стекол и датчиков, закрепленных к штуцерам 9. Люк 7 используется для ремонта и осмотра пылеуловителя при плановых остановках КС. Эффективность очистки газа циклонными пылеуловителями составляет не менее 100 % для частиц размером 40 мкм и более, и 95% для частиц капельной жидкости.
В связи с невозможностью достичь высокой степени очистки газа в циклонных пылеуловителях появляется необходимость выполнять вторую ступень очистки, в качестве которой используют фильтр-сепараторы, устанавливаемые последовательно после циклонных пылеуловителей (рис. 2.7).




Рис. 2.7. Фильтр-сепаратор:
1 - корпус фильтр-сепаратора; 2 - быстрооткрывающийся затвор; 3 - фильтрующие элементы; 4 - направляющая фильтрующего элемента; 5 - трубная доска камеры фильтров; 6 - каплеотбойник; 7 - конденсатосборник


Работа фильтр-сепаратора осуществляется следующим образом: газ после входного патрубка с помощью специального отбойного козырька направляется на вход фильтрующей секции 3, где происходит коагуляция жидкости и очистка от механических примесей. Через перфорированные отверстия в корпусе фильтрующих элементов газ поступает во вторую фильтрующую секцию - секцию сепарации. В секции сепарации происходит окончательная очистка газа от влаги, которая улавливается с помощью сетчатых пакетов. Через дренажные патрубки мехпримеси и жидкость удаляются в нижний дренажный сборник и далее в подземные емкости.
Для работы в зимних условиях фильтр-сепаратор снабжен электрообогревом его нижней части, конденсатосборником и контрольно-измерительной аппаратурой. В процессе эксплуатации происходит улавливание мехпримесей на поверхности фильтр-элемента, что приводит к увеличению перепада давлений на фильтр-сепараторе. При достижении перепада, равного 0,04 МПа, фильтр-сепаратор необходимо отключить и произвести в нем замену фильтр-элементов на новые.
Как показывает опыт эксплуатации газотранспортных систем, наличие двух степеней очистки обязательно на станциях подземного хранения газа (СПХГ), а также и на первой по ходу линейной компрессорной станции, принимающей газ из СПХГ. После очистки, содержание механических примесей в газе не должно превышать 5 мг/м.
Газ, поступающий на головные компрессорные станции из скважин, как отмечалось, практически всегда в том или ином количестве содержит влагу в жидкой и паровой фазах. Наличие влаги в газе вызывает коррозию оборудования, снижает пропускную способность газопровода. При взаимодействии с газом при определенных термодинамических условиях образуются твердые кристаллические вещества - гидраты, которые нарушают нормальную работу газопровода. Одним из наиболее рациональных и экономичных методов борьбы с гидратами при больших объемах перекачки является осушка газа. Осушка газа осуществляется сепараторами различной конструкции с использованием твердых (адсорбция) и жидких (абсорбция) поглотителей.
С помощью установок осушки газа на головных сооружениях уменьшается содержание паров воды в газе, снижается возможность выпадания конденсата в трубопроводе и образования гидратов.
Очищенный природный газ не имеет ни цвета, ни запаха, поэтому для обнаружения его утечек и определения наличия в воздухе газ предварительно одорируют, т.е. добавляют в него специальные вещества-одоранты, обладающие сильным специфическим запахом. В качестве одорантов обычно используют этилмеркаптан и тетрагидротиофен. Одоризация газа производится, как правило, на специальных сооружениях магистрального газопровода перед его раздачей потребителям, но иногда одоризацию производят и на газораспределительных станциях (ГРС).
Газ, поступающий к бытовым потребителям, должен быть обязательно одоризирован. Одоризацию газа осуществляют с помощью автоматизированных установок, регулирующих расход одоранта в зависимости от расхода природного газа. Обычно норма одоризации составляет 16 г на 1000 нм.


2.4. Технологические схемы компрессорных станций

Технологическая обвязка компрессорного цеха предназначена для:
- приема на КС технологического газа из магистрального газопровода;
- очистки технологического газа от мехпримесей и капельной влаги в пылеуловителях и фильтр-сепараторах;
- распределения потоков для последующего сжатия и регулирования схемы загрузки ГПА;
- охлаждения газа после компремирования в АВО газа;
- вывода КЦ на станционное "кольцо" при пуске и остановке;
- подачи газа в магистральный газопровод;
- транзитного прохода газа по магистральному газопроводу, минуя КС;
- при необходимости сброса газа в атмосферу из всех технологических газопроводов компрессорного цеха через свечные краны.
В зависимости от типа центробежных нагнетателей, используемых на КС, различают две принципиальные схемы обвязок ГПА:
- схема с последовательной обвязкой, характерная для неполнонапорных нагнетателей;
- схема с параллельной коллекторной обвязкой, характерная для полнонапорных нагнетателей.
Неполнонапорные нагнетатели. Проточная часть этих нагнетателей рассчитана на степень сжатия 1,23-1,25. В эксплуатации бывает необходимость в двух- или трехступенчатом сжатии, т.е. в обеспечении степени сжатия 1,45 и более, это в основном на СПХГ.
Полнонапорные нагнетатели. Проточная часть этих нагнетателей сконструирована таким образом, что позволяет при номинальной частоте вращения ротора создать степень сжатия до 1,45, определяемую расчетными проектными давлениями газа на входе и выходе компрессорной станции.
На рис. 2.8 представлена принципиальная схема КС с параллельной обвязкой ГПА для применения полнонапорных нагнетателей. По этой схеме, газ из магистрального газопровода с условным диаметром 1220 мм (Ду 1200) через охранный кран № 19 поступает на узел подключения КС к магистральному газопроводу. Кран № 19 предназначен для автоматического отключения магистрального газопровода от КС в случае возникновения каких-либо аварийных ситуаций на узле подключения, в технологической обвязке компрессорной станции или обвязке ГПА.





Рис. 2.8. Принципиальная технологическая схема КС с параллельной обвязкой ГПА


После крана № 19 газ поступает к входному крану № 7, также расположенному на узле подключения. Кран № 7 предназначен для автоматического отключения компрессорной станции от магистрального газопровода. Входной кран № 7 имеет обводной кран № 7р, который предназначен для заполнения газом всей системы технологической обвязки компрессорной станции. Только после выравнивания давления в магистральном газопроводе и технологических коммуникациях станции с помощью крана № 7р производится открытие крана № 7. Это делается во избежание газодинамического удара, который может возникнуть при открытии крана № 7, без предварительного заполнения газом технологических коммуникаций компрессорной станции.
Сразу за краном № 7 по ходу газа установлен свечной кран № 17. Он служит для стравливания газа в атмосферу из технологических коммуникаций станции при производстве на них профилактических работ. Аналогичную роль он выполняет и при возникновении аварийных ситуаций на КС.
После крана № 7 газ поступает к установке очистки, где размещены пылеуловители и фильтр-сепараторы. В них он очищается от мехпримесей и влаги.
После очистки газ по трубопроводу Ду 1000 поступает во входной коллектор компрессорного цеха и распределяется по входным трубопроводам ГПА Ду 700 через кран № 1 на вход центробежных нагнетателей.
После сжатия в центробежных нагнетателях газ проходит обратный клапан, выходной кран № 2 и по трубопроводу Ду 1000 поступает на установку охлаждения газа (АВО газа). После установки охлаждения, газ через выкидной шлейф по трубопроводу Ду 1200, через выходной кран № 8, поступает в магистральный газопровод.
Перед краном № 8 устанавливается обратный клапан, предназначенный для предотвращения обратного потока газа из газопровода. Этот поток газа, если он возникнет при открытии крана № 8, может привести к обратной раскрутке центробежного нагнетателя и ротора силовой турбины, что в конечном итоге приведет к серьезной аварии на КС.
Назначение крана № 8, который находится на узле подключения КС, аналогично крану № 7. При этом стравливание газа в атмосферу происходит через свечной кран № 18, который установлен по ходу газа перед краном № 8.
На узле подключения КС между входным и выходным трубопроводом имеется перемычка Ду 1200 с установленным на ней краном № 20. Назначение этой перемычки - производить транзитную подачу газа, минуя КС в период ее отключения (закрыты краны № 7 и 8; открыты свечи № 17 и 18).
На узле подключения КС установлены камеры приема и запуска очистного устройства магистрального газопровода. Эти камеры необходимы для запуска и приема очистного устройства, которое проходит по газопроводу и очищает его от механических примесей, влаги, конденсата. Очистное устройство представляет собой поршень со щетками или скребками, который движется до следующей КС в потоке газа, за счет разности давлений - до и после поршня.
На магистральном газопроводе, после КС, установлен и охранный кран № 21, назначение которого такое же, как и охранного крана № 19.
При эксплуатации КС может возникнуть ситуация, когда давление на выходе станции может приблизиться к максимальному разрешенному или проектному. Для ликвидации такого режима работы станции между выходным и входным трубопроводом устанавливается перемычка Ду 500 с краном № 6А. Этот кран также необходим при пуске или останове цеха или группы агрегатов при последовательной обвязке. При его открытии часть газа с выхода поступает на вход, что снижает выходное давление и увеличивает входное. Снижается и степень сжатия центробежного нагнетателя. Работа КС с открытым краном № 6А называется работой станции на "Станционное кольцо". Параллельно крану № 6А врезан кран № 6АР, необходимый для предотвращения работы ГПА в помпажной зоне нагнетателя. Диаметр этого крана составляет 1015 % от сечения трубопровода крана № 6А (~=150 мм). Для минимально заданной заводом-изготовителем степени сжатия нагнетателя последовательно за краном № 6А врезается ручной кран № 6Д.
Рассмотренная схема технологической обвязки КС позволяет осуществлять только параллельную работу нескольких работающих ГПА. При таких схемах КС применяются агрегаты с полнонапорными нагнетателями со степенью сжатия 1,45-1,5.
На рис. 2.9 представлена схема с последовательной обвязкой ГПА, которая реализуется для работы КС с неполнонапорными нагнетателями.
Эта схема позволяет осуществлять как параллельную работу одного, двух, трех ГПА, так и параллельную работу группы агрегатов, состоящей из двух или трех последовательно работающих ГПА. Для этой цели используются так называемые "режимные" краны (№ 41-9), при изменении положения которых можно осуществить любую необходимую схему работы ГПА.
Для получения необходимой степени сжатия в этих схемах газ после выхода из одного нагнетателя сразу же поступает на вход другого. Необходимый расход газа через КС достигается работой нескольких групп ГПА.
Выход газа после компремирования осуществляется по выходным шлейфам. На каждом выходном шлейфе установлен свой трубопровод, соединенный с входным трубопроводом перед пылеуловителями, позволяющий выводить на "Станционное кольцо" при открытии крана № 6 или 6А любую из работающих групп ГПА.


Рис. 2.9. Принципиальная технологическая схема КС с последовательной обвязкой ГПА


Отличительной особенностью эксплуатации полнонапорных обвязок КС перед неполнонапорными является:
- схема с полнонапорными ЦБН значительно проще в управлении, чем с неполнонапорными ЦБН из-за значительно меньшего количества запорной арматуры;
- схема с полнонапорными нагнетателями позволяет использовать в работе любые, имеющиеся в "резерве", агрегаты;
- при остановке в группе одного неполнонапорного ГПА требуется выводить на режим "кольцо" и второй агрегат;
- отпадает необходимость в кранах № 3, режимных № 41- 49, а на некоторых обвязках и № 3бис;
- возможны большие потери газа из-за не герметичности режимных кранов.


2.5. Назначение запорной арматуры в технологических обвязках КС

Трубопроводная арматура (краны, вентили, обратные клапаны и т.д.) представляют собой устройства, предназначенные для управления потоками газа, транспортируемого по трубопроводам, отключения одного участка трубопровода от другого, включения и отключения технологических установок, аппаратов, сосудов и т.д.
Вся запорная арматура технологических обвязок компрессорной станции имеет нумерацию согласно оперативной схеме КС, четкие указатели открытия и закрытия, указатели направления движения газа. Запорная арматура в обвязке КС подразделяется на 4 основные группы: общестанционные, режимные, агрегатные и охранные.
Общестанционные краны установлены на узлах подключения станции к магистральному газопроводу и служат для отключения КС от газопровода и стравливания газа из технологической обвязки станции. К таким кранам относятся краны № 7, 8, 17, 18, 20 (см. рис. 2.8 и 2.9). К общестанционным кранам относятся и краны № 6, 6р, обеспечивающие работу КС на "Станционное кольцо".
Режимные краны обеспечивают возможность изменения схемы работы ГПА, выбор групп работающих агрегатов. Нумерация этих кранов на различных КС различна, но, как правило, эти краны объединены номерами одной десятки (например: № 41-49; № 71-79 и т.д.) и характерны в основном для обвязок с неполнонапорными ЦБН.
Агрегатные краны относятся непосредственно к обвязке нагнетателя и обеспечивают его подключение к технологическим трубопроводам станции. К ним относятся краны № 1, 2, 3, 3бис, 4,5.
Охранные краны предназначены для автоматического отключения КС от магистрального газопровода в условиях возникновения каких-либо аварийных ситуаций на компрессорных станциях. К ним относятся краны № 19 и 21.
К характерным особенностям работы запорной арматуры на магистральных газопроводах и КС относятся: высокое давление транспортируемого газа (до 7,5 МПа), относительно высокая температура газа на выходе КС (60-70°С), наличие в составе газа механических примесей и компонентов, вызывающих коррозию, эрозию металла и т.д.
К запорной арматуре предъявляются следующие основные требования: она прежде всего должна обеспечивать герметичное отключение отдельных участков газопровода, сосудов, аппаратов от технологических газопроводов и длительное время сохранять эту герметичность, иметь высокую работоспособность, быть коррозионно-стойкой и взрывобезопасной.
На магистральных газопроводах и КС применяется запорная арматура различного типа, но наибольшее распространение получили краны, задвижки и обратные клапаны.
Краном (рис. 2.10) называется запорное устройство, в котором подвижная деталь затвора имеет форму тела вращения с отверстием для пропуска рабочей среды. Для перекрытия потока затвор вращается вокруг своей оси, перпендикулярной трубопроводу. Краны могут иметь гидравлический, пневматический, пневмогидравлический и электрический приводы. Они могут иметь также и ручное управление.




Рис. 2.10. Кран шаровой:
1 - корпус; 2 - шар; 3 - пневмогидропривод; 4 - колонна; 5 - узел уплотнения; 6 - штуцер для уплотнительной смазки

По сравнению с другими видами запорной арматуры краны обладают следующими преимуществами: компактность, прямоточное движение потока газа через отверстие в шаре крана, что не вызывает больших гидравлических сопротивлений.
Запорные краны с шаровым затвором получили наибольшее распространение на магистральных газопроводах и используются в качестве запорно-отключающих устройств сепараторов, пылеуловителей, камер пуска и приема очистных поршней, в свечных обвязках, узлах подключения КС, различного рода перемычек, обвязке газоперекачивающих агрегатов и т.д.
При эксплуатации кранов необходимо выполнение следующих основных требований:
- запрещается эксплуатировать краны при не полностью открытом или закрытом положении затвора;
- перестановку шаровых кранов производить при наличии перепада до и после крана не более 0,08 МПа;
- периодически производить набивку крана крановой смазкой, рекомендованной заводами-изготовителями.
К задвижкам (рис. 2.11, 2.11а) относятся разного рода запорные устройства, в которых проходное сечение для газа перекрывается за счет поступательного перемещения затвора в направлении, перпендикулярном движению потока транспортируемого газа. По сравнению с другими видами запорной арматуры задвижки имеют следующие особенности: незначительное гидравлическое сопротивление при полностью открытом проходном сечении, простота обслуживания и ремонта. Применяются в основном на линиях продувки пылеуловителей и фильтр-сепараторов, а также как ручные отсечные задвижки на линии кранов № 4 и 6 и блоков подготовки топливного, пускового и импульсного газа.



Рис. 2.11. Задвижка стальная клиновая с выдвижным шпинделем с ручным приводом:
1 - корпус; 2 - клин; 3 - штурвал



Рис. 2.11а. Задвижка стальная клиновая с выдвижным шпинделем с электроприводом:
1 - корпус; 2 - клин; 3 - электропривод


К вентилям (рис. 2.12, 2.12а) относят запорную арматуру с поступательным перемещением затвора, параллельно потоку транспортируемого газа. Вентили имеют следующие характерные особенности: возможность работы при высоких перепадах давлений на золотнике, простота конструкции, обслуживания и ремонта, относительно небольшие габаритные размеры, исключение возможности гидравлического удара. Используются в основном на линиях отбора импульсного газа и линиях отбора к щитам управления агрегатной и станционной системы управления.



Рис. 2.12. Вентиль запорный фланцевый:
1 - корпус; 2 - уплотнительное кольцо; 3 - золотник; 4 - шпиндель; 5 - маховик





Рис. 2.12а. Вентиль запорный игольчатый:
1 - шпиндель; 2 - корпус; 3 - маховичок


К обратным клапанам (рис. 2.13) относят устройства, предназначенные для предотвращения обратного потока газа в трубопроводе. Они выполняются как автоматически самодействующие предохранительные устройства. Основным узлом обратного клапана является его затвор, который пропускает газ в одном направлении и перекрывает поток в другом. Обратный клапан устанавливают на узле подключения перед краном № 8, а также в обвязке полнонапорных нагнетателей перед кранами № 2 и 6.





Рис. 2.13. Обратный поворотный клапан с пневматическим демпфером:
1 - корпус; 2 - опора; 3 - тарелка; 4 - крышка; 5 - рычаг; 6 - демпфер пневматический; 7 - поворотная лопасть.


Техническое обслуживание и ремонт запорной арматуры осуществляется в соответствии с инструкциями завода-изготовителя по специальному план-графику.

26. Схемы технологической обвязки центробежного нагнетателя КС

Схемы обвязки ГПА с неполнонапорными (одноступенчатыми) и полнонапорными нагнетателями показаны на рис 2.14 и 2.15. Краны в обвязке нагнетателя имеют следующую нумерацию и назначение:
- № 1 - устанавливается на всасывающем трубопроводе и служит для приема газа;
- № 2 - устанавливается на выходном трубопроводе и предназначен для выхода газа;
- № 3 - обводной, применяется только для неполнонапорных нагнетателей и предназначен для работы в группе из 2 и 3 агрегатов;
- № 3бис - обводной кран и перестанавливается только в период пуска и остановки ГПА. Время его работы должно быть минимальным, чтобы не допустить перегрева контура обвязки нагнетателя;
- № 4 - обводной для крана № 1 и предназначен для заполнения контура нагнетателя перед пуском;
- № 5 - свечной, расположен на нагнетательном трубопроводе до крана № 2 и предназначен для продувки ЦБН перед пуском и сброса газа в атмосферу при любых остановках ГПА;
- № 6 - кран линии пускового контура применяется только для полнонапорных ЦБН и обеспечивает работу ГПА на кольцо.
Рассмотрим схемы работы с неполнонапорными нагнетателями (рис. 2.14).




Рис. 2.14. Технологическая схема обвязки неполнонапорного нагнетателя:
№ 1, 2, 3бис, 4, 5 - технологические краны обвязки нагнетателя
№ 41, 42, 43, 44 - режимные краны; 6 - люк-лаз; 7 - защитная решётка
Перед заполнением ЦБН в обязательном порядке через краны № 4 и 5 проводят его продувку примерно 15-40 с в зависимости от типа ГПА. После этого закрывается свечной кран № 5 и давление в контуре начнет расти. При достижении перепада на кране №1, равного 0,08-0,1 МПа, открывают краны № 1 и 2.
При работе ГПА газ из всасывающего коллектора через кран № 1 поступает в нагнетатель, где происходит его сжатие, и через кран № 2 направляется либо в нагнетательный трубопровод, либо (см. рис. 2.14) при закрытом кране № 43 и открытом № 44 может направляться и на всас следующего агрегата для обеспечения двухступенчатого сжатия.
В схеме с полнонапорным нагнетателем (рис. 2.15) появляются дополнительные элементы: краны № 6, 6а и обратные клапаны.



Рис. 2.15. Технологическая схема обвязки полнонапорного нагнетателя:
№ 1, 2, 4, 5, 6, 6а - технологические краны обвязки нагнетателя; № 3 - обратные клапаны;
7 - люк-лазы; 8 - защитная решетка

Один обратный клапан на линии нагнетания - перед краном № 2, и один на линии пускового контура - перед краном № 6. Назначение этих клапанов - исключить попадание газа в ЦБН на неработающем ГПА и не допустить подачу газа на колесо нагнетателя в момент пуска и остановки для предотвращения обратной раскрутки. Кран № 6 в обвязке ГПА выполняет функцию дросселя для обеспечения необходимой степени сжатия в момент пуска и остановки. Работа с открытым № 6 краном должна быть минимальной, т.к. через этот кран идет большой расход газа, что может вызвать вибрацию этой линии рециркуляции. В последнее время на линии крана № 6 (вместо него) устанавливают противопомпажный регулирующий клапан, предназначенный для защиты агрегата от помпажа, когда такие условия возникают. Это обеспечивается путем перепуска части газа на вход в нагнетатель, а не всего расхода, как это было с краном № 6.
В обратной последовательности происходит разгрузка нагнетателя при остановке ГПА.



2.7. Конструкции и назначения опор, люк-лазов и защитных решеток в обвязке ГПА

Технологические трубопроводы обвязки компрессорной станции от узла подключения до ГПА, как правило, располагают подземно. Исключение составляют трубопроводы, которыми обвязывают пылеуловители, фильтр-сепараторы и АВО газа. Технологическая обвязка ГПА осуществляется только в надземном исполнении. Трубопроводы обвязки ГПА в силу особенностей их нагружения и условий эксплуатации являются наиболее ответственными элементами из всех объектов, находящихся в эксплуатации на КС. В трубопроводах обвязки ГПА возникают напряжения от массы трубы, давления газа, тепловых расширений, колебаний потока сжимаемого газа, вызывающего вибрацию. Наибольшая вибрация в обвязке ГПА происходит на переходных режимах: пуск и остановка, а также при приближении ГПА к работе в помпажной зоне.
Для снятия всех этих нагрузок как статических, так и динамических, в обвязке трубопроводов применяют опоры (рис. 2.16). Расстановка и конструкция опор, а также конфигурация газовой обвязки должна обеспечить безопасную и надежную эксплуатацию во всех диапазонах расходов, температур и на всех переходных режимах, включая неординарные режимы: помпаж ГПА и нарушение режима, связанного с перестановкой кранов при работе ГПА.



Рис. 2.16. Схема установки опор в обвязке ГПА:
1 - опора упорная разгрузочная; 2 - опора скользящая; 3 - опора регулируемая






Рис. 2.17. Опора разгрузочная:
1 - опора; 2 - трубопровод; 3 - плита закладная; 4 - фундамент опоры






Рис. 2.17а. Опора упорная:
1 - стойка; 2 - упор; 3 - трубопровод; 4 - фундамент опоры


Все опоры, применяемые в обвязке ГПА, устанавливаются на фундаменты и, как правило, делятся на 2 типа: подвижные и неподвижные.
Неподвижные опоры (рис. 2.17, 2.17а) устанавливаются непосредственно перед нагнетателем и служат для снятия нагрузок с фланцев нагнетателя. Иногда их называют разгрузочные, упорные, лобовые.
Подвижные опоры (рис. 2.18, 2.18 а) устанавливают под краны, обратные клапаны и непосредственно перед спуском трубопроводов в землю. К ним относятся хомутовые, пружинные и регулируемые опоры. Места установки этих опор определяются при проектировании КС. Наилучшими в плане нагружения и обслуживания в процессе эксплуатации являются регулируемые опоры.
Иногда на линии обвязок пускового контура линии кранов № 6, где на переходных режимах может наблюдаться повышенная вибрация, применяют опоры с виброгасителями (рис. 2.19). Возможно, в будущем в обвязке ГПА будут применять компенсаторы разных конструкций, которые способны обеспечивать снижение нагрузок на компрессор, а также на трубопроводы.


Рис. 2.18. Опора пружинная:
1 - рама; 2 - пружина; 3 - ложемент; 4 - трубопровод; 5 - фундамент опоры; 6 - плита закладная





Рис. 2.18а. Опора регулируемая:
1 - обечайка; 2 - подложка; 3 - трубопровод; 4 - клин; 5 - гайка; 6 - шпилька стяжная; 7 - плита; 8 - плита закладная; 9 - фундамент опоры



Рис. 2.19. Опора с виброгасителем из металлорезины:
1 - опора; 2 - хомут; 3 - виброгаситель из металлорезины; 4 - трубопровод; 5 - плита закладная;
6 - фундамент опоры


На всасывающем и нагнетательном трубопроводах ГПА между нагнетателем и кранами № 1 и 2 устанавливают люк-лаз (рис. 2.20). Конструктивно он представляет собой тройник, к штуцеру которого приварен фланец. К этому фланцу с помощью болтов крепится плоская крышка. Диаметр люк-лаза выбирают 500-700 мм. Назначение этих люк-лазов - обеспечить безопасность работ при вскрытии нагнетателя путем установки резиновых шаров.



Рис. 2.20. Люк-лаз:
1 - тройник; 2- кронштейн поворотный; 3 - крышка; 4 - прокладка





Рис. 2.21. Защитная решетка:
1 - решетка; 2 - болт прижимной; 3 - болт стяжной; 4 - кольцо





Рис. 2.21а. Фильтр-ловушка:
1 - фильтр; 2 - прокладки; 3 - фланцы трубопроводов

В связи с невозможностью обеспечить хорошую очистку трубопровода после строительства КС и в целях предотвращения попадания с потоком газа на колесо нагнетателя строительного шлама на входе в ЦБН устанавливается защитная решетка (рис. 2.21, 2.21а). При достижении перепада на ней 0,04 МПа агрегат необходимо остановить и решетку очистить. При наработке ГПА3000 ч решетку можно снять, но при этом важно учесть, чтобы станция уже поработала в режимах максимальных расходов.


2.8. Системы охлаждения транспортируемого газа на компрессорных станциях

Компремирование газа на КС приводит к повышению его температуры на выходе станции. Численное значение этой температуры определяется ее начальным значением на входе КС и степенью сжатия газа.
Излишне высокая температура газа на выходе станции, с одной стороны, может привести к разрушению изоляционного покрытия трубопровода, а с другой стороны - к снижению подачи технологического газа и увеличению энергозатрат на его компремирование (из-за увеличения его объемного расхода).
Определенные специфические требования к охлаждению газа предъявляются в северных районах страны, где газопроводы проходят в зоне вечномерзлых грунтов. В этих районах газ в целом ряде случаев необходимо охлаждать до отрицательных температур с целью недопущения протаивания грунтов вокруг трубопровода. В противном случае это может привести к вспучиванию грунтов, смещению трубопровода и, как следствие, возникновению аварийной ситуации.
Охлаждение технологического газа можно осуществить в холодильниках различных систем и конструкций; кожухотрубных (типа "труба в трубе"), воздушных компрессионных и абсорбирующих холодильных машинах, различного типа градирнях, воздушных холодильниках и т.д.
Наибольшее распространение на КС получили схемы с использованием аппаратов воздушного охлаждения АВО (рис. 2.22). Следует однако отметить, что глубина охлаждения технологического газа здесь ограничена температурой наружного воздуха, что особенно сказывается в летний период эксплуатации. Естественно, что температура газа после охлаждения в АВО не может быть ниже температуры наружного воздуха.



Рис. 2.22. План-схема обвязки аппаратов воздушного охлаждения газа:
1 - аппарат воздушного охлаждения газа; 2, 4, 6, 7 - коллекторы;
3 - компенсаторы; 5 - свечи; 8 - обводная линия


Взаимное расположение теплообменных секций и вентиляторов для прокачки воздуха практически и определяет конструктивное оформление АВО. Теплообменные секции АВО могут располагаться горизонтально, вертикально, наклонно, зигзагообразно, что и определяет компоновку аппарата.


Рис. 2.23. Схема подключения аппарата воздушного охлаждения (при нижнем расположении вентилятора):
1 - воздушный холодильник газа 2АВГ-75; 2 - свеча; 3, 4 - коллекторы входа и выхода газа


АВО работает следующим образом: на опорных металлоконструкциях закреплены трубчатые теплообменные секции (рис. 2.23-2.24). По трубам теплообменной секции пропускают транспортируемый газ, а через межтрубное пространство теплообменной секции с помощью вентиляторов, приводимых во вращение от электромоторов, прокачивают наружный воздух. За счет теплообмена между нагретым при компремировании газом, движущимся в трубах, и наружным воздухом, движущимся по межтрубному пространству, и происходит охлаждение технологического газа на КС.


Рис. 2.24. Аппарат воздушного охлаждения газа с верхним расположением вентилятора:
1 - теплообменная поверхность; 2 - вентилятор; 3 - патрубок; 4 - диффузор; 5 - клиноременная передача; 6 - электродвигатель


Опыт эксплуатации АВО на КС показывает, что снижение температуры газа в этих аппаратах можно осуществить примерно на значение порядка 15-25 °С. Одновременно опыт эксплуатации указывает на необходимость и экономическую целесообразность наиболее полного использования установок охлаждения газа на КС в годовом цикле эксплуатации, за исключением тех месяцев года с весьма низкими температурами наружного воздуха, когда включение всех аппаратов на предыдущей КС приводит к охлаждению транспортируемого газа до температуры, которая может привести к выпадению гидратов. Обычно это относится к зимнему времени года.
При проектировании компрессорной станции количество аппаратов воздушного охлаждения выбирается в соответствии с отраслевыми нормами ОНТП51-1-85. На основании этих норм температура технологического газа на выходе из АВО должна быть не выше 15-20 °С средней температуры наружного воздуха.
Уменьшение температуры технологического газа, поступающего в газопровод после его охлаждения в АВО, приводит к уменьшению средней температуры газа на линейном участке трубопровода и, как следствие, к снижению температуры и увеличению давления газа на входе в последующую КС. Это, в свою очередь, приводит к уменьшению степени сжатия на последующей станции (при сохранении давления на выходе из нее) и энергозатрат на компремирование газа по станции.
Очевидно также, что оптимизация режимов работы АВО должна соответствовать условию минимальных суммарных энергозатрат на охлаждение и компремирование газа на рассматриваемом участке работы газопровода.
Следует также отметить, что аппараты воздушного охлаждения газа являются экологически чистыми устройствами для охлаждения газа, не требуют расхода воды, относительно просты в эксплуатации. В эксплуатации применяются следующие типы АВО газа: 2АВГ-75, АВЗД, фирм "Нуово Пиньоне" и "Крезо Луар".
В настоящее время установки охлаждения транспортируемого газа являются одним из основных видов технологического оборудования КС.


2.9. Компоновка газоперекачивающих агрегатов на станции

Газоперекачивающий агрегат - сложная энергетическая установка, предназначенная для компремирования природного газа, поступающего на КС по магистральному газопроводу.
На рис. 2.25 приведена принципиальная схема ГПА с газотурбинным приводом, где показаны все основные узлы, входящие в агрегат:
1. Воздухозаборная камера (ВЗК) нужна для подготовки циклового воздуха, поступающего из атмосферы на вход осевого компрессора. На разных типах ГПА воздухозаборные камеры имеют различные конструкции, но все предназначены для очистки поступающего воздуха и понижения уровня шума в районе ВЗК.
2. Пусковое устройство (турбодетандер, воздушный или электрический стартер) необходимо для первоначального раскручивания осевого компрессора (ОК) и турбины высокого давления (ТВД) в момент пуска ГПА.
3. Осевой компрессор предназначен для подачи необходимого количества воздуха в камеру сгорания газотурбинной установки.
4. Турбина высокого давления служит приводом осевого компрессора и находится с ним на одном валу.
5. Турбина низкого давления (ТНД) служит для привода центробежного нагнетателя.
6. Нагнетатель природного газа представляет собой центробежный газовый компрессор без наличия промежуточного охлаждения и предназначен для компремирования природного газа.
7. Краны обвязки ГПА.
8. Регенератор (воздухоподогреватель) представляет собой теплообменный аппарат для повышения температуры воздуха, поступающего после ОК в камеру сгорания (КС), и тем самым снижения расхода топливного газа по агрегату.
9. Камера сгорания предназначена для сжигания топливного газа в потоке воздуха и получения продуктов сгорания с расчетными параметрами (давление, температура) на входе в ТВД.
10. Блок подготовки пускового и топливного газа представляет собой комплекс устройств, при помощи которых часть газа, отбираемого из магистрального газопровода, очищается от механических примесей и влаги, доводится до необходимых параметров, обусловленных требованиями эксплуатации газоперекачивающих агрегатов.
11. Аппараты воздушного охлаждения масла предназначены для охлаждения смазочного масла после подшипников турбин и нагнетателя.




Рис. 2.25. Приниципиальная схема компоновки ГПА:
1 - воздухозаборная камера (ВЗК); 2 - турбодетандер; 3 - осевой компрессор, 4 - турбина высокого давления (ТВД); 5 - турбина низкого давления (ТНД); 6 - нагнетатель; 7 - технологические краны обвязки агрегата; 8 - рекуператор; 9 - камера сгорания; 10 - блок подготовки топливного, пускового и импульсного газа; 11 - аппарат воздушного охлаждения масла.

- воздух до осевого компрессора; - воздух до рекуператора; - воздух после рекуператора; - выхлопные газы; - пусковой газ; - топливный газ; - импульсный газ; - технологический газ; - масло.

Кроме того, каждый ГПА снабжен системой регулирования основных параметров агрегата, системами агрегатной автоматики, автоматического пожаротушения, обнаружения загазованности помещения и др.
2.10. Система импульсного газа

Импульсным называется газ, отбираемый из технологических трубопроводов обвязки КС для использования в пневмогидравлических системах приводов запорной арматуры: пневмоприводных кранов технологического, топливного и пускового газов, для подачи газа к контрольно-измерительным и регулирующим приборам. В пневмогидравлической системе привода крана производится преобразование потенциальной энергии сжатого газа в механическую работу по перемещению запорного шарового узла.
Принципиальная схема импульсного газа приведена на рис. 2.26. Существуют три точки отбора импульсного газа из технологических трубопроводов КС (рис. 2.27): отбор до и после крана № 20; отбор из выходного трубопровода КС до узла охлаждения и отбор из входного трубопровода КС после узла очистки.



Рис. 2.26. Принципиальная схема импульсного газа





Рис. 2.27. Принципиальная схема отбора и разводки импульсного газа


Далее трубопровод импульсного газа объединяется в общий коллектор и поступает на узел подготовки импульсного газа (УПИГ), где происходит его очистка и осушка.
В состав УПИГ входит следующее оборудование: фильтр-сепараторы, адсорберы, огневой подогреватель, газовый ресивер, запорная арматура, контрольно-измерительные приборы, трубопроводы и гибкие резиновые шланги.
Фильтр-сепараторы предназначены для очистки импульсного газа от механических примесей и влаги. Адсорберы предназначены для осушки импульсного газа путем поглощения воды, находящейся в газе. Поглощение осуществляется адсорбентом, находящимся в полости адсорберов. В качестве адсорбента используются селикагель или циолит. Степень очистки и осушки импульсного газа должна исключать заедание и обмерзание исполнительных органов при низких температурах наружного воздуха.
Как правило, из двух адсорберов в рабочем режиме поглощения влаги находится один. Другой адсорбер находится в режиме восстановления адсорбента. Восстановление осуществляется путем пропускания части подогретого до высокой температуры газа (около 300 °С) через увлажненный адсорберт. Дело в том, что при достижении предельной влажности, селикагель теряет способность дальнейшего поглощения влаги и для возобновления его адсорбционных свойств через него пропускают горячий теплоноситель. Осушку селикагеля проводят один раз в 2-3 месяца. Для подогрева газа используется огневой подогреватель. Цикл регенерации селикагеля длится примерно 4-6 ч, цикл охлаждения 2-4 ч.
При эксплуатации УПИГ с помощью контрольно-измерительных приборов осуществляется контроль за давлением и температурой газа, его расходом и точкой росы, которая должна составлять - 25 °С.

После УПИГ газ поступает ко всем общестанционным кранам на узел подключения, режимным и агрегатным кранам, а также на низкую сторону к кранам топливного и пускового газа.


2.11. Система топливного и пускового газа на станции

Система топливного и пускового газа предназначена для очистки, осушки и поддержания требуемого давления и расхода перед подачей его в камеру сгорания и на пусковое устройство (турбодетандер).
Газ для этих систем, аналогично как и для системы импульсного газа, отбирается из различных точек технологических коммуникаций КС: на узле подключения до и после крана № 20, из выходного коллектора пылеуловителей и выходного шлейфа компрессорного цеха - перед аппаратами воздушного охлаждения газа.
Система топливного и пускового газа имеют блочное исполнение и включают в себя следующее оборудование (рис. 2.28): циклонный сепаратор, или блок очистки, фильтр-сепаратор, или блок осушки, подогреватели, блок редуцирования пускового и топливного газа, трубопроводы, замерное устройство, краны № 9, 12, 14 и 15, а также стопорные и регулирующие клапаны топливной системы, пусковое устройство или турбодетандер (ТД).
Работа системы осуществляется следующим образом: газ, отбираемый из технологических коммуникаций КС, поступает на блок очистки или газосепаратор 1, где происходит его очистка от механических примесей. Далее газ поступает в фильтр-сепаратор 2, где происходит его более глубокая очистка от механических примесей и влаги. Затем газ поступает в подогреватель 3 типа ПТПГ-30, где подогревается до температуры 45-50 °С. Огневой подогреватель представляет собой теплообменник, в котором трубный пучок газа высокого давления погружен в раствор диэтиленгликоля. Диэтиленгликоль подогревается за счет использования камеры сгорания этого устройства. Подогрев газа осуществляется с целью обеспечения устойчивой работы блоков редуцирования и недопущения его промерзания, что может нарушить устойчивую работу системы регулирования ГТУ.

Перед блоком редуцирования газ разделяется на два потока: один направляется на блок редуцирования топливного газа 4, другой на блок редуцирования пускового газа 5.
Топливный газ редуцируется до давления 0,6-2,5 МПа в зависимости от давления воздуха за осевым компрессором ГТУ. После блока редуцирования топливный газ поступает в сепаратор 6, где происходит его повторная очистка от выделившейся при редуцировании влаги, и затем в топливный коллектор. В камеру сгорания топливный газ поступает через кран № 12, стопорный (СК) и регулирующий (РК) клапаны. Краны № 14 и 15 используются для запальной и дежурной горелки в период пуска агрегата.
Пусковой газ, пройдя систему редуцирования, снижает свое давление до 1,0-1,5 МПа и поступает через краны № 11 и 13 на вход в турбодетандер, где расширяясь до атмосферного давления, совершает полезную работу, идущую на раскрутку осевого компрессора и турбины высокого давления.



Рис. 2.28. Принципиальная схема системы топливного и пускового газа:
ТГ - топливный газ; ПГ - пусковой газ; ВЗК - воздухозаборная камера; ТД - турбодетандер; ОК - осевой компрессор; КС - камера сгорания; ТВД - турбина высокого давления; ТНД - турбина низкого давления; Н - нагнетатель; РЕГ - регенератор



Система маслоснабжения компрессорной станции включает в себя две маслосистемы: общецеховую и агрегатную.
Общецеховая маслосистема (рис. 2.29), предназначенная для приема, хранения и предварительной очистки масла перед подачей его в расходную емкость цеха. Эта система включает в себя: склад ГСМ 1 и помещение маслорегенерации 3. На складе имеются в наличии емкости 2 для чистого и отработанного масла. Объем емкостей для чистого масла подбирается исходя из обеспечения работы агрегатов сроком не менее 3 месяцев. В помещении склада ГСМ устанавливается емкость отрегенерированного масла и емкость отработанного масла, установка для очистки масла типа ПСМ-3000-1, насосы для подачи масла к потребителям, а также система маслопроводов с арматурой.




Рис. 2.29. Общецеховая маслосистема:
1 - склад ГСМ; 2 - емкости масляные; 3 - помещение маслорегенерации; 4 - газоперекачивающие агрегаты; 5 - маслобак ГПА; 6 - маслопроводы; 7 - аварийная емкость


После подготовки масла на складе ГСМ и проверки его качества, подготовленное масло поступает в расходную емкость. Объем расходной емкости выбирается равным объему маслосистемы ГПА, плюс 20 % для подпитки работающих агрегатов. Эта расходная емкость, оборудованная замерной линейкой, используется для заправки агрегатов маслом. Для газотурбинных ГПА применяется масло марки ТП-22С или ТП-22Б. Для организации движения масла между складом ГСМ и расходной емкостью, а также для подачи к ГПА чистого масла и откачки из него отработанного масла их соединяют с помощью маслопроводов. Эта система должна обеспечивать следующие возможности в подаче масла:
- подачу чистого масла из расходного маслобака в маслобак ГПА, при этом линия чистого масла не должна иметь возможность смешиваться с отработанным маслом;
- подачу отработанного масла из ГПА только в емкость отработанного масла;
- аварийный слив и перелив масла из маслобака ГПА в аварийную емкость. Для аварийного слива необходимо использовать электроприводные задвижки, включаемые в работу в автоматическом режиме, например, при пожаре.
На рис. 2.30 приведена схема маслосистемы для агрегата ГТК-25И фирмы "Нуово-Пиньоне", которая включает в себя: смазочную систему, систему управления и гидравлическую систему, обеспечивающую подачу масла высокого давления на привод стопорного и регулирующего клапанов топливного газа, узла управления поворотными сопловыми лопатками ТНД, а также подачу масла в систему уплотнения центробежного нагнетателя.



Рис. 2.30. Смазочная система ГТК - 25И:
1 - маслобак; 2 - охладитель масла; 3 - фильтры масляные; 4 - фильтры масляные муфт; 5 - регулятор давления; 6 - маслонасосы; 7 - предохранительный клапан; 8 - подогреватель; 9 - маслопроводы

Смазочная система ГПА включает в себя три масляных насоса 6 (главный, вспомогательный и аварийный), маслобак 1 с напорными и сливными трубопроводами 9, предохранительный клапан 7, охладитель масла 2, два основных фильтра со сменными фильтрующими элементами 3, электрический подогреватель 8, датчики давления, температуры и указателей уровня масла.
Работа смазочной системы осуществляется следующим образом: после включения вспомогательного масляного насоса, масло под давлением начинает поступать из маслобака 1 в нагнетательные линии. Основной поток масла поступает к маслоохладителям 2, откуда после охлаждения оно подается к основным масляным фильтрам 3. Дифманометр, установленный на фильтрах, указывая на перепад давления до и после фильтров, характеризует степень их загрязнения. При достижении перепада давлений масла на уровне примерно 0,8 МПа, происходит переключение работы на резервный фильтр; фильтрующие элементы на работающем фильтре заменяются.
Очищенное масло после фильтров поступает на регуляторы давления 5, которые обеспечивают подачу масла на подшипники и соединительные муфты "турбина-редуктор" и "турбина-нагнетатель" с необходимым давлением.
Из подшипников масло по сливным трубопроводам поступает обратно в маслобак 1. Термосопротивления, установленные на сливных трубопроводах, позволяют контролировать температуру подшипников турбоагрегата и центробежного нагнетателя.
Количество масла в баке контролируется при помощи специального уровнемера, соединенного с микровыключателем датчика минимального и максимального уровня. Сигналы датчика введены в предупредительную сигнализацию агрегатной автоматики. Контроль за уровнем масла в маслобаке осуществляется и визуально с помощью уровнемерной линейки, установленной на маслобаке.
Работа системы уплотнения центробежного нагнетателя основана на использовании принципа гидравлического затвора, обеспечивающего поддержание постоянного давления масла, на 0,1-0,3 МПа превышающего давление перекачиваемого газа.
Масло к винтовым насосам уплотнения поступает из системы маслоснабжения ГПА. В систему уплотнения нагнетателя входит (рис. 2.31): регулятор перепада давления 3, обеспечивающий постоянный перепад давления масла над давлением перекачиваемого газа, аккумулятор 2, обеспечивающий подачу масла в уплотнения в случае прекращения его подачи от насосов (при исчезновении напряжения), поплавковые камеры 4, служащие для сбора масла, прошедшего через уплотнения и газоотделитель 5, предназначенный для отбора газа, растворенного в масле.



Рис. 2.31. Система уплотнения центробежного нагнетателя:
1 - центробежный нагнетатель; 2 - аккумулятор; 3 - регулятор перепада давления; 4 - поплавковая камера; 5 - газоотделитель;
6 - масляное уплотнение (торцевое); 7 - маслопровод высокого давления; 8 - винтовые насосы

При работе ГПА масло высокого давления после насосов 8 по маслопроводу поступает на вход регулятора перепада давления 3. После регулятора 3 оно поступает в аккумулятор 2 и далее по двум маслопроводам 7 к уплотнениям 6 центробежного нагнетателя 1. После уплотнений масло сливается в поплавковые камеры 4, по мере заполнения которых оно перетекает в газоотделитель 5, где происходит выделение газа, растворенного в масле. Очищенное от газа масло возвращается в основной маслобак, а выделившийся из масла газ через свечу отводится в атмосферу.
Одним из важнейших элементов системы уплотнений являются непосредственно масляные уплотнения. Различают в основном два типа уплотнений: щелевые и торцевые. О качестве работы системы уплотнений судят по интенсивности поступления масла в поплавковую камеру. Быстрое ее заполнение маслом при закрытом сливе свидетельствует о повышенном расходе масла через уплотнения.
На компрессорных станциях для очистки турбинного масла применяются маслоочистительные машины типов ПСМ-1-3000, CM-1-3000, НСМ-2, НСМ-3, CM-1,5, которые могут работать в зависимости от степени загрязнения масла как по схеме очистки, так и по схеме осветления регенерируемого масла. Принципиальная схема маслоочистительной машины типа ПСМ-1-3000 приведена на рис. 2.32. По этой схеме загрязненное масло, пройдя фильтр грубой очистки 8, шестеренчатым насосом 7 через электроподогреватель 5 подается в очистительный вращающийся барабан 9, где из масла происходит выделение механических примесей и воды. В нижней части барабана масло под действием центробежных сил поступает на разделительные тарелки 10. Вода, имеющая большую плотность, чем масло, центробежной силой отбрасывается на периферию и под действием непрерывно поступающего в барабан масла попадает в водяную полость маслосборника 3. Очищенное масло по кольцевому каналу сливается в вакуум-бак 4. Шестеренчатым насосом 7 масло из вакуум-бака подается на фильтр 1, откуда оно выходит уже полностью очищенным. При работе маслоочистительной машины механические примеси оседают на стенках барабана 9.




Рис. 2.32. Маслоочистительная машина ПСМ-1-3000:
1 - фильтр-пресс; 2 - маслосборник; 3 - водяная полость маслосборника; 4 - вакуум-бак; 5 - электроподогреватель; 6 - вакуум-насос; 7 - шестеренчатый насос; 8 - фильтр грубой очистки; 9 - барабан; 10 - разделительные тарелки

На компрессорных станциях используются два типа систем охлаждения масла: градирни и аппараты воздушного охлаждения (АВО масла).
Градирни в настоящее время редко используются на КС, главным образом, из-за трудностей их эксплуатации в зимний период, когда начинается интенсивное их обледенение, приводящее к снижению поступления воздуха в градирню и, как следствие, повышению температуры масла. Кроме того, применение градирен вызывает необходимость хорошей водоподготовки, повышенный расход воды, а также значительные расходы на проведение профилактических ремонтов градирен.
В системах АВО масла используются схемы с непосредственным охлаждением масла и схемы с использованием промежуточного теплоносителя. Как правило, схемы с использованием промежуточного теплоносителя применяются на установках импортного производства типов: ГТК-25И и ГТК-10И,
На КС широкое применение нашли аппараты отечественного и импортного производства типов АВГ, ЛФ, ПХ и ТЛФ с высоким оребрением трубок. Внутри трубок для увеличения теплоотдачи установлены турбулизаторы потока.
Конструктивное исполнение таких аппаратов представлено на рис. 2.33. Секции аппаратов 3 состоят из горизонтально расположенных элементов охлаждения 4, которые смонтированы совместно с жалюзным механизмом 5 на стальной опорной конструкции 6. Охладительные элементы 4 имеют в трубном пространстве два хода по маслу. Подвод и отвод масла к охладительным элементам осуществляется по трубам 8. Над охладительной секцией 4 для прокачки воздуха установлены два вентилятора 2.




Рис. 2.33. Аппарат воздушного охлаждения типа ЛФ


Как правило, все ГПА к системам АВО масла имеют электроподогреватели 7, которые используются для предварительного подогрева масла перед пуском агрегата в работу до 25-30 °С. Подогрев масла в охладительной секции необходим также для предотвращения выхода из строя трубной доски, которая из-за повышенного сопротивления может деформироваться и в месте стыковки ее с секцией появляется утечка масла.
Перепад температур масла на входе и выходе ГПА, как правило, достигает величины 15-25 °С. Температура масла на сливе после подшипников должна составлять 65-75 °С. При температурах масла ниже 45 °С происходит срыв масляного клина и агрегат начинает работать неустойчиво. При температуре выше 85 °С срабатывает защита агрегата по высокой температуре масла.


2.13. Типы газоперекачивающих агрегатов, применяемых на КС

Газоперекачивающие агрегаты, применяемые для компремирования газа на компрессорных станциях, по типу привода подразделяются на три основных группы: газотурбинные установки (ГТУ), электроприводные агрегаты (ЭГПА) и газомотокомпрессорные установки (ГМК).
К первой группе относятся ГПА с приводом от центробежного нагнетателя от газовой турбины; ко второй - агрегаты с приводом от электродвигателя и к третьей группе - агрегаты с приводом от поршневых двигателей внутреннего сгорания, использующих в качестве топлива природный газ.
К агрегатам первой группы - основного вида привода компрессорных станций, относятся: стационарные, авиационные и судовые газотурбинные установки.
К стационарным газотурбинным установкам, специально сконструированных для использования на газопроводах страны, следует отнести типы установок следующих заводов-изготовителей:

Уральский турбомоторный завод (УЗТМ), г. Екатеринбург

ГТ-6-750
с ЦБН Н-300-1,23
КПД = 24%
N = 6 МВт
140 шт.


ГТН-6
с ЦБН Н-300-1,23
КПД = 24%
N = 6,3 МВт
83 шт.


ГТК-16
с ЦБН Н-800-1,25
КПД = 25%
N= 16 MBт
60 шт.


ГТН-25-1
с ЦБН 2 Н-25-76-1,35
КПД = 31%
N= 25 МВт
48 шт.




Невский завод им. Ленина (НЗЛ), г.Санкт-Петербург

ГТК-5
с ЦБН 26-12-1
КПД = 26%
N= 4,4 MBT
19 шт.


ГТ-700-5
с ЦБН 280-12-4
КПД = 24%
N = 4,2 МВт
28 шт.


ГТ-750-6
с ЦБН 370-14-1
КПД = 27%
N= 6 МВт
99 шт.


ГТ-750-6
с ЦБН 370-17-1
КПД = 27%
N= 6 МВт
5 шт.


ГТК-10-2
с ЦБН 520-12-1
КПД = 28%
N= 10 МВт
229 шт.


ГТК-10-4
с ЦБН 370-18-1
КПД = 29%
N= 10 МВт
791 шт.

ГТНР-10
с ЦБН 520-12-1
КПД = 28%
N= 10 МВт
1 шт.


ГТК-16
с ЦБН Н-800-1,25
КПД = 25%
N= 16 МВт
3 шт.

ГТН-25
с ЦБН 650-21-2
КПД = 28%
N= 25 МВт
100 шт.


Фирма Дженерал Электрик (США).

ГТУ этой фирмы изготавливаются на различных заводах мира: АЕГ-Канис (Германия), Ново-Пиньоне (Италия), Джон Браун (Великобритания), Мицубиси (Япония). К установкам этой фирмы относятся: ГТК-10И (MS-3000) с нагнетателями фирм: Купер-Бессемер (США), Ново-Пиньоне (Италия), Ингерсол Рэнд (Великобритания). КПД установки 25,7%, мощность N = 10,3 МВт, 150 шт. Другим агрегатом, используемым на газопроводах страны, является агрегат ГТК-25И (MS-5000) с нагнетателем РС-804-2 фирмы Ново-Пиньоне (Италия). КПД установки 27,5%; мощность N = 25 МВт, 105 шт.

Первый Бриенский завод (Чехия), г.Брно

Аврора с ЦБН 370-14-1, КПД = 28%,
N = 6 МВт, 1989 г. выпуска

Аврора с ЦБН 370-17-1 М, КПД = 28%,
N= 6 МВт, 1982 г. выпуска

Дон-1 с ЦБН 370-14-1, КПД = 29,5%,
N = 6 МВт, 1987 г. выпуска

Дон-2 с ЦБН 370-14-1, КПД = 30,5%
N = 6,5 МВт, 1991 г. выпуска

Дон-3 с ЦБН 370-14-1, КПД = 30,5%,
N = 5 МВт, 1995 г. выпуска



К авиаприводным газотурбинным установкам относятся ГПА, приводом которых служит газовая турбина авиационного типа, специально реконструированная для использования на компрессорных станциях.
В настоящее время на газопроводах эксплуатируются двигатели, выпускаемые Самарским моторостроительным объединением им. Фрунзе. Сборку агрегатов осуществляет Сумское машиностроительное научно-производственное объединение (г. Сумы, Украина).
К агрегатам, выпускаемым этими объединениями, относятся: ГПА-Ц-6,3 с двигателем НК-12СТ и нагнетателями Н-196-1,45 и НЦВ-6,3/56-1,45; ГПА-Ц-6,3/76 с двигателем НК-12СТ и нагнетателем НЦВ-6,3/76-1,45 и ГПА-Ц-6,3/125 с двигателем НК-12СТ и нагнетателем НЦВ-6,3/125-2,2. КПД этих агрегатов составляет 24%. На газопроводах в общей сложности эксплуатируется 440 таких ГПА.
Сумским машиностроительным научно-производственным объединением осуществляется сборка ГПА и на основе двигателей, выпускаемых Казанским моторостроительным объединением им.Фрунзе. К таким агрегатам относится ГПА-Ц-16 с двигателем НК-16СТ и нагнетателями Ц-16/56-1,44 и Ц-16/76-1,45. КПД агрегатов составляет 27%, мощность 16 МВт, степень сжатия по нагнетателю - 1,45. Общее число таких агрегатов составляет 536 шт.
К авиаприводным агрегатам на КС относятся и установки импортного производства, типа "Кобера-182" с двигателем Эйвон 1534-1016 производства фирмы "Ролл-Ройс" (Великобритания) и нагнетателем 2ВВ-30. КПД установки составляет 27,3%, мощность 12,9 МВт. Общее число таких агрегатов на КС ОАО "Газпром" - 42 шт.
Американская фирма "Солар" поставила на КС ГПА с двигателем "Центавр" и нагнетателями C-I68H, С-304 и С-168К. Мощность установок составляет 3,3-3,5 МВт, КПД - 26-28%. Общее число таких установок на газопроводах - 30.
К судовым газотурбинным агрегатам относятся ГПА, где в качестве привода используется модернизированная газовая турбина судового типа. К таким установкам относятся газовые турбины, выпускаемые Николаевским судостроительным заводом (Украина): ГПУ-10 "Волна" с двигателем ДР-59Л и нагнетателем 370-18-1, КПД установки - 26,5%.
В последнее время Николаевский судостроительный завод начал выпуск новых агрегатов на базе использования двигателя ДГ-90. КПД установки составляет 34%. На газопроводах эксплуатируется 8 таких агрегатов.
Показатели электроприводных агрегатов и газомотокомпрессоров, эксплуатируемых на КС, характеризуются соответственно данными табл. 2.1 и табл. 2.2.

Таблица 2.1
Показатели злектроприводных агрегатов

Тип ГПА
Единичная мощность, кВт
Количество агрегатов, шт.

АЗ-4500-1500

4500
16

СТМ-4000, СТД

4000
360

СТД-12,5

12500
336

СДГ-12,5

12500
22

ЭГПА-25

25000
6

ЭГПА-Ц-6,3

6300
6



Таблица 2.2

Показатели газомотокомпрессоров

Тип ГПА
КПД, %
Единичная мощность, шт.
Количество агрегатов, кВт

Купер

29
736
18

10 ГК, 10ГКМ

32
736
38

10 ГКН, 10ГКНА

32
1100/1178
183/4

МК-8

36
2060
37

ДР-12

36,5
5500
9

МК-8М

36
2200
4


На конец 1995 г. на 245 компрессорных станциях промыслов, магистральных газопроводов и подземных хранилищ газа РАО "Газпром" эксплуатировалось 673 компрессорных цеха, где было установлено свыше 4 тыс. газоперекачивающих агрегатов общей мощностью около 40 млн. кВт (табл. 2.3).
Как свидетельствуют данные табл. 2.3, основным видом привода на газопроводах является газотурбинный привод. В настоящее время заводы-изготовители осваивают производство газовых турбин нового поколения мощностью 6-25 МВт с КПД на уровне 31-36%.

Таблица 2.3
Структура парка ГПА в системе ОАО "Газпром"

Вид привода
Количество
Мощность


штук
%
млн.кВт
%

Газотурбинный привод
2989
74,2

33,7
85,5

Электропривод

746
18,5
5,3
13,5

Поршневой привод

293
7,3
0,4
1,0

Всего

4028
100
39,4
100



Показатели газотурбинных установок нового поколения характеризуются данными табл. 2.4.

Таблица 2.4
Показатели перспективных газотурбинных установок нового поколения
Марка ГПА
Марка двигателя
Тип двигателя
Мощность, МВт
КПД
Температ. перед турбиной, °С
Степень сжатия в цикле

ГПА-2,5

ГТГ-2,5
Судовой
2,5
0,27
939
13,0

ГПУ-6

ДТ-71
Судовой
6,3
0,305
1022
13,4

ГПА-Ц-6,3А

Д-336
Авиа
6,3
0,30
1007
15,9

ГТН-6У

ГТН-6У
Промышл.
6,3
0,305
920
12,0

ГПА-Ц-6,3Б

НК-14СТ
Авиа
8,0
0,30
1047
10,5

ГПУ-10А

ДН-70
Судовой
10,0
0,35
1120
17,0

ГПА-12 "Урал"

ПС-90
Авиа
12,0
0,34
1080
15,8

ГПА-Ц-16С

ДГ-90
Судовой
16,0
0,34
1065
18,8

ГПА-Ц-16Л

АЛ-31СТ
Авиа
16,0
0,337
1167
18,1

ГПА-Ц-16А

НК-38СТ
Авиа
16,0
0,368
1183
25,9

ГТНР-16
-

Промышл.
16,0
0,33
940
7,0

ГТН-25-1
-

Промышл.
25,0
0,31
1090
13,0

ГПА-Ц-25
НК-36СТ

Авиа
25,0
0,345
1147
23,1

ГПУ-25

ДН-80
Судовой
25,0
0,35
1220
21,8



ГПА нового поколения призваны обеспечить высокий уровень основных эксплуатационных показателей, включая высокую экономичность (КПД на уровне 31-36 % в зависимости от мощности агрегата), высокую надежность: наработка на отказ не менее 3,5 тыс.ч, межремонтный ресурс на уровне 20-25 тыс. ч, улучшенные экологические показатели и т.п.


2.14. Нагнетатели природного газа. Их характеристики

Нагнетателями природных газов принято называть лопаточные компрессорные машины с соотношением давления сжатия свыше 1,1 и не имеющие специальных устройств для охлаждения газа в процессе его сжатия.
Все нагнетатели условно можно разделить на два класса: неполнонапорные (одноступенчатые) (см. рис. 2.34) и полнонапорные (см. рис. 2.35). Первые, имеющие степень сжатия в одном нагнетателе 1,25-1,27, используются при последовательной схеме компремирования газа на КС, вторые - полнонапорные, имеющие степень сжатия 1,45-1,51, используются при коллекторной схеме обвязки компрессорной станции.




2.34. Неполнонапорный одноступенчатый нагнетатель 370-18 агрегата ГТК-10-4 производства НЗЛ:
1 - корпус; 2 - крышка; 3 - лопаточный диффузор; 4 - рабочее колесо; 5 - гильза; 6 - зубчатая муфта; 7 - клиновые прокладки; 8 - анкерные болты





Рис. 2.35. Полнонапорный двухступенчатый нагнетатель НЦ-16/76 агрегата ГПА У16 производства АО "СМПО им. Фрунзе":
1 - опорный подшипник; 2 - крышка; 3 - корпус; 4 - внутренний корпус; 5 - ротор; 6 - крышка; 7 - уплотнение; 8 - упорно-упорный подшипник; 9 - блок масляных насосов; 10 - думмис; 11 - улитка; 12 - обратный направляющий аппарат

Важной характеристикой нагнетателя является его производительность. Применительно к газопроводу различают объемную , м/мин, массовую , кг/ч и коммерческую подачу газа , млн·нм/сут. Перевод одних величин в другие осуществляется с использованием уравнения Клапейрона с поправкой на сжимаемость газа . При использовании кг газа применяется уравнение Клапейрона-Менделеева также с использованием поправки на сжимаемость газа , где - объемная подача газа, - массовая подача, характеризующая количество газа, протекающее в единицу времени через сечение всасывающего патрубка. Коммерческая подача определяется по параметрам состояния во всасывающем патрубке, приведенным к нормальным физическим условиям (= 20 °С; = 0,101 МПа). Для определения коммерческой подачи используется уравнение Клапейрона для "стандартных" условий: ; , .
Характеристики ряда типов центробежных нагнетателей, используемых на газопроводах, приведены в табл. 2.5.
Каждый тип нагнетателя характеризуется своей характеристикой, которая строится при его натурных испытаниях. Под характеристикой нагнетателей принято понимать зависимость степени сжатия , политропического КПД () и удельной приведенной мощности от приведенного объемного расхода газа . Строятся такие характеристики для заданного значения газовой постоянной , коэффициента сжимаемости , показателя адиабаты, принятой расчетной температуры газа на входе в нагнетатель в принятом диапазоне изменения приведенной относительной частоты вращения . Типовая характеристика нагнетателя типа 370-18-1 приведена на рис. 2.36. Характеристики других типов имеют такой же вид, как для неполнонапорных, так и для полнонапорных нагнетателей.


Рис. 2.36. Приведенные характеристики нагнетателя 370-18-1 при = 288К; = 0,9; = 490 Дж/(кг·К)
Таблица 2.5

Характеристики центробежных нагнетателей для транспорта природных газов

Тип нагнетателя


Номинал. производ. при 20 °С и 1 МПа
Номинал. частота вращения,
об/мин
Объемная производ., м/мин
Степень сжатия
Конечное давление на выходе, МПа

370-14-1

19,1
5300
289
1,25
5,66

Н-300-1,23

20,0
6150
260
1,24
5,50

Н-196-1,45

10,7
8200
196
1,45
5,60

520-12-1

29,3
4800
425
1,27
5,60

370-18-1

36,0
4800
370
1,23
7,60

Н-16-56

51,0
4600
800
1,24
5,60

Н-16-75

51,0
4600
600
1,24
7,50

Н-16-76

31,0
6500
380
1,44
7,50

650-21-1

53,0
3700
640
1,45
7,60

820-21-1

53,0
3700
820
1,45
5,60

Купер-Бессемер:







280-30

16,5
6200
290
1,51
5,60

СДР-224

17,2
6200
219
1,51
7,50

2ВВ-30

21,8
5000
274
1,51
7,50

Нуово-Пиньони:







PCL- 802/24

17,2
6500
219
1,49
7,52

PCL-1001-40

45,0
4600
520
1,51
7,52



Пользуются характеристиками следующим образом. Зная фактические значения величин для данных условий, по соотношению 2.3, определяют приведенную относительную частоту вращения нагнетателя . По известной степени сжатия находят приведенный объемный расход газа , соотношение 2.4, а затем по соответствующим кривым (рис. 2.36) определяют политропический КПД и приведенную внутреннюю мощность нагнетателя

, (2.3)

. (2.4)

Внутренняя мощность, потребляемая нагнетателем, определяется соотношением

. (2.5)

В соотношениях 2.3-2.5 индексом "О" отмечен номинальный режим работы нагнетателя; индексом "в" - отмечены параметры на входе в нагнетатель. Плотность газа при всасывании, кг/м, определяется по соотношению:

, (2.6)

где - абсолютное давление (МПа) и температура (К) при всасывании.
Мощность на муфте привода, кВт: ,
где - механические потери, для газотурбинного привода = 100 кВт, для электропривода = 150 кВт.
Расчетный рабочий расход газа для нагнетателей должен быть примерно на 10-12% больше крайних левых значений расхода, соответствующего условиям начала срыва потока газа по нагнетателю (зоне помпажа). На рис. 2.36 этому соответствует подача газа ~360 м/мин.
Наличие надежных приведенных характеристик при эксплуатации газотурбинного привода позволяет обслуживающему персоналу выбирать наилучший режим работы в зависимости от конкретных условий. Для центробежных нагнетателей с электроприводом также можно пользоваться приведенными газодинамическими характеристиками, но только для какого-то вполне определенного значения , так как электропривод не имеет регулируемую частоту вращения.
Наличие надежных приведенных характеристик с использованием соотношений (2.3-2.6) позволяет относительно легко определять мощность ГПА в эксплуатационных условиях.
Пример 2.1. Определить степень сжатия по нагнетателю, коэффициент полезного действия (), производительность и мощность на муфте нагнетателя типа 370-18-1 при следующих исходных данных: частота вращения = 4500 об/мин, начальное абсолютное давление сжатия = 5,0 МПа, конечное абсолютное давление 6,1 МПа, температура газа на входе, = 288,2 К, газовая постоянная R = 510 Дж/кг·К.
Решение. Определение рабочих параметров нагнетателя при заданных исходных данных можно осуществить в такой последовательности:
1. Определяется относительная плотность газа по воздуху

,

где и - соответственно, газовая постоянная воздуха () и газа (), определяемые как отношения универсальной газовой постоянной (R = 8314 Дж/кг·К) к мольной массе газа.
2. В зависимости от среднего давления процесса сжатия и начальной температуры газа при найденной относительной плотности газа по воздуху по номограмме (см. рис. 1.1) определяется коэффициент сжимаемости газа, = 0,9.
3. По уравнению состояния реального газа () определяется его плотность на входе в нагнетатель

=37,8 кг/м.

4. Определяется степень сжатия по нагнетателю
.

5. Определяется приведенная относительная частота вращения вала нагнетателя


6. С использованием приведенной характеристики нагнетателя (рис. 2.36) при найденных значениях = 1,22 и приведенной частоте вращения вала нагнетателя = 0,96 определяется приведенная объемная производительность: = 480 м мин.
7. Приведенная относительная внутренняя мощность, потребляемая нагнетателем и его политропический КПД при = 480 м/ мин по характеристике рис. 2.36 составят:
= 260·кВт/(кг/м); = 0,82.
8. Фактическая производительность нагнетателя составит:
м/мин.
Объемный, или "коммерческий" расход, приведенный к стандартным условиям, определяется соотношением
·млн.нм/сут.

= 1,206·0,56 = 0,675 кг/м
9. Внутренняя мощность, потребляемая нагнетателем
= 8098 кВт.
10. Мощность на муфте привода нагнетателя
= 8098 + 100 = 8198 кВт,
где - механические потери мощности в системе ГПА, принимаемые в расчетах для этого типа агрегатов на уровне 100 кВт.


2.15. Электроснабжение КС

Электроснабжение газотурбинных КС и ГПА

По Правилам устройства электроустановок ( ) и согласно РД 51-122-87 ("Категорийность электроприемников объектов газовой промышленности") электроснабжение КС должно осуществляться от 2 независимых источников электропитания, т.е. по I категории. I категория электроснабжения допускает перерыв только на время действия автоматики включения резерва (АВР) 1-3 с. Кроме этого, КС должны быть обеспечены третьим аварийным источником электроснабжения - дизельной или газовой электростанцией.
Типовая схема электроснабжения газотурбинной КС (I вариант) представлена на рис. 2.37, где 1 - понижающая подстанция внешних электросетей 35-110/10 кВ; 2 - воздушно-кабельная линия 10 кВ; 3 - вводной выключатель ЭРУ-10 кВ КС; 4 - секция шин ЗРУ-10 кВ; 5 - секционный выключатель 10 кВ; 6 - выключатель 10 кВ трансформатора; 7 - трансформатор понижающий 10/0,4 кВ; 8 - вводной автомат 0,4 кВ; 9 - секционный автомат 0,4 кВ; 10 - контактор 0,4 кВ ввода отДЭС; 11 - автомат 0,4 кВ ДЭС; 12 - дизель-электростанция (ДЭС).



Рис. 2.37. Схема электроснабжения газотурбинной КС (I вариант)

Электроснабжение КС осуществляется от внешних электросетей по воздушно-кабельным линиям (2) от понижающей подстанции 35-110/10 кВ(1).
Для приема и распределения электроэнергии строится закрытое распределительное устройство (ЗРУ-10 кВ) с масляными или воздушными выключателем 10 кВ на 2 секции с секционным выключателем. Секционный выключатель (5) автоматически включается при отключении любой из 2 питающих линий с выдержкой времени 1-3 с.
От ЗРУ-10 кВ запитаны понижающие трансформаторы 10/0,4 кВ (7) мощностью 400-1000 кВ·А (в зависимости от количества установленных турбоагрегатов). От понижающих трансформаторов 10/0,4 кВ через вводные автоматы 0,4 кВ (8) запитан главный щит 0,4 кВ, состоящий из 2 секций. Секционный автомат 0,4 кВ (9) включается автоматически при потере напряжения на любой из секций с выдержкой времени 2-4 с.
Для восстановления напряжения на главном щите 0,4 кВ при полном исчезновении внешнего напряжения через 10-15 с включается дизель-электростанция AC-804 (KAC-500) (12) мощностью 500-630 кВт.
Типовая схема электроснабжения газотурбинной КС (II вариант) представлена на рис. 2.38, где 1 - понижающая подстанция 35-110/10 кВ внешних электросетей; 2 - воздушно-кабельная линия 10 кВ; 3 - выключатель нагрузки типа ВНП-10/400; 4 - высоковольтный предохранитель типа ПК-10/40(80); 5 - понижающий трансформатор 10/0,4 кВ; 6 - вводной автомат 0,4 кВ; 7 - секционный автомат 0,4 кВ; 8 - вводной контактор 0,4 кВ от ДЭС; 9 - автомат ДЭС.

Рис. 2.38. Схема электроснабжения газотурбинной КС (II вариант)
Отличие этой схемы от предыдущей заключается в отсутствии ЗРУ-10 кВ при КС. Питающие линии 10 кВ от внешней питающей подстанции приходят через выключатель нагрузки и высоковольтный предохранитель непосредственно на понижающие трансформаторы 10/0,4 кВ. Данная схема проще и дешевле, но менее надежна.

Электроснабжение ГПА

К потребителям электроэнергии ГПА относятся смазочные маслонасосы, пусковые насосы, вентиляторы отсоса и наддува, валоповоротное устройство, АВО масла и газа, аварийная вентиляция, нагрузки КИПиА, освещение и др.
Потребители ГПА по степени надежности электроснабжения разделяются на потребителей 1-й категории, 2-й категории и потребителей 3-й категории.
К потребителям 1-й категории, допускающим перерыв в электроснабжении только на время действия автоматики, относятся смазочные маслонасосы и насосы уплотнения, АВО масла, АВО воды, цепи КИПиА, аварийная вентиляция и аварийное освещение.
К потребителям 2-й категории, допускающим перерыв на время действия оперативного персонала, относятся АВО газа, освещение цеха.
К потребителям 3-й категории, допускающим перерыв до суток, можно отнести приточно-вытяжную вентиляцию, электрообогрев, освещение вспомогательных помещений, станочный парк и т.п.
Потребители 1-й категории запитываются по радиальным, кольцевым или смешанным схемам от обеих секций шин 0,4 кВ главного щита.
Потребители 2-й категории запитываются по радиальным схемам одной или двумя линиями от АЩСУ или главного щита 0,4 кВ.
Потребители 3-й категории запитываются одиночными линиями от АЩСУ или от главного щита 0,4 кВ.
Самая простая и надежная схема электроснабжения ГПА - радиальная (рис. 2.39 ), где 1 - главный щит 0,4 кВ; 2 - автомат ввода от 2-й секции 0,4 кВ; 3 - кабельная линия 0,4 кВ; 4 - автомат ввода на АЩСУ от 2-й секции; 5 - секционный выключатель 0,4 кВ; 6 - автомат электродвигателя маслонасоса уплотнения; 7 - магнитный пускатель маслонасоса уплотнения.
По этой схеме на каждый ГПА приходит 2 линии от обеих секций 0,4 кВ.
Менее ответственные потребители - освещение, вентиляция - запитаны от одной из секций 0,4 кВ.
Широко применяется и кольцевая схема электроснабжения ГПА. По этой схеме кабели 0,4 кВ прокладываются к крайним ГПА, а между ними выполняются перемычки. Недостатки данной схемы - меньшая надежность, чем радиальной схемы.

Электроснабжение электроприводной КС

Типовая схема электроснабжения КС с синхронными электродвигателями СТД-12500-2 представлена на (рис. 2.40), где 1 - понижающая подстанция внешних электросетей 220 кВ; 2 - выключатель 220 кВ; 3 - выключатель 220 кВ трансформатора 220/10/10 кВ; 4 - трансформатор 220/10/10 кВ; 5 - вводы 10 кВ от трансформатора 220/10/10 кВ; 6 - шиносоединительный выключатель; 7 - ввод 10 кВ на подсекцию 10 кВ собственных нужд; 8 - секционные выключатели 10 кВ; 9 - реактор токоограничивающий на подсекции собственных нужд; 10 - выключатель 10 кВ электродвигателя ГПА; 11 - реактор токоограничивающий эл. двигателя ГПА; 12 - синхронный электродвигатель СТД-12500-2; 13 - подсекция собственных нужд 10 кВ; 14 - выключатель 10 кВ трансформаторара 10/0,4 кВ КТП цеха; 15 - тр-р понижающий 10/0,4 кВ КТП цеха; 16 - вводной автомат КТП цеха; 17 - секционный автомат КТП цеха; 18 - выключатель 10 кВ трансформатора 10/0,4 кВ КТП АВО газа;




Рис. 2.39. Радиальная схема электроснабжения ГПА




Рис. 2.40. Схема электроснабжения электроприводной КС

Электроснабжение электроприводной КС с электродвигателями СТД-12500-2 осуществляется от ПС 220-500 кВ (1) внешних электросетей.
При КС строится подстанция 220/10/10 кВ и от нее запитывается ЗРУ-10 кВ КС. Для уменьшения токов короткого замыкания трансформаторы 220/10/10 кВ выполняются с расщепленной обмоткой. ЗРУ-10 кВ состоит из 4 секций и 2 подсекций. От основных 4 секций запитываются синхронные электродвигатели СТД-12500-2 для привода ГПА. От подсекций запитываются трансформаторы 10/0,4 кВ цеха и АВО газа, другие потребители. Для уменьшения снижения напряжения 10 кВ при пуске ГПА предусматриваются шиносоединительные выключатели. Они включаются только на время пуска и затем отключаются. Для этой же цели - уменьшения снижения напряжения при пуске - служат реакторы в цепи синхронного электродвигателя и на подсекции.

Резервные аварийные электростанции

В качестве аварийных резервных источников для газотурбинных КС применяются дизельные электростанции типа AC-804 (KAC-500) мощностью 500-630 кВт или газотурбинные электростанции типа "Растон" производства Англии мощностью 2700 кВт. Электростанции автоматизированы по III степени, что позволяет им автоматически включаться при полном исчезновении напряжения и отключаться при его появлении на любой из секций 0,4 кВ. Электростанции устанавливаются в помещениях КС рядом с главным щитом 0,4 кВ или в блок-боксе. На ГЩУ от электростанций выводятся 3 сигнала: Резерв, Работа, Авария. Сменный персонал обязан контролировать состояние резервных аварийных электростанций: наличие необходимого давления воздуха, подзаряда аккумуляторных батарей, масла, охлаждающей жидкости и топлива, а также наличие подогрева в зимних условиях и т.д. Необходимо иметь всегда аварийный запас топлива на 4-5 ч работы.

Система питания постоянным током автоматики и аварийных насосов смазки ГПА,
автоматики ЗРУ-10 кВ, аварийного освещения

Для питания постоянным током автоматики и аварийных насосов смазки ГПА, автоматики ЗРУ-10 кВ и аварийного освещения на КС устанавливают аккумуляторные батареи кислотного типа С, СК, СН и щелочного типа НК, "Варта". Как правило, устанавливают кислотные аккумуляторы как более долговечные и требующие меньше места для размещения. Для питания автоматики ГПА используется напряжение = 24 В. Для питания системы управления кранов "Вега", аварийных насосов смазки и аварийного освещения используется постоянное напряжение равное 220 В. Аккумуляторные батареи устанавливаются в специально отведенных помещениях, оборудованных приточно-вытяжной вентиляцией. Для подзаряда аккумуляторов устанавливают 2 полупроводниковых выпрямителя: рабочий и резервный. Аккумуляторная батарея напряжением 220 В оснащается выпрямителями типа ВАЗП-260/380-80/40, аккумуляторная батарея напряжением 24 В оснащается выпрямителями типа ВУТ-31/60-260. В цехах импортной поставки газопровода Уренгой - Ужгород установлены щелочные аккумуляторные батареи типа "Варта" (Германия) напряжением 110 В.
Типовая однолинейная схема системы постоянного тока напряжением 220 В представлена на рис. 2.41, где 1 - автомат ввода от аккумуляторной батареи; 2 - рубильник ввода на секцию; 3 - секционный рубильник.






Рис. 2.41. Схема постоянного тока = 220 В

Постоянное напряжение от аккумуляторной батареи через автомат и рубильник подводится к щиту постоянного тока (ЩПТ). Щит постоянного тока разделен рубильниками на 2 секции.
Напряжение на нагрузку подается от обеих секций. Схемы питания постоянным током, как правило, радиально-кольцевые или кольцевые. Подключение нагрузок осуществляется через ключи (автоматы) и предохранители. Щит постоянного тока оборудован приборами контроля напряжения на батарее, тока нагрузки, тока подзаряда, реле понижения и повышения напряжения, реле контроля земли и т.д.
При снижении изоляции любого из полюсов батареи ниже 20 кОм срабатывает реле контроля "ЗЕМЛЯ" и подает сигнал на ГЩУ. На ГЩУ также должны быть выведены сигналы отключения подзарядных агрегатов.
Снижение изоляции батареи ниже 20 кОм может привести к ложным срабатываниям соленоидов кранов и аварийным остановкам агрегатов и КС в целом.
Контроль изоляции батареи проводится по показаниям вольтметра, подключаемого полюсам батареи с помощью переключателя.
Емкость аккумуляторной батареи выбирается из условий обеспечения выбега и охлаждения ротора ГТУ при полном исчезновении напряжения за 2-3 ч.
От щита постоянного тока запитан блок аварийного освещения. В нормальном режиме светильники аварийного освещения запитаны от переменного напряжения ~220 В.
При исчезновении переменного напряжения ~220 В отключается контактор переменного тока и включается контактор постоянного тока от аккумуляторной батареи.
При восстановлении переменного напряжения ~220 В отпадает контактор постоянного тока и подтягивается снова контактор переменного тока.



2.16. Водоснабжение и канализация КС

Водоснабжение КС осуществляется от артезианских скважин, пробуренных на расстоянии 300-400 метров от забора промплощадки КС. Глубина скважин обычно 70-150 метров. Скважины оборудуются насосами типа ЭЦВ или их аналогами производительностью 6-40 м/сут в зависимости от дебита скважины. Как правило, пробуривается не менее 2 скважин: одна рабочая, другая - резервная. Часть КС получает воду от городских сетей. Вода, получаемая из артезианских скважин, в целом соответствует ГОСТ 2874-82 "Вода питьевая" за исключением повышенного содержания железа и некоторых других компонентов. Для нейтрализации железа, нитратов, органики и т.д. на КС монтируются установки подготовки воды типа "Деферрит" или "Струя". Из артезианских скважин вода по напорному трубопроводу подается в хозяйственные противопожарные емкости. Объем емкостей определяется проектом и составляет от 250 до 500 м. Рядом с емкостями строят насосную 2-го подъема, блочную типа АНПУ-25 или стационарную из кирпича (железобетона). В насосной монтируют хозяйственно-питьевые насосы и пожарные насосы. Хозяйственно-питьевые насосы работают круглосуточно, обеспечивая рабочее давление в трубопроводах в пределах 0,15-0,3 МПа, пожарные насосы включаются при пожаре для повышения давления в сети до 0,6-0,8 МПа и тушения пожара от гидрантов.
Промплощадка КС оборудуется подземным кольцевым хозяйственным противопожарным стальным водопроводом Ду = 100 200 мм. Кольцевой водопровод делится задвижками на несколько участков для возможности ремонта без отключения всего водопровода.
Типовая схема водоснабжения приведена на рис. 2.42, где 1 - артезианские скважины; 2 - напорный трубопровод; 3 - хозяйственно-противопожарные емкости; 4 - хозяйственные питьевые насосы; 5 - пожарные насосы; 6 - установка подготовки воды с обеззараживающей установкой; 7 - задвижки; 8 - кольцевой водопровод.




Рис. 2.42. Типовая схема водоснабжения КС

Канализация хозяйственных фекальных вод промплощадки КС выполняется из чугунных труб Ду = 100200 мм на глубине 1,2 м от поверхности земли. Канализация самотечная. Хозяйственные фекальные воды самотеком поступают в приемный резервуар канализационной насосной и оттуда насосами перекачиваются на очистные сооружения типа БИО или иные типы. Очистка сточных вод осуществляется с помощью воздуха, подаваемого высоконапорным компрессором в массу воды. Кислород воздуха окисляет и переводит органические загрязнения в минеральные с образованием СО и НО, одновременно обеспечивая синтез запасных органических веществ и образование новых клеток активного ила. В результате синтеза увеличивается биомасса ила и число микроорганизмов. Доза ила по массе служит ориентировочным показателем того, сколько в иловой смеси потребителей (микроорганизмов) загрязнений. А уже то, что не смогли переработать организмы активного ила, а также песок и соли металлов выпадают в осадок. Степень очистки сточных вод определяется органами Госкомприроды и должна соответствовать разрешенному нормативу предельно допустимого сброса (ПДС). ПДС - это расчетная величина для каждого региона и каждого водоема, куда осуществляется сброс очищенных стоков.
Типовая схема очистных сооружений типа БИО-50 приведена на рис. 2.43, где 1- решетка, для улавливания крупных отбросов; 2- песколовка, для улавливания песка и мелких неорганических примесей; 3 - первичный отстойник; 4 - аэротенк; 5 - вторичный отстойник; 6 - компрессорная с воздуходувками типа 2АФ49-53; 7 - песчаный фильтр; 8 - установка хлорирования капельного типа "ЛОНИИ"; 9 - контактный колодец, где происходит непосредственное хлорирование.




Рис. 2.43. Типовая схема канализационных очистных сооружений типа БИО-50

Сточные воды, освобожденные от крупных плавающих загрязнений на решетках, поступают на песколовки, которые освобождают сточные воды от песка и частиц размером 0,25-1 мм.
Далее стоки поступают в первичный отстойник, наиболее простой и часто применяемый на практике способ удаления из сточных вод грубодисперсных примесей, которые оседают на дно отстойника или всплывают на поверхность. Основной процесс биологической очистки происходит в аэротенке. Процесс очистки представляет собой непосредственный контакт органических загрязнений с оптимальным количеством организмов активного ила в присутствии соответствующего количества растворенного кислорода в течение необходимого периода времени. Вторичный отстойник применяется для отделения активного ила от биологически очищенной сточной воды.
Установка хлорирования производит обеззараживание очищенной сточной воды.
В настоящее время в П "Мострансгаз" началась замена морально и физически устаревших очистных сооружений типа БИО на очистные сооружения типа ККВ, которые обеспечивают большую степень очистки по БПК-5, фосфору, нитратам.

Теплоснабжение КС

Теплоснабжение помещений КС осуществляется от собственных стационарных (блочных) котельных, оборудованных водогрейными стальными (чугунными) котлами на газе типов HP-18, "Братск", КВА, ТВГ и т.д. мощностью 0,8-8 МВт. Мощность и количество котлов определяются проектом с учетом покрытия тепловых нагрузок в самые сильные морозы и с учетом резервирования. Как правило, это 3-4 котла на промплощадку. Котельные полностью автоматизированы, не имеют постоянного закрепленного персонала и обслуживаются сменным персоналом КС. Компрессорные станции, имеющие постоянно работающие газотурбинные агрегаты, обеспечиваются теплом от утилизаторов ГПА. Утилизатор представляет собой блок из пучка стальных оребренных труб, устанавливаемых в выхлопную шахту ГПА.
Для обеспечения длительной и безаварийной работы котлов и утилизаторов на промплощадке КС устанавливают блоки химводоподготовки (ХВО) или умягчения воды. Это, как правило, система натрий-катионитовых фильтров (1-3 шт.) диаметром Ду = 7001000 мм, загруженных сульфоуглем или ионообменными смолами. Регенерация фильтров осуществляется с помощью поваренной соли. Мощность ХВО определяется емкостью теплосети и составляет 10-100 м /сутки. Теплотрасса промплощадки КС бывает подземной или надземной. Выполняется из стальной водогазопроводной трубы Ду = 50200 мм. В последнее время для увеличения срока службы теплотрассы чаще выполняют надземными.
Типовая схема теплоснабжения КС представлена на рис. 2.44, где 1 - утилизационный теплообменник; 2 - теплообменный модуль; 3 - блок-шибер; 4 - циркуляционный насос; 5 - подпиточный насос; 6 - обратный клапан; 7 - бак-аккумулятор (деаэратор); 8 - насос перекачивающий; 9 - подогреватель обратной воды; 10 - водоподогреватель; 11 - химводоочистка (Na - катионитовая); 12 - обратный клапан; 13 - циркуляционный насос системы ГВС; 14 - обезжелезивающий фильтр; 15 - водяной насос.

















Рис. 2.44. Принципиальная тепловая схема теплоснабжения газотурбинных КС.

Условные обозначения: - выхлопные газы; - сетевая вода; - сырая вода; - умягченная и деаэрированная вода; - контур горячего водоснабжения

2.17. Организация связи на компрессорных станциях

Связь на компрессорной станции является неотъемлемой частью газотранспортного процесса и организуется в строгом соответствии с действующими общими требованиями к технологической связи магистральных газопроводов ОАО "Газпром".
Средства связи компрессорных станций входят в комплекс средств контроля и управления процессом транспортировки газа и образуют оперативно-технологическую и общетехнологическую связь.
Основой для организации всех видов связи КС является местная первичная сеть и внутризоновая первичная сеть связи предприятия.
Эксплуатацию всех технических средств связи КС, задействованных на организацию вышеперечисленных видов связи, осуществляет персонал узлов связи, входящий в состав производственных служб компрессорных станций.
Центральная диспетчерская связь организуется по каналам тональной частоты (TЧ) различных кабельных систем передачи (К-60П, ИКМ-30, ИКМ-120, К12+12 и др. отечественного производства и KNK-30, ВК-300 импортного производства), а также по радиорелейным линиям связи. В эту сеть связи включены диспетчеры всех КС для оперативной связи с главным диспетчером диспетчерского Управления предприятия (рис. 2.45).



Рис. 2.45. Схема организации связи на рабочем месте диспетчера по газу.

Условные обозначения: - кабель связи и телефонной канализации;
- линия прямого абонента; - линия связи KNK-3О-S;
- выделенная линия связи
Районная диспетчерская связь организована на радиокабельных системах БК/Г венгерского производства и на системах передачи К-6Т отечественного производства по одночетверочным (ЗКП, КСПП) и четырехчетверочным (МКС, ТЗ) кабелям связи. По этим системам связи диспетчеры КС имеют линейную диспетчерскую связь с бригадами линейных эксплуатационных служб по радиоканалу и по диспетчерскому кабельному каналу со всеми ГРС и домами операторов в зоне обслуживания подразделения предприятия.
Местная и междугородняя телефонная связь всех КС организованы на базе современных цифровых коммутационных станций семейства - "Харрис 20+20".Унификация коммутационного оборудования дает существенные преимущества в вопросах послегарантийного обслуживания и обучения эксплуатационного персонала. Автоматические телефонные станции, обслуживающие КС, имеют 100 %-й резерв по центральному управляющему процессору и картам общего телефонного оборудования, а также аккумуляторную батарею на 6 ч работы.
Цифровые АТС имеют в своем составе цифровые карты и, следовательно, дают возможность пользоваться основным абонентам всеми услугами цифровой связи. В перечень основных абонентов КС входят руководящий состав, начальники эксплуатационных служб и диспетчер главного щита.
Автоматические телефонные станции КС имеют полноавтоматический выход на общегосударственную сеть телефонной связи общего пользования по пучку соединительных линий (СЛ), что, с одной стороны, обеспечивает качественную связь с потребителями газа, а с другой - дает возможность использовать свободную емкость АТС для предоставления услуг местной телефонной связи физическим и юридическим лицам в пределах местной телефонной сети, и, в первую очередь, телефонизировать жилые поселки газовиков, находящиеся вблизи предприятия ОАО "Газпром".
Диспетчеры КС являются прямыми абонентами сети связи ручной коммутации, которая существует параллельно сети автоматической телефонной связи и является ее резервом на случай отказа АТС.
Каждая компрессорная станция обеспечивается абонентским телеграфным терминалом сети автоматической телеграфной связи предприятия от центральной ТЛГ станции "Электроника МС-12/12" на 64 номера. В качестве абонентского терминала используется PC (персональный компьютер) с модемом "Альфа-телекс".
Кроме технологической связи, промплощадки КС комплектуются громкоговорящими установками для целей оповещения обслуживающего персонала в аварийных ситуациях и студийным оборудованием для проведения селекторных совещаний руководства и производственных отделов предприятия с использованием аппаратуры связь селекторных совещаний МСС-12.
Каждая компрессорная станция охвачена региональной сетью передачи данных "ГОФО-2" через маршрутизаторы "CISKO-4000" и "CISKO-2500" подсистемы СОМ, обслуживаемой персоналом служб связи.
Зоновая радиосвязь КС функционирует на оборудовании фирмы "Моторолла" в части базовых радиостанций и периферийного оборудования производства фирмы "Алинко" в носимом и автомобильном вариантах. С целью расширения зоны обслуживания антенны базовых станций устанавливаются на свободно стоящие башни высотою примерно 60 м. Зоновые сети радиосвязи сопряжены с сетью ручной коммутации, а при использовании телефонных модемов - с сетью автоматической телефонной связи.
На прилагаемой схеме организации связи диспетчера КС наглядно показаны все виды и направления связи, действующие на компрессорной станции.
Общее руководство технической политикой в области технологической связи предприятия и ее текущей эксплуатации возложено на Управление связи.

2.18. Электрохимзащита компрессорной станции

Защита трубопроводов компрессорных станций от подземной коррозии должна быть комплексной, в связи с чем применяются два метода защиты: пассивный и активный.
Пассивный метод защиты от коррозии предполагает создание непроницаемого барьера между металлом трубопровода и окружающим его грунтом. Это достигается нанесением на трубу специальных защитных покрытий. На территории компрессорных станций разрешается применять только усиленный тип изоляции. На предприятии "Мострансгаз" последние 3 года в качестве изоляционного покрытия применяется двухкомпонентная мастика "Фрусис-1000А" (импортного производства). Мастика наносится в трассовых условиях и предназначена для антикоррозионной защиты горячих участков подземных коммуникаций КС. Толщина наносимого покрытия 2,5-3,0 мм. Эксплуатационная температура до 80 °С. Мастика может с успехом применяться как на прямолинейных участках газопроводов, так и на участках сложной конфигурации (запорная арматура, фланцы, отводы и т.д.).
Однако на практике не удается добиться полной сплошности изоляционного покрытия. Различные виды покрытия имеют неодинаковую диффузионную проницаемость и поэтому обеспечивают разную степень изоляции трубы от окружающей среды. В процессе строительства и эксплуатации в изоляционном покрытии возникают трещины, задиры, вмятины.
Так как пассивным методом не удается осуществить полную защиту трубопровода от коррозии, одновременно применяется активная защита, связанная с управлением электрохимическими процессами, протекающими на границе металла трубы и грунтового электролита.
Для защиты подземных трубопроводов от коррозии сооружаются установки катодной защиты (УКЗ). В состав УКЗ входят источник постоянного тока, анодное заземление, контрольно-измерительный пункт, соединительные провода и кабели. Анодные заземления на КС выполняют, как правило, глубинные из стальных труб диаметром 220 мм, толщиной стенки 10 мм.
Глубина заложения этого типа заземлителей составляет от 50 до 200 м. Применяются также поверхностные аноды из железокремниевых сплавов (ферросилидов) типов АЗМ, "Менделеевец" или графитопластовые электроды типа ЭГТ.
В качестве источника постоянного тока используются преобразователи типов ПСК, ПАСК, ТДЕ-9, В-ОПЕ.
Главным критерием достижения катодной защиты является так называемый "поляризационный потенциал". Значением поляризационного потенциала, достаточного для катодной защиты, является минус 0,85 В. При наличии в грунте сульфатвосстанавливающих бактерий, значение защитного потенциала - 0,95В, на участках трубопроводов транспортируемого продукта - от 60 до 80 °С, поляризационный потенциал рекомендуется повышать до 1,00 В, а при температуре свыше 80 °С - до минус 1,05 В.
Эксплуатацией УКЗ занимается служба ЭХЗ. Контроль за работой УКЗ осуществляется ежедневно. Один раз в месяц проводится измерение потенциала "труба-земля" в точке дренажа УКЗ, два раза в год измеряется потенциал по всей промплощадке в специально отведенных точках и раз в 5 лет проводится комплексное обследование коммуникаций КС.
Комплексное обследование включает в себя измерения потенциала через каждые 5 м, отыскание мест повреждений изоляции с помощью прибора искателя повреждений изоляции (ИПИ). По результатам комплексного обследования проводится шурфование трубопроводов. В шурфах определяется состояние металла трубы и изоляционного покрытия, после чего проводится необходимый ремонт.



2.19. Грозозащита компрессорной станции

Для защиты зданий и сооружений компрессорной станции и линейной части газопроводов от прямых ударов молнии, которая может вызвать пожар, взрыв и поражение людей, применяется молниезащита. Молниезащита выполняется в соответствии с "Инструкцией по устройству молниезащиты зданий и сооружений" ( ) в зависимости от категорийности объекта по ( ).
I категория - это здания и сооружения зон класса B-I и B-II.
II категория - это здания и сооружения зон плана B-Ia, B-Iб, B-Iг, B-IIa.
Ill категория - все остальные.
В соответствии с этим объекты транспорта газа относятся к II и III категориям.
Молниезащита объектов КС и газопроводов по II категории выполняется в виде отдельно стоящих молниеотводов, наложением металлической сетки на неметаллическую кровлю или использованием в качестве молниеприемника металлической кровли здания. Для отвода молнии в землю применяется заземлитель в виде одного или нескольких металлических уголков или арматуры, толщиной не менее 10 мм, забитых на глубину 1,5 -2,5 м в зависимости от удельного сопротивления грунта.
Сопротивление растекания заземлителя молниеотвода должно быть не более 10 Ом, при высоком удельном сопротивлении грунта допускается до 50 Ом.
Количество молниеотводов выбирается таким образом, чтобы они перекрывали все здания и сооружения, подлежащие защите.
Кроме того, молния может привести к заносу высоких потенциалов по подземным трубопроводам и кабелям и электромагнитной индукции. Занос высоких потенциалов и электромагнитная индукция приводят к поражению людей, пожару и взрыву от искрения, выходу из строя электронного оборудования КИПиА и связи. Защита от заноса высоких потенциалов выполняется присоединением трубопроводов и оболочек кабеля к защитному заземлению с сопротивлением не менее 10 Ом.
Защита от электромагнитной индукции осуществляется привариванием металлических перемычек между трубопроводами в местах их сближения менее 10 см через каждые 25 м.












13 EMBED Word.Picture.8 1415

13 EMBED Word.Picture.8 1415



Root Entry15Times New Roman

Приложенные файлы

  • doc 18293195
    Размер файла: 2 MB Загрузок: 0

Добавить комментарий