EKZAMEN


Gamazenkova AP
2013/2lech
ЦИТОЛОГИЯ С ЭМБРИОЛОГИЕЙ
1) .Эукариотическая клетка. Понятие о компартментализации. Классификация органелл. Функциональные аппараты клетки. В эукариотических клетках ДНК , связанная с  HYPERLINK "http://medbiol.ru/medbiol/botanica/00110042.htm" белком , организована в  HYPERLINK "http://medbiol.ru/medbiol/slov_sverd/000394cd.htm" хромосомы , которые располагаются в особом образовании, по сути самом крупном органоиде клетки - ядре. Кроме того, внеядерное активное содержимое такой клетки разделено на отдельные отсеки с помощью эндоплазматической сети, образованной элементарной мембраной. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования - включения. 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Принцип компартментализации клеток эукариот постулирует, что биохимические процессы в клетке локализованы в определённых отсеках, покрытых оболочкой из бислоя липидов. Большинство органоидов в эукариотической клетке являются компартментами — митохондрии, хлоропласты, пероксисомы, лизосомы, эндоплазматический ретикулум, ядро клетки иаппарат Гольджи. Внутри компартментов, окруженных бислоем липидов, могут существовать различные значения pH, функционировать разные ферментативные системы. Принцип компартментализации позволяет клетке выполнять разные метаболические процессы одновременно. Выделяют следующие клеточные компартменты
Ядро (внутреннее содержимое ядра)
Пространство цистерн эндоплазматического ретикулума (переходящее в перинуклеарное пространство)
Аппарат Гольджи
Лизосомы
Митохондрии (подразделяются на два компартмента — матрикс и межмембранное пространство)
Хлоропласты (у высших растений подразделяются на три компартмента — межмембранное пространство, строму и внутреннюю полость тилакоидов)
Цитозоль
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1)Эндоцитоз — захват веществ клеткой. Большая часть веществ проникает через мембрану путем диффузии и активного транспорта. Под диффузией подразумевается простой неупорядоченный перенос молекул вещества через мембрану, которые проникают в клетку чаще через поры, а жирорастворимые вещества — непосредственно через липидный бислой. Все виды пассивного транспорта основаны на принципе диффузии Диффузия —проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).
При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.
2) Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Оносуществляется специальными белками-переносчиками, образующими так называемые ионные насосы. Наиболее изученным является Na-/ К--насос в клетках животных, активно выкачивающих ионы Na+ наружу, поглощая при этом ионы К-. Благодаря этому в клетке поддерживается большая концентрация К- и меньшая Na+ по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ..Частицы большого размера попадают в клетку путем процесса, называемого эндоцитозом. Главные виды эндоцитоза — пиноцитоз и фагоцитоз.3) Пиноцитоз — единственный способ, благодаря которому большинство макромолекул могут проникать в клетку. Интенсивность пиноцитоза возрастает, когда такие молекулы соприкасаются с мембраной.
Как правило, белки присоединяются к поверхностным рецепторам мембраны, которые высокоспецифичны к абсорбируемым видам белков. Рецепторы концентрируются в основном в области мельчайших углублений на наружной поверхности мембраны, которые называют окаймленными ямками. Дно ямок со стороны цитоплазмы выстлано сетевидной конструкцией из фибриллярного белка клатрина, который, как и другие сократительные белки, содержит нити актина и миозина. Присоединение белковой молекулы к рецептору меняет форму мембраны в области ямки благодаря сократительным белкам: ее края смыкаются, мембрана все больше погружается в цитоплазму, захватывая молекулы белка вместе с небольшим количеством внеклеточной жидкости. Сразу после замыкания краев происходит отрыв пузырька от наружной мембраны клетки и формирование пиноцитозной вакуоли внутри цитоплазмы.
4) Фагоцитоз. В целом фагоцитоз напоминает пино-цитоз, за исключением того, что при фагоцитозе происходит захват частиц более крупных, чем молекулы. К фагоцитозу способно лишь ограниченное число клеток, в основном тканевые макрофаги и некоторые лейкоциты. Фагоцитоз начинается, когда частица, например бактерия, мертвая клетка или фрагменты тканей, присоединяется к рецептору на поверхности мембраны фагоцита. При фагоцитозе бактерий они обычно бывают уже связаны с антителом. Связанное с бактерией антитело, в свою очередь, соединяется с рецептором. Такая посредническая роль антител носит название опсонизации.
2. Биологическая мембрана клетки. Принцип строения и свойства биологических мембран.
Биологическая мембрана - это структура, состоящая из органических молекул, которая имеет толщину около 7-10нм и видима только посредством электронного микроскопа. В каждой клетке есть плазматическая мембрана, которая ограничивает содержимое клетки от наружней среды, и внутренние мембраны, которые формируют различные органоиды клетки (митохондрии, органоиды, лизосомы и т.п.)
Плазматическая мембрана выполняет несколько важных функций. 1) Образует избирательный барьер, который отделяет содержимое клетки от окружающей среды, что позволяет поддерживать постоянными химический состав цитоплазмы и её физические свойства.2) Регулирует транспорт веществ между содержимым клетки и окружающим клетку раствором.3) Принимает участие в информационных процессах в живой клетке.
В состав плазматической мембраны входят липиды, белки и углеводы. Соотношение между липидами и белками может значительно варьировать в различных клетках. Липиды мембраны бывают трех видов: глицерофосфолипиды, сфингофосфолипиды и стероиды (холестерол).
В молекуле глицерофосфолипида можно выделить две части, которые называются головка (остаток глицерина, остаток фосфорной кислоты и азотистое основание) и хвостики (остатки жирных кислот). Головка и хвостики сильно отличаются по своим физическим свойствам. Головка молекулы фосфолипида гидрофильна (″любит воду″). Она хорошо растворима в воде. Хвостики -гидрофобны (″боятся воды″). Они легко растворяются в липидах и органических растворителях, но водой отталкиваются. Таким образом, в целом молекула фосфолипида, содержащая как водорастворимые, так и липидорастворимые области, имеет амфифильные свойства. Молекулы фосфолипидов расположены в два ряда — гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде.
В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы — поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.
Основные свойства мембран.1) Замкнутость. Липидный бислои (и мембраны) всегда замыкаются на себя с образованием полностью отграниченных отсеков;2) Латеральная подвижность. Компоненты мембраны могут перемещаться в пределах своего слоя. Мембраны обладают свойствами двумерных жидкостей, поэтому модель строения биомембран называется жидкостно-мозаичной. Кроме латеральной подвижности существует так же вращательные движения, меняя свою ориентацию относительно поверхностей мембраны;3) Асимметрия. Наружная и внутренняя поверхности мембраны обычно различаются по своему составу: а) углеводные компоненты, находятся с внешней поверхности плазмолеммы;б) многие белки расположены с наружной, а другие – только с внутренней стороны;в) различается и липидный состав слоев бислоя.
3. Структура плазмолеммы , химический состав и молекулярная организация. Плазмолемма, или внешняя клеточная мембрана- поверхностная периферическая структура, не только ограничивающая клетку снаружи, но и обеспечивающая ее непосредственную связь с внеклеточной средой, а следовательно, и со всеми веществами и стимулами, воздействующими на клетку. 
Функции плазмолеммы:1) разграничительная (барьерная);2) рецепторная;3) антигенная;4) транспортная;5) образование межклеточных контактов.Химический состав веществ плазмолеммы: белки, липиды, углеводы. Основу плазмолеммы составляет липо-протеиновый комплекс. Она имеет толщину около 10 нм и, таким образом, является самой толстой из клеточных мембран.
Строение плазмолеммы:1) двойной слой липидных молекул, составляющий основу плазмолеммы, в которую местами включены молекулы белков;2) надмембранный слой гликокаликс (Находящиеся на внешней поверхности плазмолеммы белки и гидрофильные головки липидов связаные с цепочками углеводов).
Толщина этого слоя около 3—4 нм, он обнаружен практически у всех животных клеток, но степень его выраженности различна. Гликокаликс представляет собой ассоциированный с плазмолеммои гли-копротеиновый комплекс, в состав которого входят различные углеводы. Углеводы образуют длинные, ветвящиеся цепочки полисахаридов, связанные с белками и липидами, входящими в состав плазмолеммы (см. рис. 5). При использовании специальных методов выявления полисахаридов (краситель рутениевый красный) видно, что они образуют как бы чехол поверх плазматической мембраны. В гликокаликсе могут располагаться белки, не связанные непосредствен-но с билипидным слоем. Как правило, это белки-ферменты, участвующие во внеклеточном расщеплении различных веществ, таких как углеводы, белки, жиры и др.
3) подмембранный слой. Подмембранный (кортикальный) слой плазмолеммы образован упорядоченной сетью поперечно связанных белковых нитей из актина и актинсвязанных белков (прежде всего филамина), которая выстилает изнутри поверхность плазматической мембраны.
Типы межклеточных контактов:
1) простой контакт – 15 – 20 нм (связь осуществляется за счет соприкосновения макромолекул гликокаликсов)
2) десмосомный контакт – 0,5 мкм. Десмосомные контакты (или пятна сцепления) представляют собой небольшие участки взаимодействия между клетками. Каждый такой участок имеет трехслойное строение и состоит из двух полудесмосом – электронноплотных участков, расположенных в цитоплазме в местах контакта клеток, и скопления электронноплотного материала в межмембранном пространстве.
3) плотный контакт. Данный контакт называют также замыкательными пластинками. Они локализуются в органах (желудке, кишечнике), в которых эпителий отграничивает агрессивное содержимое данных органов, например желудочный сок, содержащий соляную кислоту. Плотные контакты находятся только между апикальными частями клеток, охватывая по всему периметру каждую клетку. В этих участках межмембранные пространства отсутствуют, а билипидные мембраны соседних клеток сливаются в единую билипидную мембрану.
4) щелевидный контакт (или нексусы) – 0,5 – 3 мкм (обе мембраны пронизаны в поперечном направлении белковыми молекулами (или коннексонами), содержащими гидрофильные каналы, через которые осуществляется обмен ионами и микромолекулами соседних клеток, чем и обеспечивается их функциональная связь).
5) синаптический контакт (или синапс) – специфические контакты между нервными клетками (межнейронные синапсы) или между нервными и мышечными клетками (мионевральные синапсы). Функциональная роль синапсов – передача нервного импульса или волны возбуждения (торможения) с одной клетки на другую или с нервной клетки на мышечную.
4.Типы белков, формирующих плазмолемму: структурные, транспортные, белки межклеточного взаимодействия, белки, участвующие в передаче сигналов.
Классификация по функциональной роли.1)Структурные белки.
а) придают клетке и органеллам определенную форму;б) придают мембране те или иные механические свойства;в) обеспечивают связь мембраны с цитоскелетом или с хромосомами. 
2)Транспортные белки.
3)Белки, обеспечивающие непосредственное межклеточное взаимодействие.
а) адгезивные белки необходимы для связывания клеток друг с другом или неклеточными структурами; б) другие белки участвуют в образовании специализированных межклеточных контактов.
4)Белки, участвующие в передаче сигналов.
а) рецепторные белки,б) белки эффекторного устройства, в) фермент иноктивации медиатора.
5.Типы липидов, формирующих биологическую мембрану. Способы “упаковки” амфифильных липидных молекул.
Основные липидные компоненты биологические мембраны - фосфолипиды, гликолипиды и стерины
В состав мембран входят липиды следующих классов:1) фосфолипиды (ФЛ)2) сфинголипиды (СЛ)3) гликолипиды (ГЛ)4) стероиды или холестерин (ХС)У фосфолипидов в состав головки обычно входят последовательно связанные друг с другом остатки азотистого основания, фосфатные группы и трехатомного спирта глицерина. Остатки же жирных кислот, образующие гидрофобные хвосты, соединены с глицерином. У сфинголипидов вместо глицерина и одной из жирных кислот они включают сфингозин – это двухатомный аминоспирт.Гликолипиды тоже содержат остаток сфингозина. Но в состав гидрофильной «головки» в место азотистого основания и фосфатной группы входит какой-либо углевод. Холестерин представляет собой вытянутую систему 4-х углеводородных циклов и углеводородную боковую цепь. Поэтому, за исключением одной гидроксигруппы, холестерин – гидрофобное соединение. Влияние липидного состава на свойства мембран.1)Влияние фосфолипидов и сфинголипидов. По мере увеличения содержания в мембране ФЛ и СЛ возрастают все показатели ее лабильности: 
- повышается латеральная диффузия компонентов мембраны- увеличивается диффузия соответствующих веществ- повышается способность мембран к разрыву2)Влияние холестерина и гликолипида. 
- вносят дезорганизацию в расположение углеводородных «хвостов»- препятствуют активному перемещению липидов
Различные способы «упаковки» амфифильных липидов.Образование бислоя – это способ «упаковки» в водном растворе амфифильных липидов. Когда такой бислой формируется в экспериментальных условиях, образуются липосомы - это сферические пузырьки со стенкой из липидного бислоя. Внутренняя и наружная поверхности липосом являются полярными. Возможна и другая организация амфифильных липидов – объединение их в мицеллы. Мицеллы – это сферические частицы, образованы только одним слоем липидов. Внутренняя среда их гидрофобная. Одна форма организации амфифильных липидов может переходить одна в другую. Липосомы - для переноса водоростворимых, а мицеллы - для жирорастворимых веществ.
6.Надмембранный (гликокаликс) и подмембранный (кортикальный) компоненты плазмолеммы. Особенности строения и функции. Мембранные рецепторы.
Гликокаликс и корт.слой в 3 вопросемембранные рецепторы — мембранные белки, которые размещаются, и работают не только во внешней клеточной мембране, но и в мембранах компартментов и органеллклетки. Связывание с сигнальной молекулой (гормоном или медиатором) происходит с одной стороны от мембраны, а клеточный ответ формируется на другой стороне от мембраны. Таким образом, они играют уникальную и важную роль в межклеточных связях и передаче сигнала. мембранные рецепторы состоят из двух или нескольких субъединиц, которые действуют в совокупности и могут диссоциировать при связывании с лигандом или менять свою конформацию и переходить на следующую стадию цикла активации. Зачастую они классифицируются на основе их молекулярной структуры. Полипептидные цепи простейших из этих рецепторов пересекают липидный бислой лишь один раз, между тем как многие — семь раз (например, связанные с G-белками рецепторы).
Почти половина всех лекарств действует на клетку через особые мембранные белки, которые называются рецепторами, ассоциированными с G-белками (GPCR). Почти тысяча разновидностей GPCR участвуют в передаче нейрохимических сигналов, восприятии сенсорного раздражения, регуляции иммунного ответа и т. п. Когда с GPCR связывается какая-нибудь внешняя молекула, он передаёт сигнал на сигнальный G-белок, и дальше, по цепочке молекулярных сигналов, информация поступает в глубь клетки, непосредственно к тем молекулам, которые должны реагировать на внешние изменения.Внеклеточный домен
Внеклеточный домен — это участок рецептора, который находится вне клетки или органоида. Если полипептидная цепь рецептора пересекает клетку несколько раз, то внешний домен может состоять из нескольких петель. Основная функция рецептора состоит в том, чтобы опознавать гормон (хотя некоторые рецепторы также способны реагировать на изменение мембранного потенциала), и во многих случаях гормон связывается именно с этим доменом.
Трансмембранный домен
Некоторые рецепторы являются также и белковыми каналами. Трансмембранный домен в основном состоит из трансмембранных α-спиралей. В некоторых рецепторах, таких какникотиновый ацетилхолиновый рецептор, трансмембранный домен формирует мембранную пору или ионный канал. После активации внеклеточного домена (связывания с гормоном) канал может пропускать ионы. У других рецепторов после связывания гормона трансмембранный домен меняет свою конформацию, что оказывает внутриклеточное воздействие.
Внутриклеточный домен
Внутриклеточный, или цитоплазматический, домен взаимодействует с внутренней частью клетки или органоида, ретранслируя полученный сигнал. Существуют два принципиально разных пути такого взаимодействия:
Внутриклеточный домен связывается с эффекторными сигнальными белками, которые в свою очередь передают сигнал по сигнальной цепи к месту его назначения.
В случае если рецептор связан с ферментом или сам обладает ферментативной активностью, внутриклеточный домен активирует фермент (или осуществляет ферментативную реакцию).
7.Механизм транспорта низкомолекулярных веществ клеткой. Пассивный транспорт: простая диффузия, облегчённая диффузия, активный транспорт веществ.
Низкомолекулярные соединения.Три способа переноса:1.Простая диффузия. В этом случае вещество без чьей-либо помощи, диффундирует через мембрану из компартмента с большей концентрацией в компартмент с меньшей концентрации.
2.Облегченная диффузия. Способ переноса по направлению градиента своей концентрации с помощью специального транспортного белка – транслоказа. Практически всегда с помощью транслоказы переносятся вещества не способные к простой диффузии через мембрану. Исключение: перенос воды через мембраны почечных канальцев и секреторных эпителиальных клеток.
3.Активный транспорт. Вещество проходит против их градиента своей концентрации с затратой энергии АТФ.
Конкретные системы низкомолекулярных веществ. Na+, K+- насос.Переносит ионы Na+ и K+ против градиента их концентрации: ионы Na+ - из клетки, а ионы K+ - в клетку. Именно благодаря деятельности этого насоса создается резко ассиметричное распределение ионов между клеточной и внутриклеточной средой. Концентрация ионов Na+значительно выше вне клеток, а ионов К+ - внутри клеток. За счет распада одной молекулы АТФ происходит выкачивание 3-х ионов Na+ и одновременное закачивание в клетку 2-х ионов К+. К+- каналы. Обеспечивают облегченную диффузию одновалентных катионов. Содержатся в плазмолемме многих клеток и постоянно «открыты». Благодаря этому, через них возвращается во внутриклеточную среду некоторое количество ионов К+ – из-за наличия очень сильного концентрационного градиента, созданного Nа+, К+- насосом.Nа+- каналы.Имеются лишь в тех мембранах, которые способны к возбуждению. Это плазмолемма нервных клеток, миоцитов и мышечных волокон, сперматозоидов, сенсорных клеток органов чувств. Nа+-каналы функционируют не постоянно, а лишь при определенном состоянии клетки. Nа+ – каналы – ключевой участник таких процессов, как возбуждение мембраны (вне синапса) и проведение возбуждения по мембране.
Катионные каналы и холинорецепторы.Располагаются в постсинаптической мембране холинергических синапсах, содержащих н-холинорецепторы. Такие синапсы содержатся в вегетативных ганглиях – как парасимпатических, так и симпатических, а также в окончаниях двигательных нервов на скелетных мышцах. Все они возбуждаются не только ацетилхолином, но и никотином. Данные белки имеют сложное субъединичное строение. Всего в молекуле – 6 (5) субъединиц трех видов общей массой 280 кДа. В процессе синоптической передачи с молекулами холина – рецептора связывается по 2 молекулы ацетилхолина. Это приводит к изменению конформации белковых молекул, в ходе чего диссоциирует большая часть ионов Са2+ и открываются катионные каналы. Ионы Nа+ начинают интенсивно поступать внутрь клетки, а ионы К+ – выходит во внешнюю среду.В итоге трансмембранный потенциал постсинаптической мембраны снижается и это оказывается достаточно, чтобы запустить процесс возбуждения в близлежащих участках плазмолеммы, там, где уже имеются Nа+-каналы. Прекращение действия медиатора: 1) разрушение свободного медиатора специальным ферментом-ацетлхолинэстеразой;2) десенсибилизация рецептора. При достаточно длительном воздействии медиатора на рецептор последний просто теряет к нему чувствительность.
8.Механизм транспорта высокомолекулярных веществ. Разновидности эндоцитоза: пиноцитоз, фагоцитоз, рецепторно-опосредованный эндоцитоз.
По направлению транспорта и по характеру переносимых веществ различают следующие процессы:1) Эндоцитоз – перенос частиц в клетку:а) пиноцитоз - захват и поглощение клеткой растворимых макромолекулярных соединений;б) фагоцитоз - захват и поглощение клеткой в отношении твердых частиц;в) эндоцитоз, опосредованный рецепторами, - здесь поглощаемый субстрат предварительно специфически связывается с поверхностными рецепторами плазмолеммы.Во всех перечисленных случаях в месте проникновения субстрата вначале происходит впячивание плазмолеммы в цитоплазму. Затем оно все углубляется, пока не превращается в мембранный пузырек, содержащий субстрат и полностью находящийся в цитоплазме.2) Экзоцитоз – перенос частиц и крупных соединений из клетки:а) секреция - выведение из клетки растворимых соединений, которое является одной из функций данной клетки. Секреция возможна как низко-, так и высокомолекулярных соединений. Накопление веществ в клетке происходит в виде секреторных пузырьков, которые сливаются с плазмолеммой и их содержимое оказывается вне клетки. Реже секреция совершается по типу облегченной диффузии или активного транспорта;б) экскреция - удаление из клетки твердых частиц, механизм схож с секрецией;в) рекреция – это перенос твердых веществ через клетку; фактически здесь сочетаются фагоцитоз и экскреция.
9.Специализированные структуры плазмолеммы: микроворсинки, реснички, базальный лабиринт (СМ и ЭМ). Функции.
Микроворсинками называют пальцевидные выросты плазмалеммы некоторых клеток, предназначенные для увеличения их поверхности.      Микроворсинки особенно многочисленны на тех поверхностях мембран, через которые осуществляется транспорт веществ. В частности, большое число микроворсинок имеется на поверхностях клеток эпителия тонкой кишки обращенных в её полость и на поверхностях клеток эпителия канальцев нефронов, обращенных в полость канальцев. Бахрому микроворсинок на таких эпителиальных клетках называют щеточной каемкой.      В каждой микроворсинке содержатся пучки актиновых нитей, взаимодействующих с миозиновыми нитями в основании этой микроворсинки, в области, которую называют терминальной сетью. Микроворсинки способны сокращаться. Это происходит врезультате скользящего движения актиновых нитей вдоль миозиновых, их вдвигания в терминальную сеть. Механизмсокращения подобен механизму сокращения мышечного волокна. Ритмическое укорочение и удлинение микроворсинок, вероятно, способствует осуществлению процесса транспорта веществ клеткой из полости органа в цитоплазму и затем винтерстициальную жидкость, кровь или лимфу.
Реснички и жгутики
Реснички и жгутики являются выростами цитоплазмы, обладающие подвижностью. Основу ресничек и жгутиков составляет каркас из микротрубочек, называемый аксонемой. Длина ресничек равна 2-10 мкм, а их количество на поверхности одной клетки может составлять до нескольких сотен. В организме человека жгутик есть только в одном типе клеток – сперматозоидах. При этом один сперматозоид имеет один жгутик длиной 50-70 мкм.
Аксонема образована 9 периферическими парами микротрубочек (микротрубочки А и В) и одной центрально расположенной парой; такое строение описывается формулой (9 × 2) + 2. Центральная пара микротрубочек окружена центральной оболочкой, от которой к периферическим дуплетам расходятся радиальные спицы. Периферические дублеты связаны друг с другом мостиками белка нексина, а от микротрубочки А к микротрубочке В соседнего дублета отходят “ручки” из белка динеина, который обладает АТФ-азной активностью, что необходимо для скольжения соседних дублетов в аксонеме, вызывающих движение (биение) ресничек и жгутиков. Мутации, вызывающих изменения белков ресничек и жгутиков, ведут к различным нарушениям функций клеток. Так, при отсутствии динеиновых ручек (синдром неподвижных ресничек, или синдром Картагенера), больные страдают хроническими заболеваниями дыхательной системы и бесплодием (вследствие неподвижности спермиев и нарушений продвижения яйцеклеток по яйцеводу).
В основании каждой реснички или жгутика лежит базальное тельце, сходное по строению с центриолью. На уровне апикального конца базального тельца микротрубочка С триплета заканчивается, тогда как микротрубочки А и В продолжаются в соответствующие микротрубочки аксонемы реснички. При развитии ресничек или жгутика базальное тельце играет роль матрицы, на которой происходит сборка компонентов аксонемы.
Микроворсинки
Микроворсинки – пальцевидные выросты цитоплазмы клетки диаметром 0.1 мкм и длиной 1 мкм, основу которых образуют актиновые микрофиламенты. Микроворсинки обеспечивают многократное увеличение площади поверхности клетки. На апикальной поверхности некоторых клеток, активно участвующих в процессах расщепления и всасывания веществ, имеется до несколько тысяч микроворсинок, образующих в совокупности щёточную каемку (эпителий тонкой кишки и почечных канальцев).
Основа каждой микроворсинки – пучок, содержащий около 40 микрофиламентов, расположенных вдоль её длинной оси. Микрофиламенты имеют поперечные сшивки из белков (фимбрин, виллин), и прикреплены к плазмолемме особыми белковыми мостиками (минимиозин). У основания микроворсинки микрофиламенты пучка вплетаются в терминальную сеть.
Стереоцилии – длинные, иногда ветвящиеся микроворсинки, имеющие каркас из микрофиламентов. Они встречаются редко (в главных клетках эпителия протока придатка семенника).
Ещё базальный лабиринт
10.Структура и типы рибосом (ЭМ, химический состав, гистохимическая характеристика). Полисомы. Синтез цитоплазматических белков на свободных полисомах.
Рибосо́ма — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром от 15—20нанометров (прокариоты) до 25—30 нанометров (эукариоты), состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.
В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.
1. Классификация
а) Типы клеточных рибосом. В клетках животных различают два типа рибосом:
1) цитоплазматические рибосомы, которые содержатся в цитозоле и значительно преобладают по числу, и
2) митохондриальные рибосомы — содержатся в митохондриях, несколько отличаясь своим составом и размером (более мелким).
Далее в этом разделе речь будет идти, в основном, о цитоплазматических рибосомах.
б) Подтипы цитоплазматических рибосом. Последние, как уже отмечалось в п. 3.2.1, подразделяются на два подтипа:
А. свободные рибосомы — находятся в гиалоплазме, не будучи связанными с мембранами ЭПС;
Б. мембраносвязанные рибосомы — фиксированы на наружной (обращенной к гиалоплазме) поверхности ЭПС. В обоих случаях это непременно функционирующие рибосомы, причем находящиеся, как правило, в составе полисом. Данный тезис станет более понятен после того, как мы кратко осветим структуру и функцию рибосом.
2. Строение. а) В собранном виде цитоплазматическая рибосома состоит из двух субъединиц следующего состава.
Малая субъединица — одна длинная цепь рРНК (около 2000 нуклеотидов, константа седиментации — 18S), с которой связано примерно 30 молекул рибосомальных белков.
Большая субъединица — еще более длинная цепь рРНК (~ 4000 нуклеотидов, 28S), с которой связаны 2 короткие цепи РНК (5,8S и 5S) и около 45 молекул белков.
В итоге каждая субъединица представляет собой свернутый рибонуклеопротеидный тяж, имеющий несколько функциональных центров.
б) Упомянутые рибосомные РНК (рРНК) образуются в ядрышках (о чем подробнее будет сказано в следующей теме). Там же, в ядрышках, формируются и сами субъединицы, которые затем перемещаются из ядра в цитоплазму.
И в неработающем состоянии субъединицы рибосом так и остаются диссоциированными друг от друга.
3. Функция рибосом — участие в синтезе белка: с помощью рибосом осуществляется трансляция, т.е. поочередное включение аминокислот в строящуюся пептидную цепь в соответствии с последовательностью кодонов в матричной РНК(мРНК).
а) Инициация трансляции. Для выполнения указанной функции вначале происходит сборка функционально активного комплекса (что обозначается как инициация трансляции).
I. Прежде всего, с определенным центром малой субъединицы связывается начальный участок мРНК.
II. Затем к этому комплексу присоединяется инициирующая транспортная РНК (тРНК), нагруженная первой аминокислотой будущей пептидной цепи.
III. И только после этого, наконец, связывается большая субъединица рибосомы.
б) Элонгация и образование полисомы. Собранная рибосома начинает постепенно перемещаться вдоль мРНК, осуществляя процесс трансляции, т.е. удлиняя строящуюся пептидную цепь. Данная стадия называется элонгацией (отelongation — удлинение).
Когда рибосома удалится на достаточное расстояние от начального участка мРНК, с этим участком связываются субъединицы другой рибосомы (в той же очередности) — так что одну цепь мРНК начинают транслировать сразу две рибосомы.
И так далее: с цепью мРНК постепенно связывается несколько рибосом. Находясь на примерно равном расстоянии друг от друга, они движутся по мРНК в одном направлении, и каждая синтезирует «свою» пептидную цепь. Чем дальше от начала мРНК продвинулась рибосома, тем более длинную пептидную цепь она успела построить.
Такие структуры называются полисомами. Иными словами, полисома — это комплекс, включающий несколько рибосом, транслируемую ими цепь мРНКи несколько (по числу рибосом) пептидных цепей, находящихся на разной стадии синтеза.
Состав рибосом в полисоме постепенно сменяется: рибосомы, заканчивающие трансляцию мРНК, покидают полисому, вновь распадаясь на субъединицы (одновременно высвобождается и готовая пептидная цепь); а с начальным участком мРНК связываются субъединицы иных рибосом (до тех пор, пока мРНК не будет разрушена специальными РНКазами).
Виды полисом. Таким образом, термины «свободные» и «мембраносвязанные» следовало бы применять не к отдельным рибосомам, а к полисомам. Действительно, рибосомы в свободном состоянии практически не существуют: когда они не транслируют какую-либо мРНК, они диссоциированы на отдельные субъединицы.
а) Что же касается полисом, то, согласно п. 3.2.1, «мембраносвязанными» они становятся при образовании экспортных, мембранных, лизосомных и ряда пероксисомных белков, причем с мембраной связывается каждая рибосома полисомы — как только в синтезируемой ею пептидной цепи образуется сигнальная последовательность (СП).
б) Свободные же полисомы синтезируют белки, которые либо остаются в гиалоплазме, либо переходят в состав тех или иных клеточных структур (ядра, митохондрий, цитоскелета, пероксисом). Содержание свободных полисом (а в их составе — и рибосом) особенно велико в быстрорастущих клетках.
На свободных полисомах образуются белки, используемые в жизнедеятельности самой клетки, а на прикрепленных — белки, функционирующие вне тела клетки.
11. Эндоплазматическая сеть. Строение, разновидности ЭПС. Структура гранулярной и агранулярной эндоплазматической сети (СМ,ЭМ) и их функции.
Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы.
Различают две разновидности эндоплазматической сети:
зернистая (гранулярная или шероховатая);
незернистая или гладкая.
На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Следует помнить, что названные две разновидности являются не самостоятельными формами эндоплазматической сети, так как можно проследить переход зернистой эндоплазматической сети в гладкую и наоборот.
Функции зернистой эндоплазматической сети:
синтез белков, предназначенных для выведения из клетки ("на экспорт");
отделение (сегрегация) синтезированного продукта от гиалоплазмы;
конденсация и модификация синтезированного белка;
транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;
синтез билипидных мембран.
Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.
Функции гладкой эндоплазматической сети:
участие в синтезе гликогена;
синтез липидов;
дезинтоксикационная функция - нейтрализация токсических веществ, посредством соединения их с другими веществами.
12. Комплекс Гольджи, ( СМ и ЭМ). Полярность комплекса Гольджи. Особенности процессинга молекул и направленный транспорт веществ.
Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы - диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом, в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена.
В диктиосоме различают два полюса:
цис-полюс - направлен основанием к ядру;
транс-полюс - направлен в сторону цитолеммы.
Установлено, что к цис-полюсу подходят транспортные вакуоли, несущие в пластинчатый комплекс продукты, синтезированные в зернистой эндоплазматической сети. От транс-полюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его выведения из клетки. Однако часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.
Функции пластинчатого комплекса:
транспортная - выводит из клетки синтезированные в ней продукты;
конденсация и модификация веществ, синтезированных в зернистой эндоплазматической сети;
образование лизосом (совместно с зернистой эндоплазматической сетью);
участие в обмене углеводов;
синтез молекул, образующих гликокаликс цитолеммы;
синтез, накопление и выведение муцина (слизи);
модификация мембран, синтезированных в эндоплазматической сети и превращение их в мембраны плазмолеммы.
Среди многочисленных функций пластинчатого комплекса на первое место ставят транспортную функцию. Именно поэтому его нередко называют транспортным аппаратом клетки.
Транспорт веществ в комплексе Гольджи.
Белки проникают в стопку цистерн комплекса Гольджи из транспортных пузырьков с цис-поверхности, а выходят в вакуолях с транс-поверхности; каким образом осуществляется их перенос внутри комплекса, в ходе которого происходит их процессинг, остается неизвестным. Возможные пути этого транспорта описываются двумя моделями:
1) модель перемещения цистерн постулирует, что за счет слияния транспортных пузырьков на цис-поверхности непрерывно происходит новообразование цистерн (что легло в основу термина “формирующаяся поверхность”), в дальнейшем смещающихся к транс-поверхности, по достижении которой они распадаются на вакуоли (”зрелая поверхность”). Согласно этой модели, одни операции процессинга сменяются другими при перемещении самой цистерны по ходу изменений ее состава. Транспорт веществ из одной цистерны в другую, в соответствии с описанной моделью, отсутствует;
2) модель везикулярного транспорта предполагает, что цистерны не меняют своего расположения (остаются постоянно на своем месте), а продукты синтеза переносятся от цис к транс-поверхности в пузырьках (везикулах), которые отпочковываются от предшествующей цистерны, сливаясь с последующей.
13. Структура и функции эндосом и лизосом. Типы лизосом.
Эндосома — мембранная внутриклеточная органелла, один из типов везикул, образующаяся при слиянии и созревании эндоцитозных пузырьков. Большинство эндосом, образующихся в результате эндоцитоза из плазматической мембраны, транспортируются внутрь клетки, где сливаются с существующими эндосомами либо закисляются за счёт активности протонной АТФазы (H-АТФаза). В процессе созревания эндосома проходит несколько последовательных стадий, постепенно превращаясь в лизосому. При этом часть изначального материала плазматической мембраны может вернуться обратно для повторного использования (рециркуляция).
Лизосомы наиболее мелкие органеллы цитоплазмы (0,2-0,4 мкм) и поэтому открытые (де Дюв, 1949 г.) только с использованием электронного микроскопа. Представляют собой тельца, ограниченные липидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (50 гидролаз), способных расщеплять любые полимерные соединения (белки, липиды, углеводы и их комплексы) на мономерные фрагменты. Маркерным ферментом лизосом является кислая фосфатаза.
Функция лизосом - обеспечение внутриклеточного пищеварения, то есть расщепления как экзогенных, так и эндогенных веществ.
Классификация лизосом:
первичные лизосомы - электронноплотные тельца;
вторичные лизосомы - фаголизосомы, в том числе аутофаголизосомы;
третичные лизосомы или остаточные тельца.
Истинными лизосомами являются мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе.
Пищеварительная функция лизосом начинается только после слияния лизосомы с фагосомой, то есть фагоцитированным веществом, окруженным билипидной мембраной. При этом образуется единый пузырек - фаголизосома, в которой смешивается фагоцитированный материал и ферменты лизосомы. После этого начинается расщепление (гидролиз) биополимерных соединений фагоцитированного материала на мономерные молекулы (аминокислоты, моносахара и так далее). Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой, то есть используются или для образования энергии или на построение биополимерных структур. Но не всегда фагоцитированные вещества расщепляются полностью.
Дальнейшая судьба оставшихся веществ может быть различной. Некоторые из них могут быть выведены из клетки посредством экзоцитоза, по механизму, обратному фагоцитозу. Некоторые вещества (прежде всего липидной природы) не расщепляются лизосомальными гидролазами, а накапливаются и уплотняются в фаголизосоме. Такие образования называются третичными лизосомами или остаточными тельцами.
14.Митохондрии. СМ и ЭМ. Наружная и внутренняя митохондриальные мембраны.Митохондриальный матрикс. Функции митохондрий.Образование митохондрий.
Митохондрии - наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью. Существует даже точка зрения, что митохондрии в историческом развитии вначале представляли собой самостоятельные организмы, а затем внедрились в цитоплазму клеток, где и ведут сапрофитное существование. Об этом свидетельствует, в частности, тот факт, что в митохондриях имеется самостоятельный генетический аппарат (митохондральная ДНК) и синтетический аппарат (митохондриальные рибосомы). Однако сейчас уже достоверно установлено, что часть митохондриальных белков синтезируется в клетке.
Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрий образована двумя билипидными мембранами, разделенные пространством в 10-20 нм.
При этом внешняя мембрана охватывает по периферии в виде мешка всю митохондрию и отграничивает ее от гиалоплазмы. Основная функция — отграничение митохондрии от цитоплазмы. Наружная мембрана митохондрии состоит из билипидного слоя и пронизывающих его белков; соотношение липидов и белков по массе — примерно 1:1. Особую роль играет порин — каналообразующий белок: он формирует в наружной мембране отверстия диаметром 2-3 нм, через которые могут проникать небольшие молекулы и ионы весом до 5 кДа. Крупные молекулы могут пересекать наружную мембрану только посредством активного транспорта через транспортные белки митохондриальных мембран. Для наружной мембраны характерно присутствие ферментов: монооксигеназы, ацил-СоА-синтетазы и фосфолипазы А2. Наружная мембрана митохондрии может взаимодействовать с мембраной эндоплазматического ретикулума; это играет важную роль в транспортировке липидов и ионов кальция.
Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутрь митохондрии складки - кристы. В некоторых клетках (клетки коркового вещества надпочечника) внутренняя мембрана образует не складки, а везикулы или трубочки - трубчато-везикулярные кристы. Внутренняя среда митохондрии (митохондральный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы). Характерной чертой состава внутренней мембраны митохондрий является присутствие в ней кардиолипина — особого фосфолипида, содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой для протонов. Ещё одна особенность внутренней мембраны митохондрий — очень высокое содержание белков (до 70 % по весу), представленных транспортными белками, ферментами дыхательной цепи, а также крупными АТФ-синтетазными комплексами. Внутренняя мембрана митохондрии в отличие от внешней не имеет специальных отверстий для транспорта мелких молекул и ионов; на ней, на стороне, обращенной к матриксу, располагаются особые молекулы АТФ-синтазы, состоящие из головки, ножки и основания. При прохождении через них протонов происходит синтез АТФ. В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты дыхательной цепи. Наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии.
Матрикс — ограниченное внутренней мембраной пространство. В матриксе (розовом веществе) митохондрии находятся ферментные системы окисления пирувата, жирных кислот, а также ферменты цикла трикарбоновых кислот (цикла Кребса). Кроме того, здесь же находится митохондриальная ДНК, РНК и собственный белоксинтезирующий аппарат митохондрии.
Основные функции митохондрий:
-на внутренней мембране в области митохондриальных кристаллов находятся ферментативные ансамбли, осуществляющие транспорт кислорода (система цитохромов).
-на внутренней мембране находится система АТФ-синтез, обеспечивающая синтез АТФ в сопряженных реакциях окисления и фосфорилирования.
-В митохондриальном материале имеются ферменты В-окисления жирных кислот цикла Кребса.
-в митохондриях обнаружена ДНК (1963 г.);
- в митохондриях есть все виды РНК;
-имеются митохондриальные рибосомы. За счет наличия белоксинтезирующей системы митохондрии обеспечивают синтез белков для собственных нужд;
-на внешней мембране митохондрий находится система транслоказ, следовательно, митохондрии участвуют в регуляции электролитного баланса клетки. Митохондрии обеспечивают выкачивание излишков ионов кальция и накапливают их в матриксе.
Происхождение митохондрий
В соответствии с теорией симбиогенеза, митохондрии появились в результате захвата примитивными клетками (прокариотами) бактерий. Клетки, которые не могли сами использоватькислород для генерации энергии, имели серьёзные ограничения в возможностях развития; бактерии же (прогеноты) могли это делать. В процессе развития таких отношений прогеноты передали множество своих генов сформировавшемуся, благодаря повысившейся энергоэффективности, ядру теперь уже эукариот.[1] Вот почему современные митохондрии больше не являются самостоятельными организмами. Хотя их геном кодирует компоненты собственной системы синтеза белка, многие ферменты и белки, необходимые для их функционирования, кодируются хромосомами, синтезируются в клетке и только потом транспортируются в органеллы.
15.Цитоскелет. Основные элементы цитоскелета: микротрубочки, микрофиламенты, промежуточные филаменты. ЭМ, химический состав, функции.
Цитоскеле́т — это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клеткахэукариот, причем в клетках прокариот обнаружены гомологи всех белков цитоскелета эукариот. Цитоскелет — динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление.
Цитоскелет образован белками, выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).
Почти во всех эукариотических клетках содержатся полые цилиндрические неразветвленные органеллы, называемые микротрубочками. Это очень тонкие трубочки диаметром приблизительно 24 нм; их стенки толщиной около 5 нм построены из спирально упакованных глобулярных субъединиц белка тубулина.  Иногда от их стенок через определенные промежутки отходят выступы, образующие связи или перемычки с соседними микротрубочками, как это можно наблюдать в ресничках и жгутиках. Растут микротрубочки с одного конца путем добавления тубулиновых субъединиц. Этот рост прекращается под влиянием некоторых химических веществ, в частности под влиянием колхицина, который используют при изучении функций микротрубочек. Микротрубочки участвуют также в перемещении других клеточных органелл, например пузырьков Гольджи, которые с их помощью направляются к формирующейся клеточной пластинке. перемещения также и более крупных органелл, например лизосом и митохондрий. Такие перемещения могут быть упорядоченными или неупорядоченными; полагают, что они характерны почти для всех клеточных органелл. Перемещения приостанавливаются, если повреждена система микротрубочек. 
Микрофиламентами называются очень тонкие белковые нити диаметром 5-7 нм. Недавно было показано, что эти нити, присутствующие в эукариотических клетках в большом количестве, состоят из белка актина, близкого к тому, который содержится в мышцах. Во всех изученных клетках актин составляет 10-15% общего количества клеточного белка. Методом иммунофлуоресцентной микроскопии было установлено, что актиновый цитоскелет сходен с цитоскелетом из микротрубочек. микрофиламенты образуют сплетения или пучки непосредственно под плазматической мембраной, а также на поверхности раздела между подвижной и неподвижной цитоплазмой (в растительных клетках, где наблюдается циклоз). По-видимому, микрофиламенты участвуют также в эндоцитозе и экзоцитозе. В клетке обнаруживаются также и нити миозина (другого важного мышечного белка), хотя количество их значительно меньше. Взаимодействие актина и миозина лежит в основе сокращения мышц (разд. 17.4). Это обстоятельство наряду с другими данными указывает, что роль микрофиламентов в клетке связана с движением (либо всей клетки в целом, либо отдельных ее структур внутри нее). Правда, движение это регулируется не совсем так, как в мышце, В некоторых случаях функционируют одни только актиновые филаменты, а в других - актин вместе с миозином.
Промежуточные филаменты (ПФ) — нитевидные структуры из особых белков, один из трех основных компонентов цитоскелета клеток эукариот. Содержатся как в цитоплазме, так и в ядре большинства эукариотических клеток. Средний диаметр ПФ — около 10 нм (9-11 нм), меньше, чем у микротрубочек (около 25 нм) и больше, чем у актиновых микрофиламентов(5-9 нм). Название получили из-за того, что толщина цитоскелетных структур, состоящих из ПФ, занимала промежуточное положение между толщиной миозиновых филаментов и микротрубочек[1]. В ядре известен только один тип ПФ — ламиновых, остальные типы — цитоплазматические.
16. Ядро. Понятие об интерфазном ядре. Структурные компоненты ядра (СМ,ЭМ ). Значение и функции ядра в жизнедеятельности клетки.
Ядро клетки - главный центр с генетической информацией, так как в нем находятся хромосомы, содержащие наследственные признаки, закодированные в форме ДНК. Другие носители информации имеют меньшее значение.
Положение, форма и размеры ядра могут изменяться, часто параллельно с изменениями интенсивности метаболизма.
Ядро чаще всего расположено в центре клетки, и только у растительных клеток с центральной вакуолью - в пристеночной протоплазме. Оно может быть различной формы:
сферическим;
яйцевидным;
чечевицеобразным;
сегментированным (редко);
вытянутым в длину;
веретеновидным, а также иной формы.
Диаметр ядра варьирует в пределах от 0,5 мкм (у грибов) до 500 мкм (в некоторых яйцеклетках), в большинстве случаев он меньше 5 мкм.
Ядро состоит из:
нуклеоплазмы;
хромосом (хроматина);
ядрышек;
ядерной оболочки, представляющей собой часть эндоплазматического ретикулума.
Клеточные ядра образуются только из ядер. Репликация ДНК, т. е. удвоение генетической информации, гарантирует идентичность ядер, несмотря на всю сложность их деления.
Главные функции клеточного ядра следующие:
хранение информации;
передача информации в цитоплазму с помощью транскрипции, т. е. синтеза переносящей информацию и-РНК;
передача информации дочерним клеткам при репликации - делении клеток и ядер.
В организме человека содержатся только эукариотические (ядерные) типы клеток. Безъядерные структуры (эритроциты, тромбоциты, роговые чешуйки) являются вторичными (постклеточными) образованиями, так как они образуются из ядерных клеток в результате их специфической дифференцировки. В подавляющем большинстве клеток содержится одно ядро, но встречаются двуядерные и даже многоядерные клетки. Форма ядра в большинстве клеток круглая (сферическая) или овальная. В некоторых клетках ядра имеют вытянутую или палочковидную форму. В зернистых лейкоцитах ядро подразделяется на сегменты (сегментоядерные лейкоциты). Локализуется ядро обычно в центре клетки, но в клетках эпителиальных тканей ядра нередко сдвинуты к базальному полюсу.
1. Структурные элементы интерфазного ядраСтруктурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки (в период митоза или мейоза) одни структурные элементы исчезают, другие существенно преобразуются.
Классификация структурных элементов интерфазного ядра:
хроматин;
ядрышко;
кариоплазма;
кариолемма.
Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:
эухроматин - рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;
гетерохроматин - компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.
При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.
По химическому строению хроматин состоит из:
дезоксирибонуклеиновой кислоты (ДНК) 40 %;
белков около 60 %;
рибонуклеиновой кислоты (РНК) 1 %.
Ядерные белки представлены формами:
щелочными или гистоновыми белками 80-85 %;
кислыми белками 15-20 %.
Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК различных РНК, с помощью которых осуществляется затем синтез белковых молекул. Процессы транскрипции в ядре осуществляются только на свободных хромосомных фибриллах, то есть в эухроматине. В конденсированном хроматине эти процессы не осуществляются и потому гетерохроматин является неактивным хроматином. Соотношение эухроматина и гетерохроматина в ядре является показателем активности синтетических процессов в данной клетке. На хроматиновых фибриллах в S-периоде интерфазы осуществляется также процессы редупликации ДНК. Эти процессы происходят как в эухроматине, так и в гетерохроматине, но в гетерохроматине они протекают значительно позже.
Ядрышко - сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом - ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом.
Микроскопически в ядрышке различают:
фибриллярный компонент - локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);
гранулярный компонент - локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.
В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко.
Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, но при электронной микроскопии в ней определяются гранулы (15 нм), состоящие из рибонуклеопротеидов. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина. При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.
Кариолемма (нуклеолемма) - ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.
Кариолемма состоит из двух билипидных мембран - внешней и внутренней ядерной мембраны, разделенных перинуклеарным пространством, шириной от 25 до 100 нм. В кариолемме имеются поры, диаметром 80-90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым. Просвет поры закрыт особым структурным образованием - комплексом поры, который состоит из фибриллярного и гранулярного компонента. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в три ряда. От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры пор стабильны для данного типа клеток, но число пор может изменяться в процессе дифференцировки клетки. В ядрах сперматозоидов ядерные поры отсутствуют. На наружной ядерной мембране могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в канальцы эндоплазматической сети.
17.Структура ядерной оболочки и ее молекулярная организация: ядерная пора и ядерная ламина.Значение ядерной ламины. Участие в импорте и экспорте веществ.
Ядерная оболочка состоит из двух мембран (каждая толщиной 6-8 нм), между которыми находится перинуклеарное пространство (шириной 10-40 нм). Ядерная оболочка связана с эндоплазматическим ретикулумом, будучи его частью, и образуется после деления ядра из цистерн ретикулума (используются также обрывки старой ядерной оболочки, разрушенной во время деления).
В отличие от других мембран, ядерная оболочка обладает видимыми в электронный микроскоп порами (30-100 нм в диаметре), которые занимают около 5 % поверхности ядра. Каждая пора с наружной и внутренней стороны окружена кольцевым валиком из 8 сферических рибонуклеопротеидных частиц. В центре поры часто можно видеть "центральную гранулу" - рибонуклеопротеидную частицу, которая связана тонкими тяжами с кольцевым валиком и, по-видимому, активно транспортируется в цитоплазму. Удалось выявить центральные гранулы ядрышкового и хромосомного происхождения. Вероятно, это субчастицы рибосом и м-РНК или пре-м-РНК, связанные с белком (информоферы).
Я́дерная лами́на — фибриллярная сеть жесткой структуры, подстилает ядерную мембрану (находится под ядерной мембраной), участвует в организации хроматина.
После открытия ядерной оболочки и описания ее строения пришли к заключению, что ядерная оболочка может служить регулятором в ядерно-цитоплазматическом обмене, главная роль в этих процессах отводилась ядерным порам. Обмен продуктами между ядром и цитоплазмой в самом деле очень велик: все ядерные белки поступают в ядро из цитоплазмы и все формы РНК выводятся из ядер. И в этом процессе комплекс поры выступает как супрамолекулярный комплекс, выполняющий роль не только транслокатора — механизма переноса, но и роль сортировщика, узнающего и отбирающего специальным образом переносимые молекулы.
В процессе ядерно-цитоплазматического транспорта ядерные поры функционируют как некоторое молекулярное сито, пропуская частицы определенного размера пассивно, по градиенту концентрации. Так, ионы, сахара, нуклеотиды, АТФ и гормоны свободно поступают в ядра. В то же время ядерные поры осуществляют избирательный транспорт.
Через ядерную оболочку беспрепятственно в обе стороны происходит пассивный транспорт высокомолекулярных соединений, имеющих массу не более 5·103 Да. Но дело осложняется тем, что многие белки как поступают в ядро, так и выходят из него против градиента концентраций.  многие ядерные белки проходят через ядерные поры с помощью специальных механизмов, включающих узнавание и связывание крупных ядерных белков, а затем только их транслокацию, перенос через поры. Было найдено, что белки, транспортируемые в ядро, имеют определенные последовательности аминокислот — последовательности ядерной локализации (NLS — nuclear localization sequences), которые узнаются рецепторами ядерных пор.
18. Хроматин интерфазного ядра. Эухроматин и гетерохроматин. Хроматин, как показатель биосинтетической активности клетки.
Хроматин (греч. χρώματα — цвета, краски) — это вещество хромосом — комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоидау прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК.[1]Основную массу хроматина составляют белки гистоны. Гистоны являются компонентом нуклеосом, — надмолекулярных структур, участвующих в упаковке хромосом. Нуклеосомырасполагаются довольно регулярно, так что образующаяся структура напоминает бусы.
Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине не транскрибируется, обычно это состояние характерно для незначащих или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки.
Если хроматин упакован неплотно, его называют эухроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфорилированиемСчитается, что в ядре существуют так называемые функциональные домены хроматина (ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». Вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) ицентромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины.
19. Молекулярная организация ДНК в хромосомах. Уровни укладки хроматина. Роль гистоновых белков в обеспечении структуры хроматина и реализации генетической информации.
Примерно 60-80 % хромосомных белков представлены ги-стонами. Последние обогащены аминокислотами с основными (аргинин, лизин) и гидрофобными (валин и т. п.) радикалами. Благодаря основным радикалам, гистоны взаимодействуют с ДНК, а благодаря гидрофобным радикалам — друг с другом.Эти взаимодействия приводят к образованию нуклеосом. Основа нуклеосомы — глобула из 8 белковых молекул (октамер): она включает по 2 молекулы гистонов четырех видов (Н2А, Н2В, НЗ и Н4). Вокруг одной такой глобулы молекула ДНК делает примерно 2 оборота, что и образует в итоге нуклеосому.Участки ДНК, «намотанные» на гистоновые октамеры, имеют длину в 140 нуклеотидных пар(н. п.) и называются коревыми (core-ДНК, или nDNA).Нуклеосомы расположены на молекуле ДНК не вплотную: между ними имеются линкерные (соединительные) участки (iDNA) длиной 60 н. п. С каждым линкерным участком связана 1 молекула еще одного вида гистонов — HI.Следовательно, всего в хромосомах встречаются гистоны 5 видов, а период нуклеосомной организации составляет 200 н. п.Молекула ДНК участвует в образовании очень большого числа нуклеосом (в среднем 600 000). В результате на данном уровне организации каждая хромосома (не считая негистоновых белков) представляет собой длинную нить «бусинок» — нуклеосом диаметром 10 нм. По сравнению с молекулой ДНК, длина нуклеосомной нити примерно в 6,2 раза меньше.В интерфазном ядре хромосомы не различимы, а воспринимаются все вместе как хроматин. При этом выделяют гетеро-и эухроматин.Гетерохроматнн — сильно конденсированные и потому функционально неактивные участки хромосом. Они имеют вид плотных глыбок и интенсивно красятся базофильными красителями. Многие глыбки находятся на периферии ядра и прилежат к ядерной оболочке.Напротив, эухроматин — функционально активные, практически деконденсированные и потому светлые участки хромосом, расположенные между глыбками гетерохроматина.Нуклеосомный уровень организации имеется, видимо, и в гетеро-, и в эухроматине. Но в тех локусах эухроматина, на которых в данный момент времени функционируют ферментные комплексы (репликации, репарации или транскрипции), как полагают, ДНК высвобождается из взаимодействия с гистонами. Т. е. здесь нуклеосомная организация временно исчезает — с тем, чтобы впоследствии вновь восстановиться.В отличие от этого, в гетерохроматине к нуклеосомному уровню добавляются последующие уровни укладки хромосомы. Считается, что нуклеосомная нить закручивается в спираль типа соленоида, а та, возможно, образует суперспираль. В этих процессах, видимо, ключевую роль играет гистпон HI. В итоге формируется хроматиновая нить диаметром 30 нм.Хроматиновая нить короче нуклеосомной примерно в 18 Раз и короче упакованной в ней молекулы ДНК в 6,2 х 18 ~ = 100 раз.В свою очередь, хроматиновые нити образуют петли, которые собираются в розетки, где основания петель крепятся к белкам ядерного матрикса. В гетерохроматине такие группы петель более или менее плотно прилегают друг к другу.Наибольшей компактизации хромосомы достигают в процессе митоза (на стадии метафазы). Точная укладка хромосомных нитей при этом неизвестна.По одной из версий, хроматиновая нить многократно складывается по длине хромосомы. Поэтому при микроскопии на поперечном срезе обнаруживается около 100 хроматиновых нитей (представляющих собой сечения одной и той же нити).Кроме того, петли хроматиновой нити имеют длину не всей хромосомы, а лишь отдельных ее сегментов — хромомеров. Это объясняет возможность сегментации хромосом при тех или иных воздействиях.
  
20. Ядрышко. Структура ядрышка ( СМ и ЭМ). Основные компоненты ядрышка. Роль ядрышка в синтезе рРНК и образовании рибосом.
Ядрышки - это округлые сильно уплотненные участки клеточного ядра диаметром обычно меньше 1 мкм. Ядра диплоидных клеток содержат 1-7 ядрышек, а в среднем - 2.
Функция ядрышка связана с осуществлением синтеза р-РНК (рибосомальной РНК).
В соответствии с этим главной составной частью ядрышка является ядрышковая ДНК, которая принадлежит организатору ядрышка одной из SAT-хромосом. Ядрышки содержат более 80 % белка и около 15 % РНК. В электронном микроскопе можно различить:
ядрышковый хроматин;
рибонуклеопротеидные фибриллы (РНП-фибриллы) диаметром 5-10 нм и длиной 20-40 нм. Это ранние промежуточные продукты в процессе образования р-РНК из пре-р-РНК;
РНП-гранулы диаметром 15-20 нм - более поздние промежуточные продукты;
основную массу из белков и РНК, которую пронизывает сеть ядерного матрикса;
мелкие вакуоли;
гетерохроматин, связанный с ядрышком, который прилегает к ядрышку снаружи и проникает в него.
Образующийся в ядрышке предшественник р-РНК - 45S-пре р-РНК, по-видимому, связан с тяжами ядерного матрикса. Он соединяется с ядрышковым белком и 5S-РНК. Белки поступают из цитоплазмы, 5S-РНК - из клеточного ядра. В ядрышках 45S-пре-р-РНК расщепляется на промежуточные продукты 5,8S-, 18S-РНК (процессинг). В нуклеоплазме в результате отщепления от пре-р-РНК ядрышковых белков и присоединения рибосомальных белков образуются 40S- и 60S-субчастицы рибосом, по-видимому, еще связанные с ядерным матриксом. Они выходят из клеточного ядра через поры в ядерной оболочке.
Во время деления ядра синтез р-РНК прекращается, в конце профазы ядрышки исчезают, при конденсации хромосом ядрышковый хроматин в качестве организатора ядрышка входит в SAT-хромосому. После разделения ядра на разрыхляющихся организаторах ядрышка образуются сначала новые РНП-фибриллы, а затем и остальные компоненты нового ядрышка.
Образование ядрышек, как и рибосом, начинается в ядре. Вначале с помощью особых генов происходит синтез РНК, меньшая часть которой остается в ядрышке, большая часть через ядерную пору попадает в цитоплазму. Здесь при участии специальных белков происходит, сборка зрелых рибосом, которые выполняют ведущую роль в образовании цитоплазматических белков.
21. Морфологическая характеристика клетки, синтезирующей белки. Клеточный конвейер при синтезе белка.
Синтез белков осуществляется рибосомами.
При синтезе новой молекулы белка протекает несколько процессов. Сначала на молекуле ДНК, как на матрице, синтезируется особая, более короткая (содержащая обычно несколько сотен мономеров) молекула РНК. Она выполняет роль передатчика информации, ее так и называют информационной и обозначают и-РНК. В отличие от скрученной из двух ниток ДНК она представляет собой длинную одноцепочечную молекулу. Образовавшееся молекула и-РНК несет на себе часть информации, хранящейся в длинной молекуле ДНК и закодированной четырьмя элементами: А, Г, Ц, У.
Длинная лента с закодированной записью поступает в рибосомы* клетки. Они состоят из белков* и нуклеиновых кислот*. Обычно и-РНК проходит последовательно через несколько рибосом, связанных вместе и называемых полисомами*. Последние представляют собой своего рода конвейеры, на которых происходит "сборка" белка из соответствующих "деталей" - аминокислот.
В процессе "сборки" рибосомы медленно вращаются. Перед этим в порядке подготовки аминокислоты взаимодействуют с особым веществом - аденозинтрифосфатом (АТФ). В нем все организмы накапливают энергию, а взаимодействующие с ним аминокислоты активизируются, превращаясь в аминоациладенилаты (ААА).
Активизированные аминокислоты под влиянием соответствующих ферментов вступают во взаимодействие с транспортными рибонуклеиновыми кислотами. Они обозначаются т-РНК. Существует более 20 видов различных т-РНК. Каждая из них содержит около 80 нуклеотидов*, способных присоединять лишь одну определенную аминокислоту и "транспортировать" ее к месту "сборки". Для некоторых аминокислот найдено по две и более т-РНК, но пока неясно различие их функций.
Роль рибосом заключается в том, что они помогают установить пространственное соответствие между участками и-РНК и т-РНК. Участок и-РНК, кодирующий одну аминокислоту, соединяется с соответствующим участком т-РНК. Если они совпадают, то присоединенная к т-РНК аминокислота присоединяется к цепи строящегося белка. Продвигаясь вдоль по цепи и-РНК, рибосома последовательно подставляет нужные т-РНК с аминокислотами, выполняя роль "контроля" генетической записи.
Транспортные РНК с присоединенными аминокислотами поступают в рибосому или полисому. Последние можно сравнить с автоматическим конвейером, на который поступают детали (аминокислоты, связанные с т-РНК) и технологическая карта (информационная РНК).
В рибосомах имеются участки, на которых каждая т-РНК останавливается и ждет момента, когда по сигналу и-РНК, то есть согласно "технологической карте", соответствующая аминокислота включается в создаваемую на рибосоме пептидную цепь. Эта цепь строится присоединением аминокислот по карбоксильным группам начатой цепи. Когда создание белковой молекулы завершено, в и-РНК появляется триплет УАА, кодирующий окончание биосинтеза заданного "технологической картой" белка. При этом белковая молекула выходит из рибосомы и свертывается присущим ей образом. На этом формирования белка заканчивается.
22.Морфологическая характеристика клетки, синтезирующей углеводы и липиды. Клеточный конвейер при синтезе углеводов и липидов.
-----------------------------------------------------------------------------------------------------------------------------------
23.Жизненный цикл клетки: его этапы, морфофункциональная характеристика. Особенности у различных видов клеток.
Клеточный, или жизненный, цикл клетки - это время существования клетки от деления до следующего деления, или от деления до смерти. Для разных типов клеток клеточный цикл различен.
В организме млекопитающих и человека различают следующие три группы клеток, локализующиеся в разных тканях и органах:
часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса и другие);
редко делящиеся клетки (клетки печени - гепатоциты);
неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и другие).
Жизненный цикл у этих клеточных типов различен.
Жизненный цикл у часто делящихся клеток - это время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом. Такой клеточный цикл подразделяется на два основных периода:
митоз или период деления;
интерфаза - промежуток жизни клетки между двумя делениями.
Каждый период митоза характеризуется прежде всего некоторыми функциональными особенностями. В J1 (пресинтетическом) периоде происходит:
усиленное формирование синтетического аппарата клетки - увеличение числа рибосом, а также количества различных видов РНК (информационной, рибосомальной, транспортных);
усиление синтеза белков, необходимых для роста клетки;
подготовка клетки к синтетическому периоду - синтез ферментов, необходимых для образования новых молекул ДНК.
Для S-периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.
J2-период (постсинтетический, или премитотический) характеризуется усиленным синтезом информационной РНК, а также усиленным синтезом всех клеточных белков, но особенно белков-тубулинов, необходимых для последующего (в профазе митоза) формирования митотического веретена деления.
Описанные закономерности жизненного цикла характерны прежде всего для часто делящихся клеток.
Однако клетки некоторых тканей (например, клетки печеночной ткани - гепатоциты), по выходе из митоза, вступают в так называемый J0-период, во время которого они выполняют свои многочисленные функции в течение многих лет, не вступая в S-период. Однако при определенных обстоятельствах (при поражении или удалении части печени) они вступают в нормальный клеточный цикл, то есть в S-период, синтезируют ДНК, а затем митотически делятся.
Такие клетки относятся к редко делящимся клеткам, и их жизненный цикл подразделяется на:
митоз;
J0-период;
S-период;
J2-период.
Большинство клеток нервной ткани, особенно нейроциты центральной нервной системы, по выходе из митоза еще в эмбриональном периоде, в дальнейшем не делятся. Жизненный цикл таких неделящихся клеток состоит из следующих периодов:
митоза;
роста;
длительного функционирования;
старения;
смерти.
Однако на протяжении длительного жизненного цикла такие клетки постоянно регенерируют по внутриклеточному типу: белковые и липидные молекулы, входящие в разнообразные структурные компоненты клеток, постепенно заменяются новыми, а следовательно такие клетки постепенно обновляются. Вместе с тем на протяжении жизненного цикла в цитоплазме неделящихся клеток постепенно накапливаются различные, прежде всего липидные включения, в частности липофусцин, который рассматривается как пигмент старения.
Кроме рассмотренных двух основных способов размножения (репродукции) клеток различают еще третий способ - эндорепродукцию, который, хотя и не приводит к увеличению числа клеток, однако приводит к увеличению числа работающих структур и увеличению функциональной способности клетки. Именно поэтому он и называется эндорепродукцией. Этот способ характеризуется тем, что после митоза новообразованные клетки вступают как обычно в J1-период, затем и в S-период. Однако после удвоения ДНК такие клетки не вступают в J2-период и в митоз. В результате количество ДНК оказывается вдвое увеличенным 4н, 4с и такие клетки называются полиплоидными. Полиплоидные клетки могут снова вступать в S-период и снова увеличивать свою плоидность (8н, 8с; 16н, 16с и так далее). В полиплоидных клетках увеличивается размер ядра и цитоплазмы, то есть такие клетки являются гипертрофированными. Некоторые полиплоидные клетки после редупликации ДНК вступают в митоз, однако он не заканчивается цитотомией и такие клетки становятся двуядерными. Таким образом, при эндорепродукции увеличения числа клеток не происходит, но увеличивается количество ДНК, число органелл, а следовательно увеличивается и функциональная способность полиплоидной клетки. Способностью к эндопродукции обладают не все клетки. Наиболее характерна эндопродукция для печеночных клеток, особенно с увеличением возраста (в старости 80 % гепатоцитов у человека являются полиплоидными), а также для ацинозных клеток поджелудочной железы, эпителия мочевого пузыря.
24.Происхождение половых клеток. Морфофункциональная характеристика мужской половой клетки.
Процесс образования половых клеток — как сперматозоидов, так и яйцеклеток — осуществляется в несколько стадий.
Первая стадия — период размножения, в котором первичные половые клетки делятся путем митоза, в результате чего увеличивается их количество. При сперматогенезе размножение первичных половых клеток очень интенсивное, оно начинается с наступления половой зрелости и затухает лишь к старости. При овогенезе размножение женских половых клеток у низших беспозвоночных также продолжается всю жизнь.
Вторая стадия — период роста. Отдельные первичные половые клетки переходят в зону роста, увеличиваются в размерах, накапливают питательные вещества. Количество молекул ДНК в них увеличивается вдвое. Первичные сперматозоиды в зоне роста увеличиваются незначительно. Однако яйцеклетки — овоциты — увеличиваются в размерах иногда в сотни, а чаще в тысячи раз. Рост яйцеклеток осуществляется за счет веществ, образуемых другими клетками организма. Кроме того, в первичной половой клетке синтезируются многочисленные белки и большое количество разнообразных РНК.
Третья стадия — период созревания, или мейоз.
Клетки, вступающие в период созревания, содержат диплоидный набор хромосом и уже удвоенное количество ДНК. В этот период клетки путем мейоза образуют гаплоидный набор хромосом.
Четвертая стадия — период формирования — состоит в приобретении клетками определенной формы и размера. К этому периоду яйцеклетки покрываются специальными оболочками и готовы к оплодотворению. Во многих случаях, например, у пресмыкающихся птиц и млекопитающих вокруг клетки возникает ряд дополнительных оболочек. Их функция заключается в защите яйцеклетки и зародыша от внешних неблагоприятных воздействий.
Сперматозоиды обладают способностью к движению, чем в известной мере обеспечивается возможность встречи с яйцеклеткой. По морфологическому строению и малому количеству цитоплазмы сперматозоиды резко отличаются от всех других клеток, но все основные органоиды в них имеются.
Типичный сперматозоид имеет:
головку;
шейку;
хвост.
Сперматозоид человека — это специализированная клетка, строение которой позволяет ей выполнить свою функцию: преодолеть половые пути женщины и проникнуть в яйцеклетку, чтобы внести в неё генетический материал мужчины. Сперматозоид, сливаясь с яйцеклеткой, оплодотворяет её.
В организме человека сперматозоид является самой маленькой клеткой тела (если учитывать только саму головку без хвостика). Общая длина сперматозоида у человека равна приблизительно 55 мкм. Головка составляет приблизительно 5,0 мкм в длину, 3,5 мкм в ширину и 2,5 мкм в высоту, средний участок и хвостик — соответственно, приблизительно 4,5 и 45 мкм в длину.[1]Малые размеры, вероятно, необходимы для быстрого движения сперматозоида. Для уменьшения размера сперматозоида при его созревании происходят специальные преобразования: ядро уплотняется за счет уникального механизма конденсации хроматина (из ядра удаляются гистоны, и ДНК связывается с белками-протаминами), большая часть цитоплазмы выбрасывается из сперматозоида в виде так называемой «цитоплазматической капли», остаются только самые необходимые органеллы.
Сперматозоид мужчины имеет типичное строение и состоит из головки, средней части и хвоста.
Головка сперматозоида человека имеет форму эллипсоида, сжатого с боков, с одной из сторон имеется небольшая ямка, поэтому иногда говорят о «ложковидной» форме головки сперматозоида у человека. В головке сперматозоида располагаются следующие клеточные структуры:
Ядро, несущее одинарный набор хромосом. Такое ядро называют гаплоидным. После слияния сперматозоида и яйцеклетки (ядро которой также гаплоидно) образуется зигота — новый диплоидный организм, несущий материнские и отцовские хромосомы. При сперматогенезе (развитии сперматозоидов) образуются сперматозоиды двух типов: несущие X-хромосому и несущие Y-хромосому. При оплодотворении яйцеклетки X-несущим сперматозоидом формируется эмбрион женского пола. При оплодотворении яйцеклетки Y-несущим сперматозоидом формируется эмбрион мужского пола. Ядро сперматозоида значительно мельче ядер других клеток, это во многом связано с уникальной организацией строения хроматина сперматозоида (см. протамины). В связи с сильной конденсацией хроматин неактивен — в ядре сперматозоида не синтезируется РНК.
Акросома — видоизмененная лизосома — мембранный пузырек, несущий литические ферменты — вещества, растворяющие оболочку яйцеклетки. Акросома занимает около половины объёма головки и по своему размеру приблизительно равна ядру. Она лежит спереди от ядра и покрывает собой половину ядра (поэтому часто акросому сравнивают с шапочкой). При контакте с яйцеклеткой акросома выбрасывает свои ферменты наружу и растворяет небольшой участок оболочки яйцеклетки, благодаря чему образуется небольшой «проход» для проникновения сперматозоида. В акросоме содержится около 15 литических ферментов, основным из который является акрозин.
Центросома — центр организации микротрубочек, обеспечивает движение хвоста сперматозоида, а также предположительно участвует в сближении ядер зиготы и первомклеточном делении зиготы.
Позади головки располагается так называемая «средняя часть» сперматозоида. От головки среднюю часть отделяет небольшое сужение — «шейка». Позади средней части располагается хвост. Через всю среднюю часть сперматозоида проходит цитоскелет жгутика, который состоит из микротрубочек. В средней части вокруг цитоскелета жгутика располагается митохондрион — гигантская митохондрия сперматозоида. Митохондрион имеет спиральную форму и как бы обвивает цитоскелет жгутика. Митохондрион выполняет функцию синтеза АТФ и тем самым обеспечивает движение жгутика.
Хвост, или жгутик, расположен за средней частью. Он тоньше средней части и значительно длиннее её. Хвост — орган движения сперматозоида. Его строение типично для клеточныхжгутиков эукариот.
25.Происхождение половых клеток. Морфофункциональная характеристика женской половой клетки.Яйцеклетки неподвижны, имеют шаровидную или слегка вытянутую форму. Они содержат все типичные клеточные органоиды, но строение их отличается от такового у других клеток, так как приспособлено для реализации возможности развития целого организма. Размеры яйцеклетки значительно превышают размеры соматических клеток. Внутриклеточная структура цитоплазмы в яйцеклетках специфична для каждого вида животных, чем обеспечиваются видовые, а нередко и индивидуальные, особенности развития. В яйцеклетках содержится ряд веществ, необходимых для развития зародыша.
К их числу относится питательный материал - желток. У некоторых видов животных накапливается столько желтка в яйцеклетках, что они могут быть видны невооруженным глазом.
По количеству желтка
Полилецитальные — содержат большое количество желтка (членистоногие, рептилии, птицы, рыбы, кроме осетровых).
Мезолецитальные — содержат среднее количество желтка (осетровые рыбы, амфибии).
Олиголецитальные — содержат мало желтка (моллюски, иглокожие).
Алецитальные — не содержат желтка (млекопитающие, некоторые паразитические перепончатокрылые).
По расположению желтка
Телолецитальные — желток смещён к вегетативному полюсу яйцеклетки. Противоположный полюс называется анимальным. Сюда относятся некоторые полилецитальные (рыбы, кроме осетровых, рептилии, птицы) и все мезолецитальные яйца (осетровые рыбы, амфибии).
Гомо (изо)- лецитальные — желток распределён равномерно. Сюда относятся олиголецитальные ядра (моллюски, иглокожие).
Центролецитальные — желток расположен в центре яйцеклетки. Сюда относятся некоторые полилецитальные яйца (членистоногие). Это совершенно особый тип яиц. Анимально-вегетативная полярность этих яиц не выражена, так как место выделения редукционных телец может быть различным. Вместо анимального и вегетативного полюсов у этих яиц говорят о переднем и заднем полюсах. В центре яйца расположено ядро, а по периферии — ободок свободной от желтка цитоплазмы. Оба этих района — центр и периферия яйца — связаны тонкими цитоплазматическими мостиками, а всё промежуточное пространство заполнено желтком.
Яйцеклетки покрыты оболочками, которые по происхождению бывают:
Первичными блестящая;
Вторичными (хорион);
третичными.
Первичная оболочка образуется из поверхностного слоя еще незрелой половой клетки - овоцита. Под электронным микроскопом видно, что она пронизана микроворсинками и отростками фолликулярных клеток, прилегающих к поверхности яйцеклетки. По этим структурам в овоцит поступают питательные вещества. После завершения периода роста они стягиваются, а пористость первичной оболочки исчезает.
Вторичная оболочка состоит из фолликулярных клеток или выделяемых ими секретов.
Третичными оболочками являются, например, белковая, подскорлуповая и скорлуповая оболочки яиц птиц. Яйцеклетки не у всех видов животных обладают всеми тремя типами оболочек, иногда может встречаться всего одна или две из них.
Яйцеклетки млекопитающих третичной оболочки не имеют.
26.Оплодотворение.Биологическое значение. Хронология процесса. Дистантное и контактное взаимодействие половых клеток.
Оплодотворение - процесс слияния мужской и женской гамет, приводящее к образованию зиготы. При оплодотворении взаимодействуют мужская и женская гаплоидные гаметы, при этом сливаются их ядра (пронуклеусы), объединяются хромосомы, и возникает первая диплоидная клетка нового организма - зигота. Начало оплодотворения - момент слияния мембран сперматозоида и яйцеклетки, окончание оплодотворения - момент объединения материала мужского и женского пронуклеусов.
Оплодотворение происходит в дистальном отделе маточной трубы и проходит 3 стадии.
I стадия - дистантное взаимодействие, включает в себя 3 механизма:
хемотаксис - направленное движение сперматозидов навстречу к яйцеклетке (гинигамоны 1,2);
реотаксис - движение сперматозоидов в половых путях против тока жидкости;
капацитация - усиление двигательной активности сперматозоидов, под воздействием факторов женского организма (рН, слизь и другие).
II стадия - контактное взаимодействие, за 1,5-2 ч сперматозоиды приближаются к яйцеклетке, окружают ее и приводят к вращательным движениям, со скоростью 4 оборота в минуту. Одновременно из акросомы сперматозоидов выделяются сперматозилины, которые разрыхляют оболочки яйцеклетки. В том месте, где оболочка яйцеклетки истончается максимально, происходит оплодотворение, оволемма выпячивается и головка сперматозоида проникает в цитоплазму яйцеклетки, занося с собой центриоли, но оставляя снаружи хвостик.
III стадия - проникновение, самый активный сперматозоид проникает головкой в яйцеклетку, сразу после этого в цитоплазме яйцеклетки образуется оболочка оплодотворения, которая препятствует полиспермии. Затем происходит слияние мужского и женского пронуклеусов, этот процесс носит название синкарион. Этот процесс (сингамия) и есть собственно оплодотворение, появляется диплоидная зигота (новый организм, пока одноклеточный).
Условия, необходимые для оплодотворения:
концентрация сперматозоидов в эякуляте, не менее 60 млн в 1 мл;
проходимость женских половых путей;
нормальная температура тела женщины;
слабощелочная среда в женских половых путях.
Дробление - это последовательно протекающий митоз, без роста образовавшихся клеток до размеров исходной. При дроблении происходит относительно быстрое увеличение количества клеток (бластомеры). Дробление идет до тех пор, пока не восстановится соотношение объема ядра к объему цитоплазмы, характерное для данного вида. Количество бластомеров увеличивается от 2 до примерно 12-16 к третьим суткам после оплодотворения, когда концептус достигает стадии морулы и выходит в полость матки из маточных труб.
Различают дробление:
полное, неполное;
равномерное, неравномерное;
синхронное, асинхронное.
У человека дробление полное, асинхронное, неравномерное. В результате первого деления образуются 2 бластомера, темный и светлый, светлые делятся быстро и обволакивают зиготу снаружи - трофобласт, а темные находятся внутри и делятся медленно: эмбриобласт. Дробление зиготы у человека прекращается на стадии 107 бластомеров.
Имплантация состоит из 2-х этапов:
адгезия - прилипание;
инвазия - погружение.
27. Основные принципы формирования провизорных органов эмбриона человека (амнион, желточный мешок, аллантоис, пуповина,хорион, плацента).
На 4-ые сутки после оплодотворения в полость матки выпадает морула - группа клеток, возникших в ходе нескольких делений дробления и заключенных внутри прозрачной оболочки. Около 2-х суток морула находится в полости матки в неприкрепленном состоянии, при этом клетки трофобласта поглощают из окружающей среды питательные вещества и воду, жидкость накапливается в моруле и она превращается в бластоцисту. Бластоциста возникает с появлением бластоцеля (заполненной жидкостью полости), объем бластоцеля увеличивается и зародыш приобретает форму пузырька. Прозрачная оболочка истончается и исчезает.
Адгезия осуществляется с помощью ферментов трофобласта, эти ферменты разрушают подготовленную слизистую оболочку матки в области прилипания, образуя имплантационную ямку, в которую погружается бластоциста - инвазия, которая происходит на 6-7 сутки после оплодотворения.
Одновременно с процессом имплантации в зародыше начинается гаструляция. Сущностью процесса является законченное перемещение бластомеров с образованием 3-х зародышевых листков.
У млекопитающих в гаструляции различают следующие процессы:
инвагинацию - вдавление;
эпиболию - обрастание;
эмиграцию - выселение, перемещение;
деляминацию - расщепление.
В эмбриобласте на 6-7 сутки после оплодотворения протекает I фаза гаструляции. У человека гаструляция осуществляется 2-я процессами:
деляминацией;
иммиграцией.
С началом гаструляции активируются первые тканеспецифические гены. Эмбриобласт расслаивается на эпибласт - слой цилиндрических клеток, ограничивающий вместе с трофобластом полость амниона, и гипобласт - слой кубических клеток, обращенных к бластоцелю. Эпибласт и гипобласт вместе образуют двухслойный зародышевый диск или щиток. Из зародышевого щитка в полость бластоцисты выселяются клетки внезародышевой паренхимы, часть из этих клеток оттесняется к цитотрофобласту, при этом образуется хорион. В дальнейшем на месте двухслойного зародышевого диска путем его инвагинации, миграции и пролиферации клеток развиваются первичные зародышевые листки:
эктодерма;
мезодерма;
энтодерма.
Между 1 и 2 фазой гаструляции идет процесс образования провизорных органов.
Внутриматочный характер развития эмбриона требует быстрого установления связи между ним и матерью. Поэтому появляются и быстро дифференцируются ткани, предназначенные для выполнения этих функций.
Эти органы носят название провизорных органов, к ним относятся:
хорион;
амнион;
желточный мешок;
аллантоис.
Они образуют оболочки зародыша, связывают его с организмом матери и выполняют некоторые специальные функции. Первым из провизорных органов образуется хорион.
Слизистая оболочка матки к моменту имплантации отечна и утолщена, слизистые железы достигают максимальной секреторной активности. При погружении бластоцисты в слизистую оболочку матки, ферменты трофобласта разрушают сосуды и железы. При этом образуется кровяная кашица, которая окружает бластоцисту. Кровяная кашица содержит все необходимые питательные вещества, таким образом трофобласт обеспечивает зародыш гистиотрофным типом питания. При погружении в имплантационную ямку питание клеток трофобласта максимально улучшается, что приводит их к митотическому делению. В результате этого образуется новая структура - симпластотрофобласт, при этом образуются многочисленные выросты - первичные ворсины.
Трофобласт дифференцируется на цитотрофобласт, который состоит из интенсивно размножающихся клеток. Симпластотрофобласт образуется путем слияния клеток цитотрофобласта
Строение хориона:
внезародышевая мезенхима;
цитотрофобласт;
симпластотрофобласт.
В последствии из хориона будет формироваться плодная часть плаценты. Другая часть отростчатых клеток расслаивает бластоцель разделяя ее на сектора, в результате такого расслоения к гипобласту прилежит пузырек заполненный жидкостью и то же самое к эпибласту. Из краев гипобласта выселяются клетки внезародышевой энтодермы и подрастают у ранее образовавшейся мезенхимальной закладки - желточного мешка. Из краев эпибласта выселяются клетки внезародышевой эктодермы, образуется амнион.
Амнион - образующий складки объемистый мешок, заполненный амниотической жидкостью. На брюшной стороне амнион прикреплен к телу зародыша. Сформированный амниотический мешок наполняется жидкостью, защищающей зародыш при сотрясении, позволяющей плоду совершать движения и предотвращающий слипание плода с окружающими тканями. Плод заглатывает амниотическую жидкость, которая таким образом попадает в кишечник. В амниотическую жидкость плод выделяет мочу.
Амнион состоит из:
эпибласта - будущая эктодерма;
внезародышевая мезенхима;
внезародышевая эктодерма.
Желточный мешок - вынесенная за пределы зародыша часть первичной кишки. Стенка желточного мешка состоит из двух слоев. Внутренний слой образован внезародышевой энтодермой, а наружный - внезародышевой мезодермой. Складки амниона сдавливают желточный мешок, образуя узкую перемычку, соединяющую его с полостью первичной кишки - желточный стебелек. Эта структура удлиняется и вступает в контакт ножкой тела, содержащей аллантоис. Желточный мешок обычно полностью зарастает к концу 3-го месяца развития плода.
Задняя стенка желточного мешка к 14-16-му дню развития формирует небольшой вырост - аллантоис, образованный внезародышевыми энтодермой и мезодермой. Дистальная часть аллантоиса по мере роста быстро расширяется и превращается в мешок, соединенный с кишкой при помощи ножки. У человека аллантоис рудиментарно участвует в формировании сосудистой сети плаценты. Его проксимальный отдел имеет отношение к образованию мочевого пузыря, что следует учитывать при аномалиях развития этого органа.
28. Функции внезародышевых структур эмбриона человека. Клиническая значимость гистологической организации плацентарного барьера и провизорных органов эмбриона человека.
Функции провизорных органов:
хорион выполняет защитную, трофическую, эндокринную, экскреторную функции;
желточный мешок участвует в образовании первичных кровеносных сосудов и первичных половых клеток;
амнион - выработка околоплодных вод, защита плода от механических повреждений, поддержание определенной концентрации солей в околоплодных водах;
по аллантоису прорастают первичные кровеносные сосуды из зародыша к хориону, формируя плацентарный круг кровообращения.
Функции плаценты
Плацента формирует гематоплацентарный барьер, который морфологически представлен слоем клеток эндотелия сосудов плода, их базальной мембраной, слоем рыхлой перикапиллярной соединительной ткани, базальной мембраной трофобласта, слоями цитотрофобласта и синцитиотрофобласта. Сосуды плода, разветвляясь в плаценте до мельчайших капилляров, образуют (вместе с поддерживающими тканями) ворсины хориона, которые погружены в лакуны, наполненные материнской кровью. Он обуславливает следующие функции плаценты.
Газообменная
Кислород из крови матери проникает в кровь плода по простым законам диффузии, в обратном направлении транспортируется углекислый газ.
Трофическая и выделительная
Через плаценту плод получает воду, электролиты, питательные и минеральные вещества, витамины; также плацента участвует в удалении метаболитов (мочевины, креатина, креатинина) посредством активного и пассивного транспорта;
Гормональная
Плацента играет роль эндокринной железы: в ней образуются хорионический гонадотропин, поддерживающий функциональную активность плаценты и стимулирующий выработку больших количеств прогестерона жёлтым телом; плацентарный лактоген, играющий важную роль в созревании и развитии молочных желез во время беременности и в их подготовке клактации; пролактин, отвечающий за лактацию; прогестерон, стимулирующий рост эндометрия и предотвращающий выход новых яйцеклеток; эстрогены, которые вызывают гипертрофию эндометрия. Кроме того, плацента способна секретировать тестостерон, серотонин, релаксин и другие гормоны.
Защитная
Плацента обладает иммунными свойствами — пропускает к плоду антитела матери, тем самым обеспечивая иммунологическую защиту. Часть антител проходят через плаценту, обеспечивая защиту плода. Плацента играет роль в регуляции и развитии иммунной системы матери и плода. В то же время она предупреждает возникновение иммунного конфликтамежду организмами матери и ребёнка — иммунные клетки матери, распознав чужеродный объект, могли бы вызвать отторжение плода. Cинцитий поглощает некоторые вещества, циркулирующие в материнской крови, и препятствует их поступлению в кровь плода. Однако плацента не защищает плод от некоторых наркотических веществ, лекарств, алкоголя,никотина и вирусов.
ОБЩАЯ ГИСТОЛОГИЯ
1.Морфофункциональная и гистогенетическая классификация эпителиев. Специальные органеллы эпителиев, их строение и функциональное значение.
Классификация эпителиальных тканей:
Различают 3 основных функциональных типа эпителиев:
1)    покровные;
2)    железистые;
3)    сенсорные (входят в состав органов чувств).
Покровными эпителиями называют клеточные пласты, занимающие пограничное положение с внешними или внутренними средами организма. Эпителии образуют поверхность тела, выстилают все трубчатые структуры  и все полости в нашем организме, а также образуют паренхиму желез.
Их функции разнообразны, но главная среди них – разграничительная. Эпителий выполняет роль избирательного барьера, который регулирует транспорт веществ в обе стороны. Из этого свойства вытекают остальные функции – защитная, транспортная, всасывающая, секреторная, сенсорная и т.д.
Железистый эпителий образует подавляющее большинство желез организма. Он состоит из:
железистых клеток - гландулоцитов;
базальной мембраны.
Несмотря на колоссальное разнообразие, большинство эпителиев имеют одинаковые морфологические признаки.
эпителиальные клетки образуют сплошные пласты
между ними нет межклеточного вещества, и клетки плотно соприкасаются благодаря межклеточным соединениям
эпителиям свойственна полярность
эпителиальные пласты расположены на базальной мембране, под которой лежит слой рыхлой волокнистой соединительной ткани с капиллярами.
они не содержат кровеносных сосудов
обладают высокой способностью к регенерации.
Морфологическая классификация покровных эпителиев:
однослойный плоский эпителий, эндотелий - выстилает все сосуды; 
мезотелий - выстилает естественные полости человека: плевральную, брюшную, перикардиальную;
однослойный кубический эпителий - эпителий почечных канальцев;
однослойный однорядный цилиндрический эпителий - ядра располагаются на одном уровне;
однослойный многорядный цилиндрический эпителий - ядра располагаются на разных уровнях (легочный эпителий);
многослойный плоский ороговевающий эпителий - кожа;
многослойный плоский неороговевающий эпителий - полость рта, пищевод, влагалище;
переходный эпителий - форма клеток этого эпителия зависит от функционального состояния органа, например, мочевой пузырь.
Для однослойных и многослойных эпителиев характерным является наличие специальных органелл – десмосом, полудесмосом, тонофиламентов и тонофибрилл. Кроме того, однослойные эпителии могут иметь на свободной поверхности клеток реснички и микроворсинки
Десмосома — один из типов межклеточных контактов, обеспечивающих прочное соединение клеток (как правило, эпителиальной или мышечной ткани) у животных. Функция десмосом заключается главным образом в обеспечении механической связи между клетками.
Тонофибриллы (tonofibrillae; тоно- + лат. fibrilla волоконце) — тонкие белковые волокна, обеспечивающие сохранность формы в некоторых эпителиальных клетках.
2. Классификация межклеточных контактов. Ультрастуктурная и молекулярная организация адгезионных (опоясывающая десмосома, десмосома, полудесмосома) и плотных контактов.
Межклеточные контакты — соединения между клетками, образованные при помощи белков. Межклеточные контакты обеспечивают непосредственную связь между клетками. Кроме того, клетки взаимодействуют друг с другом на расстоянии с помощью сигналов (главным образом — сигнальных веществ), передаваемых через межклеточное вещество.
Десмосома представляет собой небольшую площадку, иногда слоистого вида, диаметром до 0,5 мкм. Их функциональная роль заключается главным образом в механической связи между клетками. Существуют 3 типа десмосом – точечные, опоясывающие и полудесмосомы. Десмосомой называется образованное клетками соединение, прочно склеивающее клетки. Если они образуются между клетками и внеклеточным матриксом, то они называются полудесмосомами. Количество десмосом на одной клетке может достигать 2000. Такие контакты встречаются между клетками, которые могут подвергаться трению и другим механическим воздействиям (эпителиальные клетки, клетки сердечной мышцы). Со стороны цитоплазмы к десмосомам прикрепляются промежуточные филаменты, которые формируют остов цитоплазмы, обладающий большой прочностью на разрыв. Таким образом, через десмосомы промежуточные филаменты соседних клеток объединяются в непрерывную сеть по всей ткани. Тип промежуточных филаментов зависит от типа клеток: в большинстве эпителиальных клеток они кератиновые, а в клетках сердечной мышцы – десминовые.
В плотном соединении (запирающая зона) клеточные мембраны максимально сближены, здесь фактически происходит их слияние. Роль плотного соединения заключается в механическом сцеплении клеток и препятствии транспорту веществ по межклеточным пространствам. Эта область непроницаема для макромолекул и ионов, она ограждает межклеточные щели от внешней среды. Плотные соединения обычно образуются между эпителиальными клетками в тех органах (желудке, кишечнике и пр.), где эпителий ограничивает содержимое этих органов (желудочный сок, кишечный сок). В этих участках плотные контакты охватывают по периметру каждую клетку, межмембранные пространства отсутствуют, а соседние клеточные оболочки слиты в одну. Если же плотное сцепление происходит на ограниченном участке, то образуется пятно слипания (десмосома).Частными случаями плотного соединения являются зоны замыкания и слипания.
3. Ультраструктура и молекулярная организация коммуникационных простых и проводящих контактов.Проводящие:
Нексус (щелевой контакт) представляет собой ограниченный участок контакта двух клеточных мембран диаметром 0,5 – 3 мкм с расстоянием между мембранами 2-3 нм. Обе эти мембраны пронизаны белковыми молекулами коннексонами, содержащими гидрофильные каналы. Через эти каналы осуществляется обмен ионами и микромолекулами соседних клеток. Поэтому нексусы называют также проводящими соединениями. Их функциональная роль заключается в переносе ионов и мелких молекул от клетки к клетке, минуя межклеточное пространство. Этот тип соединения встречается во всех группах тканей.
Синапсы являются особыми формами межклеточных соединений. Они характерны для нервной ткани и встречаются между нейронами (межнейронные синапсы) или между нейроном и клеткой-мишенью (нервно-мышечные синапсы и пр.). Синапсы – участки контакта двух клеток, специализированных для односторонней передачи возбуждения или торможения от одной клетки к другой. Их функция – именно передача нервного импульса с нейрона на другую нервную клетку или клетку-мишень.
Простой контакт- соединение клеток за счет пальцевидных впячиваний и
выпячиваний цитомембран соседних клеток. Специфических структур,
формирующих контакт, нет.
Простые контакты занимают наиболее обширные участки соприкасающихся
клеток. Расстояние между билипидными мембранами соседних клеток
составляет 15-20 нм, а связь между клетками осуществляется за счет
взаимодействия макромолекул соприкасающихся гликокаликсов.
Посредством простых контактов осуществляется слабая механическая связь -
адгезия, не препятствующая транспорту веществ в межклеточных
пространствах. Разновидностью простого контакта является контакт "типа
замка", когда плазмолеммы соседних клеток вместе с участком цитоплазмы
как бы впячивается друг в друга (интердигитация), чем достигается
большая поверхность соприкосновения и более прочная механическая связь.
4. Покровные эпителии. Принципы структурной организации и функции однослойных эпителиев. Локализация камбиальных клеток.
Поверхностные эпителии — это пограничные ткани, располагающиеся на поверхности тела, слизистых оболочках внутренних органов и вторичных полостей тела. Они отделяют организм и его органы от окружающей их среды и участвуют в обмене веществ между ними, осуществляя функции поглощения веществ и выделения продуктов обмена. Например, через кишечный эпителий всасываются в кровь и лимфу продукты переваривания пищи, а через почечный эпителий выделяется ряд продуктов азотистого обмена, являющихся шлаками.Кроме этих функций, покровный эпителий выполняет важную защитную функцию, предохраняя подлежащие ткани организма от различных внешних воздействий — химических, механических, инфекционных и других. Например, кожный эпителий является мощным барьером для микроорганизмов и многих ядов. Наконец, эпителий, покрывающий внутренние органы, создает условия для их подвижности, например для движения сердца при его сокращении, движения легких при вдохе и выдохе.
Однослойный эпителий по форме клеток подразделяют на плоский, кубический и призматический.
а) однослойный плоский (состоит из одного слоя резко уплощенных клеток полигональной формы (многоугольной); основание (ширина) клеток больше, чем высота (толщина); в клетках органоидов мало, встречаются митохондрии, одиночные микроворсинки, в цитоплазме видны пиноцитозные пузырьки. 
Мезотелий покрывает серозные оболочки (листки плевры, висцеральную и париетальную брюшину, околосердечную сумку и др.). Клетки— мезотелиоциты плоские, имеют полигональную форму и неровные края. На свободной поверхности клетки имеются микроворсинки (стоматы). Через мезотелий происходят выделение и всасывание серозной жидкости. Благодаря его гладкой поверхности легко осуществляется скольжение внутренних органов. Мезотелий препятствует образованию соединительнотканных спаек между органами брюшной и грудной полостей, развитие которых возможно при нарушении его целостности.
Эндотелий выстилает кровеносные и лимфатические сосуды, а также камеры сердца. Он представляет собой пласт плоских клеток —эндотелиоцитов, лежащих в один слой на базальной мембране. Эндотелиоциты отличаются относительной бедностью органелл и присутствием в цитоплазме пиноцитозных везикул. Эндотелий участвует в обмене веществ и газов (О2, СО2) между сосудами и другими тканями. При его повреждении возможны изменение кровотока в сосудах и образование в их просвете сгустков крови — тромбов.
б) однослойный кубический (на срезе у клеток диаметр (ширина) равен высоте. Встречается в выводных протоках экзокринных желез, в извитых (проксимальных и дистальных) почечных канальцах.) Эпителий почечных канальцев выполняет функцию обратного всасывания(реабсорбция) ряда веществ из первичной мочи, протекающей по канальцам, в кровь межканальцевых сосудов. в) однослойный цилиндрический (призматический) (на срезе ширина клеток меньше чем высота). Выстилает внутреннюю поверхность желудка, тонкой и толстой кишки, желчного пузыря, ряда протоков печени и поджелудочной железы. Эп. клетки тесно связаны между собой, в межклеточные щели не может проникнуть содержимое полости желудка, кишки и других полых органов. 
однослойный призматический железистый, имеется в желудке, в канале шейки матки, специализирован на непрерывную выработку слизи; 
однослойный призматический каемчатый, выстилает кишечник, на апикальной поверхности клеток имеется большое количество микроворсинок; специализирован на всасывание. 
однослойный призматический реснитчатый (мерцательный), выстилает маточные трубы; на апикальной поверхности эпителиоциты имеют реснички.
^ 2. Однослойный многорядный мерцательный эпителий (псевдомногослойный или анизиморфный)Все клетки контактируют с базальной мембраной, но имеют разную высоту и поэтому ядра располагаются на разных уровнях, т.е. в несколько рядов. Выстилает воздухоносные пути. Функция: очистка и увлажнение проходящего воздуха. В составе этого эпителия различают 5 разновидностей клеток: В верхнем ряду: - ^ Реснитчатые (мерцательные) клетки высокие, призматической формы. Их апикальная поверхность покрыта ресничками. В среднем ряду: - Бокаловидные клетки - имеют форму бокала, плохо воспринимают красители (в препарате - белые), вырабатывают слизь (муцины);- ^ Короткие и длинные вставочные клетки (малодифференцированные и среди них стволовые клетки; обеспечивают регенерацию); - Эндокринные клетки, гормоны которых осуществляют местную регуляцию мышечной ткани воздухоносных путей. В нижнем ряду: - ^ Базальные клетки низкие, лежат на базальной мембране в глубине эпителиального пласта. Они относятся к камбиальным клеткам.
Меньшая часть клеток эпителия представляет собой камбиальные эпителиоциты, способные делиться и дифференцироваться в железистые эпителиоциты. Регенерация однослойного однорядного эпителия происходит за счет стволовых (камбиальных) клеток, равномерно разбросанных среди других дифференцированных клеток).За счет этих клеток каждые 5 сут происходит полное обновление эпителия желудка — т.е. его физиологическая регенерация.
5. Многослойные эпителии. Принципы структурной организации и функции многослойных эпителиев. Источники регенерации.
Многослойный плоский неороговевающий эпителий покрывает снаружи роговицу глаза, выстилает полости рта и пищевода. В нем различают три слоя: базальный, шиповатый (промежуточный) и плоский (поверхностный). Базальный слой состоит из эпителиоцитов призматической формы, располагающихся на базальной мембране. Среди них имеются стволовые клетки, способные к митотическому делению. За счет вновь образованных клеток, вступающих в дифференцировку, происходит смена эпителиоцитов вышележащих слоев эпителия. Шиповатый слой состоит из клеток неправильной многоугольной формы. В базальном и шиповатом слоях в эпителиоцитах хорошо развиты тонофибриллы (пучки тонофиламентов из белка кератина), а между эпителиоцитами — десмосомы и другие виды контактов. Верхние слои эпителия образованы плоскими клетками. Заканчивая свой жизненный цикл, последние отмирают и отпадают (слущиваются) с поверхности эпителия.
Многослойный плоский ороговевающий эпителий покрывает поверхность кожи, образуя ее эпидермис, в котором происходит процесс ороговения, или кератинизации, связанный с дифференцировкой эпителиальных клеток — кератиноцитов в роговые чешуйки наружного слоя эпидермиса. В эпидермисе различают несколько слоев клеток — базальный, шиповатый, зернистый, блестящий и роговой. Последние три слоя особенно сильно выражены в коже ладоней и подошв.
Основную часть клеток в слоях эпидермиса составляют кератиноциты, которые по мере дифференцировки перемещаются из базального слоя в вышележащие слои. Базальный слой эпидермиса состоит из призматических по форме кератиноцитов, в цитоплазме которых синтезируется кератиновый белок, формирующий тонофиламенты. Здесь же находятся стволовые клетки дифферона кератиноцитов. Поэтому базальный слой называют ростковым, или герминативным.
Кроме кератиноцитов, в эпидермисе находятся другие диффероны клеток — меланоциты (или пигментные клетки), внутриэпидермальные макрофаги (или клетки Лангерганса), лимфоциты и некоторые другие.
Меланоциты с помощью пигмента меланина создают барьер, препятствующий воздействию ультрафиолетовых лучей на ядра базальных кератиноцитов. Клетки Лангерганса являются разновидностью макрофагов, участвуют в защитных иммунных реакциях и регулируют размножение кератиноцитов, образуя вместе с ними «пролиферативные единицы».
Роговой слой эпидермиса состоит из плоских многоугольной формы кератиноцитов — роговых чешуек, имеющих толстую оболочку с кератолинином и заполненных кератиновыми фибриллами, упакованными в аморфном матриксе. Между чешуйками находится цементирующее вещество — продукт кератиносом, богатый липидами и поэтому обладающий гидроизолирующим свойством. Самые наружные роговые чешуйки утрачивают связь друг с другом и постоянно отпадают с поверхности эпителия. На смену им приходят новые — вследствие размножения, дифференцировки и перемещения клеток из нижележащих слоев. Благодаря этим процессам, составляющим физиологическую регенерацию, в эпидермисе полностью обновляется состав кератиноцитов через каждые 3—4 нед. Значение процесса кератинизации (или ороговения) в эпидермисе заключается в том, что образующийся при этом роговой слой обладает устойчивостью к механическим и химическим воздействиям, плохой теплопроводностью и непроницаем для воды и многих водорастворимых ядовитых веществ.
базальный слой - состоит из призматических (цилиндрических) по форме кератиноцитов, в цитоплазме которых синтезируется кератиновый белок, формирующий тонофиламенты. Здесь же находятся стволовые клетки дифферона кератиноцитов. Поэтому базальный слой называют ростковым, или зачатковым
шиповатый слой - образован кератиноцитами многоугольной формы, которые прочно связаны между собой многочисленными десмосомами. В месте десмосом на поверхности клеток имеются мельчайшие выросты — «шипики», направленные навстречу друг другу. В цитоплазме шиповатых кератиноцитов тонофиламенты образуют пучки — тонофибриллы и появляются кератиносомы — гранулы, содержащие липиды. Эти гранулы путем экзоцитоза выделяются в межклеточное пространство, где они образуют богатое липидами цементирующее кератиноциты вещество. Помимо кератиноцитов, в базальном и шиповатом слоях присутствуют отростчатой формы меланоциты с гранулами черного пигмента — меланина, внутриэпидермальные макрофаги (клетки Лангерганса) и клетки Меркеля, имеющие мелкие гранулы и контактирующие с афферентными нервными волокнами.
зернистый слой - клетки приобретают ромбовидную форму, тонофибриллы распадаются и внутри этих клеток в виде зёрен образуются белок кератогиалин, с этого начинается процесс ороговения. 
блестящий слой - узкий слой, в нём клетки становятся плоскими, они постепенно утрачивают внутриклеточную структуру (не ядер), и кератогиалин превращается в элеидин. 
роговой слой - содержит роговые чешуйки, которые полностью утратили строение клеток, заполнены пузырьками воздуха, содержат белок кератин. При механической нагрузке и при ухудшении кровоснабжения процесс ороговения усиливается. 
Переходный эпителий
Этот вид многослойного эпителия типичен для мочеотводящих органов — лоханок почек, мочеточников, мочевого пузыря, стенки которых подвержены значительному растяжению при заполнении мочой. В нем различают несколько слоев клеток — базальный, промежуточный, поверхностный.
Базальный слой образован мелкими почти округлыми (темными) камбиальными клетками. В промежуточном слое располагаются клетки полигональной формы. Поверхностный слой состоит из очень крупных, нередко дву- и трехъядерных клеток, имеющих куполообразную или уплощенную форму в зависимости от состояния стенки органа. При растяжении стенки вследствие заполнения органа мочой эпителий становится более тонким и его поверхностные клетки уплощаются. Во время сокращения стенки органа толщина эпителиального пласта резко возрастает. При этом некоторые клетки в промежуточном слое какбы «выдавливаются» кверху и принимают грушевидную форму, а расположенные над ними поверхностные клетки — куполообразную форму. Между поверхностными клетками обнаружены плотные контакты, имеющие значение для предотвращения проникновения жидкости через стенку органа (например, мочевого пузыря).
Регенерация покровных эпителиев
Покровный эпителий, занимая пограничное положение, постоянно испытывает влияние внешней среды, поэтому эпителиальные клетки сравнительно быстро изнашиваются и погибают. Источником их восстановления являются стволовые клеткиэпителия. Они сохраняют способность к делению в течение всей жизни организма. Размножаясь, часть вновь образованных клеток вступает в дифференцировку и превращается в эпителиоциты, подобные утраченным. Стволовые клетки в многослойных эпителиях находятся в базальном слое, в многорядных эпителиях к ним относятся базальные клетки, в однослойных эпителиях они располагаются в определенных участках: например, в тонкой кишке — в эпителии крипт, в желудке — в эпителии ямок, и шеек собственных желез. Высокая способность эпителия к физиологической регенерации служит основой для быстрого восстановления его в патологических условиях.
С возрастом в покровном эпителии наблюдается ослабление процессов обновления.
Эпителий хорошо иннервирован. В нем имеются многочисленные чувствительные нервные окончания — рецепторы.
Некоторые термины из практической медицины:
эпителиальные гнезда Брунна -- скопления клеток переходного эпителия в собственном слое слизистой оболочки почечных лоханок, мочеточников и мочевого пузыря, образующиеся в результате пролиферации базальных клеток эпителия; возникают как нормальное образование (в пределах треугольника мочевого пузыря) или в результате хронического воспалительного процесса в мочевыводящих путях;
жемчужины Эльшнига, шары Адамюка - Эльшнига -- шарообразные клеточные конгломераты в эпителии капсулы хрусталика, возникающие вследствие избыточной регенерации эпителия после экстракции катаракты.
6. Железы. Строение и функции. Принципы классификации экзокринных желез, источники развития. Типы секреции.
Экзокри́нные же́лезы (железы внешней секреции) — железы, которые вырабатывают свой «секрет» и выводят его во внешнюю среду организма или в его полости (в отличие от эндокринных желез). В зависимости от того, превращается в секрет часть железистой клетки или клетка целиком, различаются апокриновые железы и голокриновые железы .
Классификация желез
По количеству клеток:
одноклеточные (бокаловидная железа);
многоклеточные - подавляющее большинство желез.
По способу выведения секрета из железы и по строению:
экзокринные железы - имеют выводной проток;
эндокринные железы - не имеют выводного протока и выделяют инкреты (гормоны) в кровь и лимфу.
Экзокринные железы состоят из концевых или секреторных отделов и выводных протоков. Концевые отделы могут иметь форму альвеолы или трубочки. Если в выводной проток открывается один концевой отдел - железа простая неразветвленная (альвеолярная или трубчатая). Если в выводной проток открываются несколько концевых отделов - железа простая разветвленная (альвеолярная, трубчатая или альвеолярно-трубчатая). Если главный выводной проток разветвляется - железа сложная, она же разветвленная (альвеолярная, трубчатая или альвеолярно-трубчатая).
Фазы секреторного цикла железистых клеток:
поглощение исходных продуктов секретообразования;
синтез и накопление секрета;
выделение секрета (по мерокриновому или апокриновому типу);
восстановление железистой клетки.
Примечание: клетки, секретирующие по голокриновому типу (сальных желез), полностью разрушаются, а из камбиальных (ростковых) клеток образуются новые железистые сальные клетки.
Классификации Экзокринных Желез
I
. По строению:
Простые
железы имеют один (в виде одной простой трубочки) вы водной проток. Сложныежелезы имеют сложный (ветвящийся) выводной проток. Разветвленные
- это железы, в выводной проток которых открываются по нескольку концевых отделов, а у неразветвленных
- по одному концевому отделу. По форме концевых отделов железы могут быть альвеолярные, трубчатые или альвеолярно-трубчатые.
II
. По химическому составу
секрета:
– серозные
- выделяют белковый секрет;
– слизистые
- выделяют слизистый секрет (сложный углеводный);
– смешанные
- выделяют секрет c белковым и слизистым содержимым (в сложных железах);
– сальные
- выделяют кожное сало.
III
. По способу выделения секрета:
– мерокриновые
- если железистые клетки при выделении секрета полностью сохраняют свою структуру (например, клетки слюнных желез);
– апокриновые
- происходит частичное разрушение железистых клеток, т. е. вместе с секреторными продуктами отделяются апикальная часть цитоплазмы железистых клеток (макроапокриновая секреция) или верхушки микро ворсинок (микроапокриновая секреция), примером могут являться секреторные клетки некоторых потовых и молочных желез;
– - голокриновые- процесс сопровождается накоплением секрета в цито плазме с последующим полным разрушением железистых клеток (сальные железы).
Онтофилогенетическая классификация(по происхождению)
 Эпидермальный тип- развивается из эктодермы (эпидермис кожи, эпителий ротовой полости и пищевода, воздухоносных путей, влагалища). 
Энтеродермальный тип- развивается из энтодермы (эпителий желудка, кишечника, печени и поджелудочной железы).
Целонефродермальный тип- из мезодермы (эпителий почек и серозных оболочек).
 Эпендимоглиальный тип- из нервной трубки (эпендимная нейроглия, выстилающая желудочки и каналы мозга). 
Ангиодермальный тип- из мезенхимы (выстилает кровеносные сосуды и сердце). 
7. Кровь. Компоненты крови. Химический состав плазмы крови. Классификация форменных элементов крови. Гемограмма.
Кровь и лимфа - это ткани внутренней среды организма, они являются разновидностью соединительной ткани.
У данных видов тканей имеются следующие особенности: мезенхимальное происхождение, большой удельный вес межуточного вещества, большое разнообразие структурных компонентов.
Функции крови делятся на:
транспортная;
трофическая;
дыхательная;
защитная;
экскреторная;
регуляция гомеостаза.
Составные компоненты крови:
клетки - форменные элементы;
жидкое межклеточное вещество - плазма крови.
Масса крови составляет 5 % от массы тела человека, объем крови около 5,5 л. Депо крови - печень, селезенка, кожа и кишечник, в кишечнике может депонироваться до 1 л крови. Потеря человеком 1/3 объема крови ведет к смертельному исходу. Соотношение частей крови: плазма - 55-60 %, форменные элементы - 40-45 %. Плазма крови состоит из воды на 90-93 % и содержащихся в ней веществ - 7-10 %. В плазме содержатся белки, аминокислоты, нуклеотиды, глюкоза, минеральные вещества, продукты обмена. Белки плазмы крови: альбумины, глобулины (в том числе иммуноглобулины), фибриноген, белки-ферменты и другие. Функции плазмы - транспорт растворимых веществ.
В связи с тем, что в крови содержатся как истинные клетки (лейкоциты), так и постклеточные образования - эритроциты и тромбоциты, принято именовать их в совокупности форменными элементами.
Классификация форменных элементов:
эритроциты;
тромбоциты;
лейкоциты.
Качественный состав крови (анализ крови) определяется такими понятиями как гемограмма и лейкоцитарная формула. Гемограмма - количественное содержание форменных элементов крови в одном литре или одном миллилитре.
Гемограмма взрослого человека:эритроцитов:
у женщины - 3,7-4,9 млн в литре;
у мужчины - 3,9-5,5 млн в литре;
тромбоцитов 200-400 тыс. в литре;
лейкоцитов 3,8-9,0 тыс. в литре.
8. Эритроциты. Строение (форма, размеры). Плазмолемма и подмембранный цитоскелет эритроцитов. Ретикулоциты. Функции.
Эритроциты (красные кровяные клетки) – самые многочисленные клетки крови дисковидной двояковогнутой формы, содержащие гемоглобин. Их основная функция – доставлять кислород к тканям и органам. Эритроциты — высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении. 
Размер и эластичность способствуют им при движении по капиллярам, их форма повышает площадь поверхности и облегчает газообмен. Форма и размер эритроцитов. Нормальные эритроциты, показанные на рис. 32-3, представляют собой двояковогнутые диски со средним диаметром около 7,8 мкм и толщиной 2,5 мкм в самой толстой части и 1 мкм или менее в центре. Средний объем эритроцита составляет 90-95 мкм .В них отсутствует клеточное ядро и большинство органелл, что повышает содержание гемоглобина. Они циркулируют в крови около 100—120 дней и затем поглощаются макрофагами.
Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем. Кислород обратимо кординируется с ионом Fe2+ гемоглобина, образуя оксигемоглобин HbO2.
Мембрана эритроцитов и отсутствие ядра обеспечивают их главную функцию - перенос кислорода и участие в переносе углекислого газа. Мембрана эритроцитов непроницаема для катионов, кроме калия, а ее проницаемость для анионов хлора, гидрокарбонат анионов и гидроксил анионов в миллион раз больше. Кроме того она хорошо пропускает молекулы кислорода и углекислого газа. В мембране содержится до 52% белка. В частности, гликопротеины определяют групповую принадлежность крови и обеспечивают ее отрицательный заряд. В нее встроена Na/К-АТФаза, удаляющая из цитоплазмы натрий и закачивающая ионы калия. Основную массу эритроцитов составляет хемопротеин гемоглобин. Кроме того, в цитоплазме содержатся ферменты карбоангидраза, фосфатазы, холинестераза и другие ферменты.
Функции эритроцитов:
1. Перенос кислорода от легких к тканям.                                                          
2. Участие в транспорте СОз от тканей к легким.               
3. Транспорт воды от тканей к легким, где она выделяется, в виде пара.
4. Участвуют в свертывании крови, выделяя зритроцитарные факторы свертывания.
5. Переносят аминокислоты на своей поверхности.                                                       
6.Участвуют в регуляция вязкости крови, вследствие пластичности. В результате их способности к деформации,  вязкость крови в  мелких сосудах меньше, чем крупных. 
Цитоскелет эритроцита способен к деформации, что позволяет ему проникать в мелкие каппиляры. Кроме того, эритроциты несут антигены, определяющие группу крови человека.
Примембранный цитоскелет представляет собой правильную двумерную сеть, образованную гибкими протяженными молекулами длиной около 200 нм, которые соединены вершинами с образованием пента- или гексагональных ячеек. Ячейки сети примембранного цитоскелета формируются белком  HYPERLINK "http://humbio.ru/humbio/har/005c40df.htm" спектрином , а вершины - короткими  HYPERLINK "http://humbio.ru/humbio/cytology/000801e3.htm" актиновыми филаментами , состоящими из 13-15 мономеров  HYPERLINK "http://humbio.ru/humbio/cytology/0021b1c3.htm" актина.
Ретикулоци́ты — клетки — предшественники эритроцитов в процессе кроветворения, составляющие около 1 % от всех циркулирующих в крови эритроцитов. Так же, как и последние, не имеют ядра, но содержат остатки рибонуклеиновых кислот, митохондрий и других органелл, лишаясь которых трансформируются в зрелый эритроцит.
В отличие от эритроцитов, ретикулоциты имеют короткий срок жизни. Они формируются и созревают в красном костном мозге за 1—2 дня, после чего покидают его и ещё 1—3 дня дозревают в кровотоке.
Функция ретикулоцитов в целом аналогична функции эритроцитов, они также являются переносчиками кислорода, но их эффективность несколько ниже, чем у зрелых эритроцитов. Повышение количества ретикулоцитов в периферической крови свидетельствует о наличии кровопотери, или другой причины активации эритропоеза, при которой большее чем обычно количество незрелых клеток вынужденно покинуть костный мозг.
9. Лейкоциты. Классификация лейкоцитов. Лейкоцитарная формула. Особенности лейкоцитарной формулы у детей.
Лейкоци́ты — белые кровяные клетки. играют важную роль в защите организма от микробов, вирусов, от патогенных простейших, любых чужеродных веществ, т. е. они обеспечивают иммунитет.Лейкоциты делят на 2 группы: гранулоциты (зернистые) и агранулоциты (незернистые). В группу гранулоцитов входят нейтрофилы, эозинофилы и базофилы, а в группу агранулоцитов — лимфоциты и моноциты. 
Нейтрофилы
Нейтрофилы — самая большая группа белых кровяных телец, они составляют 50-75% всех лейкоцитов. Свое название они получили за способность их зернистости окрашиваться нейтральными красками. В зависимости от формы ядра нейтрофилы делятся на юные, палочкоядерные и сегментоядерные.Основная функция нейтрофилов — защита организма от проникших в него микробов и их токсинов. Нейтрофилы первыми пребывают на место повреждения тканей, т. е. являются авангардом лейкоцитов. Их появление в очаге воспаления связано со способностью к активному передвижению. Они выпускают псевдоподии, проходят через стенку капилляров и активно перемещаются в тканях к месту проникновения микробов. Эозинофилы
Эозинофилы составляют 1-5% всех лейкоцитов. Зернистость в их цитоплазме окрашивается кислыми красками (эозином и др.), что и определило их название. Эозинофилы обладают фагоцитарной способностью, но из-за малого количества в крови их роль в этом процессе невелика. Основная функция эозинофилов заключается в обезвреживании и разрушении токсинов белкового происхождения, чужеродных белков, комплексов антиген—антитело. 
Базофилы
Базофилы (0-1% всех лейкоцитов) представляют самую малочисленную группу гранулоцитов. Их крупная зернистость окрашивается основными красками, за что они и получили свое название. Функции базофилов обусловлены наличием в них биологически активных веществ. Они, как и тучные клетки соединительной ткани, продуцируют гистамин и гепарин, поэтому эти клетки объединены в группу гепариноцитов. Количество базофилов нарастает во время регенеративной (заключительной) фазы острого воспаления и немного увеличивается при хроническом воспалении. Гепарин базофилов влияет на свертываемость крови в очаге воспаления, а гистамин расширяет капилляры, что способствует рассасыванию и заживлению. Моноцины
Моноциты составляют 2-10 % всех лейкоцитов, способны к амебовидному движению, проявляют выраженную фагоцитарную и бактерицидную активность. Моноциты фагоцитируют до 100 микробов, в то время как нейтрофилы — лишь 20-30. Моноциты появляются в очаге воспаления после нейтрофилов и проявляют максимум активности в кислой среде, в которой нейтрофилы теряют свою активность. В очаге воспаления моноциты фагоцитируют микробы, а также погибшие лейкоциты, поврежденные клетки воспаленной ткани, очищая очаг воспаления и подготавливая его для регенерации. За эту функцию моноциты называют дворниками организма. 
Лимфоциты
Лимфоциты составляют 20 -40% белых кровяных телец. У взрослого человека содержится 1012 лимфоцитов общей массой 1,5 кг. Лимфоциты в отличие от всех других лейкоцитов способны не только проникать в ткани, но и возвращаться обратно в кровь. Они отличаются от других лейкоцитов и тем, что живут не несколько дней, а 20 и более лет (некоторые на протяжении всей жизни человека).
Лимфоциты представляют собой центральное звено иммунной системы организма. Они отвечают за формирование специфического иммунитета и осуществляют функцию иммунного надзора в организме, обеспечивая защиту от всего чужеродного и сохраняя генетическое постоянство внутренней среды. Лимфоциты обладают удивительной способностью различать в организме свое и чужое вследствие наличия в их оболочке специфических участков — рецепторов, активирующихся при контакте с чужеродными белками. Лимфоциты осуществляют синтез защитных антител, лизис чужеродных клеток, обеспечивают реакцию отторжения трансплантата, иммунную память, уничтожение собственных мутантных клеток. Все лимфоциты делят на 3 группы: Т-лимфоциты (тимусзависимые), В-лимфоциты (бурсазависимые) и нулевые.Лейкоцитарная формула


Особенности лейкоцитарной формулы у детей
Запомните ,что у детей  имеются  существенные различия в лейкоцитарной формуле по сравнению  со взрослыми .При рождении  соотношение  между нейтрофильными  лейкоцитами  и лимфоцитами  такое же,как и у взрослого (в среднем 65% нейтрофилов и 25% лимфоцитов )В первые  дни после  рождения процент нейтрофилов начинает убывать ,а лимфоцитов -быстро расти .К 4-му дню (3-7-му дню жизни)количество нейтрофилов и лимфоцитов  уравнивается .Это явление  получило названиепервого перекреста , после чего  количество  нейтрофилов  продолжает  убывать,а лимфоцитов -возрастать ,достигая к концу  первого года жизни  соответственно  величины  25 и 65%
По истечении  года жизни количество  лимфоцитов  начинает уменьшаться ,а содержание  нейтрофилов расти .К 4-му году (3-5-му году)наблюдается второй перекрест В дальнейшем  количество нейтрофилов  продолжает нарастать  и к периоду  половой зрелости  достигает средних  величин,нормальных для взрослого человека(65%)Количество лимфоцитов постепенно уменьшается  и к указанному  периоду времени  составляет  нормальные средние  величины (25%)
Таким образом ,у ребёнка между 4-м днём  и 4-м годом жизни  могут наблюдаться («физиологический лимфоцитоз»и «физиологическая нейтропения»)Этот  факт необходимо  учитывать  в клинической практике  при анализе  лейкоцитарной формулы у детей
Кроме отмеченного  ,у новорожденных  и грудных детей в периферической  крови обнаруживаются  юные формы  нейтрофилов .В грудном и раннем детском  возрасте  отмечается  также появление юных  форм лимфоцитов (10-30% общего количества  лимфоцитов)Количество моноцитов ,эозинофилов и базофилов  у новорожденных  и детей грудного  возраста повышено.
10.Лейкоцитарная формула. Типы гранулоцитов (СМ и ЭМ) . Строение и функции. Продолжительность жизни.
Строение и функции гранулоцитов
Гранулоциты делятся на три группы: нейтрофилы(продолжительность жизни нейрофилов 5-9 суток), эозинофилы и базофилы(продолжительность жизни 1-2 суток). Нейтрофилы могут быть незрелыми (юными) – их очень мало и в общем анализе крови может не быть, не полностью зрелые или палочкоядерными – они имеют ядро в виде палочек и зрелыми или сегментоядерными с ядрами, разделенными на 3-5 сегментов.
Нейтрофилы выполняют в организме функцию клеточного иммунитета или фагоцитоза: они поглощают и растворяют болезнетворные микроорганизмы. Чем моложе человек, тем выше фагоцитарная активность нейтрофилов, с возрастом она падает. Кроме того, нейтрофилы выделяют фермент лизоцим и противовирусное вещество интерферон, которые также помогают им справляться со своей задачей.
Эозинофилы имеют ядро, состоящее из двух сегментов и круглые или овальные гранулы, которые содержат кристаллы. Эозинофилы также способны к фагоцитозу, выполняютфункцию защиты от аллергии, они поглощают чужеродные белки и медиаторы – биологически активные вещества, которые выделяются во время аллергической реакции, например, гистамин.
Структура базофилов изучена хуже, чем других лейкоцитов, так как эти клетки встречаются в крови редко. Основная функция базофилов – участие в иммунологических реакциях (в том числе и неадекватных, то есть аллергических) замедленного типа.
11. Лейкоцитарная формула. Моноциты. (СМ и ЭМ) Строение и функции. Роль в системе мононуклеарных фагоцитов.
Моноциты (макрофаги) составляют 4—11% от общего числа лейкоцитов крови, способны к амебоидному движению в тканях. В кровотоке моноциты циркулируют 1 — 1,5 суток, затем выселяются в ткани — дифференцируются в макрофаги. В тканях макрофаги, взаимодействуя с лимфоцитами, играют ключевую роль в распознавании антигенов и во взаимодействии с ними иммунокомпетентных клеток. Продолжительность жизни макрофагов в тканях составляет » 30 дней.
Моноциты — самые крупные из лейкоцитов, в мазке крови они округлые (с- = 12-20 мкм).
Ядро с 1—2 ядрышками располагается эксцентрично, имеет овальную или бобовидную форму. Цитоплазма моноцита слабо базофильна и часто содержит азурофильные гранулы. Некоторые из гранул хорошо различимы при световой микроскопии, другие — очень мелкие — плохо, так как их размеры находятся на границе разрешающей способности светового микроскопа. Азурофильные гранулы моноцитов являются лизосомами. В цитопламзе макрофагов выявляются лизосомы, фаголизосомы, остаточные тельца, пиноцитозные пузырьки, ЭПС, комплекс Гольджи, множество митохондрий и незначительное количество полисом. Поверхность моноцита неровная, с множеством псевдоподий.
Моноциты созревают в костном мозге при последовательной дифференцировке гемопоэтической стволовой клетки, переходят в кровь, а затем — в ткани.
В тканях моноциты дифференцируются, превращаясь в макрофаги (гистиоциты, гигантские многоядерные клетки), и выполняют различные функции (рис. 79, 80).
Макрофаги всех органов происходят из моноцитов, выселившихся из кровотока. В тканях моноциты, проходя через ряд митотического деления, приобретают специфические свойства. Превращение моноцита в макрофаг сопровождается увеличением размеров, содержания лизосом и митохондрий, формированием рецепторов к иммуноглобулинам, повышением активности белкового синтеза, фагоцитарной активности.
Тканевые макрофаги являются активными фагоцитами, которые могут фагоцитировать остатки разрушившихся тканей, эритроциты, опухолевые клетки, грибы,простейших, некоторые бактерии (микобактерии, листе-рии, бруцеллы)
12. Лейкоцитарная формула. Лимфоциты. Классификация по морфологическому и функциональному признаку. (СМ и ЭМ ). Функции.
Лимфоциты (21 – 35 %) являются главным звеном и клеточной, и гуморальной специфических защитных систем организма. Продолжительность их жизни составляет несколько лет. Лимфоциты имеют на мембране рецепторы, позволяющие отличать «свое» и «чужое».

По морфологическим признакам выделяют два типа лимфоцитов: большие гранулярные лимфоциты (чаще всего ими являются NK-клетки или, значительно реже, это активно делящиеся клетки лимфоидного ряда — лимфобласты и иммунобласты) и малые лимфоциты (T и B клетки).
По функциональным признакам различают три типа лимфоцитов: B-клетки, T-клетки, NK-клетки.
В-лимфоциты распознают чужеродные структуры (антигены), вырабатывая при этом специфические антитела (белковые молекулы, направленные против конкретных чужеродных структур).
T-киллеры выполняют функцию регуляции иммунитета. Т-хелперы стимулируют выработку антител, а Т-супрессоры тормозят её.
NK-лимфоциты осуществляют контроль над качеством клеток организма. При этом NK-лимфоциты способны разрушать клетки, которые по своим свойствам отличаются от нормальных клеток, например, раковые клетки.
Содержание Т-лимфоцитов в крови составляет 65—80 % от общего количества лимфоцитов, В-лимфоцитов — 8—20 %, NK-лимфоцитов — 5—20 %.
13. Тромбоциты. (СМ и ЭМ ). Строение гиаломера и грануломера. Функции.
Кровяные пластинки, или тромбоциты, в свежей крови человека имеют вид мелких бесцветных телец округлой или веретеновидной формы. Они могут объединяться (агглютинировать) в маленькие или большие группы. Количество их колеблется от 200 до 400 x 109 в 1 литре крови. Кровяные пластинки представляют собой безъядерные фрагменты цитоплазмы, отделившиеся от мегакариоцитов — гигантских клеток костного мозга.
Тромбоциты в кровотоке имеют форму двояковыпуклого диска. В них выявляются более светлая периферическая часть — гиаломер и более темная, зернистая часть —грануломер. В популяции тромбоцитов находятся как более молодые, так и более дифференцированные и стареющие формы. Гиаломер в молодых пластинках окрашивается в голубой цвет (базофилен), а в зрелых — в розовый (оксифилен). Молодые формы тромбоцитов крупнее старых.
Плазмолемма тромбоцитов имеет толстый слой гликокаликса, образует инвагинации с отходящими канальцами, также покрытыми гликокаликсом. В плазмолемме содержатся гликопротеины, которые выполняют функцию поверхностных рецепторов, участвующих в процессах адгезии и агрегации кровяных пластинок (т.е. процессах свертывания, или коагуляции, крови).
Цитоскелет в тромбоцитах хорошо развит и представлен актиновыми микрофиламентами и пучками микротрубочек, расположенными циркулярно в гиаломере и примыкающими к внутренней части плазмолеммы. Элементы цитоскелета обеспечивают поддержание формы кровяных пластинок, участвуют в образовании их отростков. Актиновые филаменты участвуют в сокращении объема (ретракции) образующихся кровяных тромбов.
В кровяных пластинках имеется две системы канальцев и трубочек. Первая — это открытая система каналов, связанная, как уже отмечалось, с инвагинациями плазмолеммы. Через эту систему выделяется в плазму содержимое гранул кровяных пластинок и происходит поглощение веществ. Вторая — это так называемая плотная тубулярная система, которая представлена группами трубочек, имеющих сходство с гладкой эндоплазматической сетью. Плотная тубулярная система является местом синтеза циклоксигеназы и простагландинов. Кроме того, эти трубочки селективно связывают двухвалентные катионы и являются резервуаром ионов Са2+. Вышеназванные вещества являются необходимыми компонентами процесса свертывания крови.
Выход ионов Са2+ из трубочек в цитозоль необходим для обеспечения функционирования кровяных пластинок. Фермент циклооксигеназа метаболизирует арахидоновую кислоту с образованием из нее простагландинов и тромбоксана A2, которые секретируются из пластинок и стимулируют их агрегацию в процессе коагуляции крови.
При блокаде циклооксигеназы (например, ацетилсалициловой кислотой) агрегация тромбоцитов тормозится, что используют для профилактики образования тромбов.
В грануломере выявлены органеллы, включения и специальные гранулы. Органеллы представлены рибосомами, элементами эндоплазматической сети аппарата Гольджи, митохондриями, лизосомами, пероксисомами. Имеются включения гликогена и ферритина в виде мелких гранул.
Специальные гранулы составляют основную часть грануломера и представлены тремя типами.
Первый тип - крупные альфа-гранулы. Они содержат различные белки и гликопротеины, принимающие участие в процессах свертывания крови, факторы роста, литические ферменты.
Второй тип гранул — дельта-гранулы, содержащие серотонин, накапливаемый из плазмы, и другие биогенные амины (гистамин, адреналин), ионы Са2+, АДФ, АТФ в высоких концентрациях.
Третий тип мелких гранул, представленный лизосомами, содержащими лизосомные ферменты, а также микропероксисомами, содержащими фермент пероксидазу.
Содержимое гранул при активации пластинок выделяется по открытой системе каналов, связанных с плазмолеммой.
Основная функция кровяных пластинок — участие в процессе свертывания, или коагуляции, крови — защитной реакции организма на повреждение и предотвращение потери крови. В тромбоцитах содержится около 12 факторов, участвующих в свертывании крови. При повреждении стенки сосуда пластинки быстро агрегируют, прилипают к образующимся нитям фибрина, в результате чего формируется тромб, закрывающий дефект. В процессе тромбообразования наблюдается несколько этапов с участием многих компонентов крови.
На первом этапе происходят скопление тромбоцитов и выход физиологически активных веществ. На втором этапе — собственно коагуляция и остановка кровотечения (гемостаз). Вначале происходит образование активного тромбопластина из тромбоцитов (т.н. внутренний фактор) и из тканей сосуда (т.н. внешний фактор). Затем, под влиянием тромбопластина из неактивного протромбина образуется активнй тромбин. Далее, под влиянием тромбина из фибриногена образуется фибрин. Для всех этих фаз коагуляции крови необходим Са2+.
Наконец, на последнем третьем этапе наблюдается ретракция кровяного сгустка, связанная с сокращением нитей актина в отростках тромбоцитов и нитей фибрина.
Таким образом, морфологически на первом этапе происходит адгезия тромбоцитов на базальной мембране и на коллагеновых волокнах поврежденной сосудистой стенки, в результате которой образуются отростки тромбоцитов и на их поверхность из пластинок через систему трубочек выходят гранулы, содержащие тромбопластин. Он активирует реакцию превращения протромбина в тромбин, а последний влияет на образование из фибриногена фибрина.
Важной функцией тромбоцитов является их участие в метаболизме серотонина. Тромбоциты — это практически единственные элементы крови, в которых из плазмы накапливаются резервы серотонина. Связывание тромбоцитами серотонина происходит с помощью высокомолекулярных факторов плазмы крови и двухвалентных катионов с участием АТФ.
В процессе свертывания крови из разрушающихся тромбоцитов высвобождается серотонин, который действует на сосудистую проницаемость и сокращение глад-комышечных клеток сосудов.
Продолжительность жизни тромбоцитов — в среднем 9—10 дней. Стареющие тромбоциты фагоцитируются макрофагами селезенки. Усиление разрушающей функции селезенки может быть причиной значительного снижения числа тромбоцитов в крови (тромбоцитопения). Для устранения этого может потребоваться удаление селезенки (спленэктомия).
При снижении числа кровяных пластинок, например при кровопотере, в крови накапливается тромбопоэтин — фактор, стимулирующий образование пластинок из мегакариоцитов костного мозга.
14.Эмбриональный и постэмбриональный гемоцитопоэз (физиологическая регенерация крови). Стволовые кроветворные клетки: строение, локализация, основные свойства СКК
Общая гистология - кроветворение
Кроветворением, или гемопоэзом, называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.
Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов — гранулоцитопоэзом, тромбоцитов — тромбоцитопоэзом, моноцитов — моноцитопоэзом, развитие лимфоцитов и иммуноцитов — лимфоцито- и иммуноцитопоэзом.
Эмбриональный гемопоэз
В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа, последовательно сменяющих друг друга – мезобластический, гепатолиенальный и медуллярный.
Первый, мезобластический этап – это появление клеток крови во внезародышевых органах, а именно в мезенхиме стенки желточного мешка, мезенхиме хориона истебля. При этом появляется первая генерация стволовых клеток крови (СКК). Мезобластический этап протекает с 3-й по 9-ю неделю развития зародыша человека.
Второй, гепатолиенальный этап начинается с 5—6-й недели развития плода, когдапечень становится основным органом гемопоэза, в ней образуется вторая генерация стволовых клеток крови. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют тимус, селезенку и лимфатические узлы.
Третий, медуллярный (костномозговой) этап — это появление третьей генерации стволовых клеток крови в красном костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению. После рождения костный мозг становится центральным органом гемопоэза.
Рассмотрим подробнее особенности гемопоэза в стенке желточного мешка, в печени, в тимусе, селезенке, лимфатических узлах и в костном мозге.
Кроветворение в стенке желточного мешка
В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, иликровяные островки. В них мезенхимные клетки округляются, теряют отростки и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть стволовых клеток дифференцируется в первичные клетки крови (бласты). Большинство первичных кровяных клеток митотически делится и превращается в первичные эритробласты, характеризующиеся крупным размером – мегалобласты. Это превращение совершается в связи с накоплением эмбрионального гемоглобина (HbF) в цитоплазме бластов. В некоторых первичных эритробластах ядро подвергается кариорексису и удаляется из клеток, в других ядро сохраняется. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером по сравнению с нормоцитами и поэтому получившие название мегалоцитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях.
Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты, из которых образуются вторичные эритроциты (нормоциты).
Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т.е. интраваскулярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудистых стенок, дифференцируется небольшое количество гранулоцитов — нейтрофилов и эозинофилов.
Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.
Кроветворение в печени
Печень закладывается примерно на 3—4-й неделе эмбриональной жизни, а с 5-й недели она становится центром кроветворения. Кроветворение в печени происходитэкстраваскулярно, - по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени являются стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты.
Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и эозинофильные.
Кроме гранулоцитов, в печени формируются гигантские клетки — мегакариоциты, - предшественники тромбоцитов. К концу внутриутробного периода кроветворение в печени прекращается.
Кроветворение в тимусе
Тимус закладывается в конце 1-го месяца внутриутробного развития, и на 7—8-й неделе его эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тимуса. Увеличивающееся число лимфоцитов тимуса дает начало T-лимфоцитам, заселяющим T-зоны периферических органов иммунопоэза.
Кроветворение в селезенке
Закладка селезенки также происходит в конце 1-го месяца эмбриогенеза. Из вселяющихся сюда стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т.е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоцитов в селезенке достигает максимума на 5-м месяце эмбриогенеза. После этого в ней начинает преобладать лимфоцитопоэз.
Кроветворение в лимфатических узлах
Первые закладки лимфоузлов человека появляются на 7—8-й неделе эмбрионального развития. Большинство лимфатических узлов развивается на 9—10-й неделе. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых на ранних стадиях дифференцируются эритроциты, гранулоциты и мегакариоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть лимфатических узлов.
Появление единичных лимфоцитов происходит уже в течение 8—15-й недели развития, однако массовое «заселение» лимфатических узлов предшественниками T- и B-лимфоцитов начинается с 16-й недели, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются сначала лимфобласты (или большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка T- и B-лимфоцитов происходит, соответственно, в T- и B-зависимых зонах лимфатических узлов.
Кроветворение в костном мозге
Закладка костного мозга осуществляется на 2-м месяце эмбрионального развития. Первые гемопоэтические элементы появляются на 12-й неделе развития; в это время основную массу их составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно. Часть СКК сохраняется в костном мозге в недифференцированном состоянии. Они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани.
Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие гемопоэтические органы.
Постэмбриональный гемопоэз
Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. Он подразделяется на миелопоэз и лимфопоэз.
Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются эритроциты, гранулоциты, моноциты, тромбоциты, а также предшественники лимфоцитов. В миелоидной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимфоузлы и некоторые другие органы.
Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфоузлах. Она выполняет функции образования T- и B-лимфоцитов и иммуноцитов (например, плазмоцитов).
Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии — клетки ретикулярной ткани и гемопоэтические клетки.
Ретикулярные, а также жировые, тучные и остеогенные клетки вместе с межклеточным веществом формируют микроокружение для гемопоэтических элементов. Структуры микроокружения и гемопоэтические клетки функционируют в неразрывной связи друг с другом. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов).
Таким образом, для миелоидной и всех разновидностей лимфоидной ткани характерно наличие стромальных и гемопоэтических элементов, образующих единое функциональное целое.
СКК относятся к самоподдерживающейся популяции клеток. Они редко делятся. Выявление СКК стало возможным при применении метода образования клеточных колоний – потомков одной стволовой клетки.
Пролиферативную активность СКК регулируют колониестимулирующие факторы(КСФ), различные виды интерлейкинов (ИЛ-3 и др.). Каждая СКК в эксперименте или лабораторном исследовании образует одну колонию и называется колониеобразующей единицей (сокращенно КОЕ, CFU).
Исследование клеточного состава колоний позволило выявить две линии их дифференцировки. Одна линия дает начало мультипотентной клетке — родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза (сокращенно КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке — родоначальнице лимфопоэза (КОЕ-Л).
Из мультипотентных клеток дифференцируются олигопотентные (КОЕ-ГМ) и унипотентные родоначальные клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофильных гранулоцитов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегакариоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники. В лимфопоэтическом ряду выделяют унипотентные клетки — предшественницы для B-лимфоцитов и для T-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.
Все приведенные выше стадии развития клеток составляют четыре основных класса, или компартмента, гемопоэза:
I класс — СКК - стволовые клетки крови (плюрипотентные, полипотентные);
II класс — КОЕ-ГЭММ и КОЕ-Л - коммитированные мультипотентные клетки (миелопоэза или лимфопоэза);
III класс — КОЕ-М, КОЕ-Б и т.д. - коммитированные олигопотентные и унипотентные клетки;
IV класс — клетки-предшественники (бласты, напр.: эритробласт, мегакариобласт и т.д.).
Сразу отметим, что оставшиеся два класса гемопоэза составляют созревающие клетки (V класс) и зрелые клетки крови (VI класс).
Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков. Эритробластический островок состоит из макрофага, окруженного одним или несколькими кольцами эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом. КОЕ-Э и образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами.
У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения эритробластов. Но всякий раз, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние — из стволовых клеток.
В норме из костного мозга в кровь поступают только эритроциты и ретикулоциты.

15. Красный костный мозг. Строение и гистофизиология миелоидной ткани. Эритроцитопоэз. Основные стадии развития и дифференцировки эритроцитов.
Костный мозг (medulla osseum, bone marrow) — центральный кроветворный орган, в котором находится самоподдерживающаяся популяция стволовых кроветворных клеток (СКК) и образуются клетки как миелоидного, так и лимфоидного ряда.
Развитие
Костный мозг у человека появляется впервые на 2-м месяце внутриутробного периода в ключицеэмбриона, затем на 3-4 -м месяце он образуется в развивающихся плоских костях, а также в трубчатых костях конечностей — лопатках, тазовых костях, затылочной кости, ребрах, грудине, костях основания черепа и позвонках, а в начале 4-го месяца развивается также в трубчатых костях конечностей. До 11-й недели это остеобластический костный мозг, который выполняет остеогеннуюфункцию. В данный период костный мозг накапливает стволовые клетки, а клетки стромы с остеогенными потенциями создают микросреду, необходимую для дифференцировки стволовых кроветворных клеток. У 12—14-недельного эмбриона человека происходят развитие и дифференцировка вокруг кровеносных сосудов гемопоэтических клеток. У 20—28-недельного плода человека в связи с интенсивным разрастанием костного мозга отмечается усиленная резорбция костных перекладин остеокластами, в результате чего образуется костномозговой канал, а красный костный мозг получает возможность расти в направлении эпифизов. К этому времени костный мозг начинает функционировать как основной кроветворный орган, причем большая часть образующихся в нем клеток относится к эритроидному ряду гемопоэза.
У зародыша 36 нед развития в костном мозге диафиза трубчатых костей обнаруживаются жировые клетки. Одновременно появляются очаги кроветворения в эпифизах.
Строение
Во взрослом организме человека различают красный и желтый костный мозг.
Красный костный мозг
Красный костный мозг (medulla ossium rubra) является кроветворной частью костного мозга. Он заполняет губчатое вещество плоских и трубчатых костей и во взрослом организме составляет в среднем около 4 – 5% общей массы тела. Красный костный мозг имеет темно-красный цвет и полужидкую консистенцию, что позволяет легко приготовить из него тонкие мазки на стекле. Он содержит стволовые кроветворные клетки (СКК) и диффероны гемопоэтических клеток эритроидного, гранулоцитарного и мегакариоцитарного ряда, а также предшественники В- и Т-лимфоцитов. Стромой костного мозга является ретикулярная соединительная ткань, образующая микроокружение для кроветворных клеток. В настоящее время к элементам микроокружения относят также остеогенные, жировые, адвентициальные, эндотелиальные клетки и макрофаги.
Ретикулярные клетки благодаря своей отростчатой форме выполняют механическую функцию, секретируют компоненты основного вещества — преколлаген, гликозаминогликаны, проэластин и микрофибриллярный белок и участвуют в создании кроветворного микроокружения, специфического для определенных направлений развивающихся гемопоэтических клеток, выделяя ростовые факторы.
Остеогенными клетками называют стволовые клетки опорных тканей, остеобласты и их предшественники. Остеогенные клетки входят в состав эндоста и могут быть в костномозговых полостях. Остеогенные клетки также способны вырабатывать ростовые факторы, индуцировать родоначальные гемопоэтические клетки в местах своего расположения к пролиферации и дифференцировке. Наиболее интенсивно кроветворение происходит вблизи эндоста, где концентрация стволовых клеток примерно в 3 раза больше, чем в центре костномозговой полости.
Адипоциты (жировые клетки) являются постоянными элементами костного мозга.
Адвентициальные клетки сопровождают кровеносные сосуды и покрывают более 50% наружной поверхности синусоидных капилляров. Под влиянием гемопоэтинов (эритропоэтин) и других факторов они способны сокращаться, что способствует миграции клеток в кровоток.
Эндотелиальные клетки сосудов костного мозга принимают участие в организации стромы и процессов кроветворения, синтезируют коллаген IV типа, гемопоэтины. Эндотелиоциты, образующие стенки синусоидных капилляров, непосредственно контактируют с гемопоэтическими и стромальными клетками благодаря прерывистойбазальной мембране. Эндотелиоциты способны к сократительным движениям, которые способствуют выталкиванию клеток крови в синусоидные капилляры. После прохождения клеток в кровоток поры в эндотелии закрываются. Эндотелиоциты выделяют колониестимулирующие факторы (КСФ) и белок фибронектин, обеспечивающий прилипание клеток друг к другу и субстрату.
Макрофаги в костном мозге представлены неоднородными по структуре и функциональным свойствам клетками, но всегда богатыми лизосомами и фагосомами. Некоторые из популяций макрофагов секретируют ряд биологически активных веществ (эритропоэтин, колониестимулирующие факторы, интерлейкины, простагландины, интерферон и др.). Макрофаги при помощи своих отростков, проникающих через стенки синусов, улавливают из кровотока железосодержащее соединение (трансферрин) и далее передают его развивающимся эритроидным клеткам для построения геминовой части гемоглобина.
Межклеточное вещество - В костном мозге это вещество содержит коллаген II, III и IV типа, гликопротеины, протеогликаны и др.
Гемопоэтические клетки или кроветворные диффероны составляют паренхимукрасного костного мозга.
Рассмотрим подребнее образование эритроцитов, гранулоцитов и тромбоцитов в красном костном мозге.
Эритроцитопоэз
Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков. Эритробластический островок состоит из макрофага, окруженного эритроидными клетками. Эритроидные клетки развиваются из колониеобразующей эритроидной клетки (КОЕ-Э), вступившей в контакт с макрофагом костного мозга. КОЕэ и образующиеся из нее клетки — от проэритробласта до ретикулоцита — удерживаются в контакте с макрофагом его рецепторами — сиалоадгезинами.
Макрофаги служат своего рода «кормильцами» для эритробластов, способствуют накоплению в непосредственной близости от эритробластов и поступлению в них эритропоэтина, витаминов кроветворения (витамина D3), молекул ферритина. Макрофаги островков фагоцитируют ядра, вытолкнутые эритробластами при их созревании и способны повторно присоединять КОЕэ и формировать вокруг себя новый очаг эритропоэза.
По мере созревания эритробласты отделяются от островков и после удаления ядра (энуклеации) проникают через стенку венозных синусов в кровоток. Стенки синусов состоят из эндотелиальных уплощенных клеток, пронизанных щелевидными отверстиями, или порами, в которые проникают форменные элементы крови и плазма. Среди эндотелиальных клеток есть фиксированные макрофаги.
16. Гранулоцитопоэз. Основные стадии развития и дифференцировки гранулоцитов.
Гранулоцитопоэз
Гранулоцитопоэтические клетки также образуют островки, главным образом по периферии костномозговой полости. Незрелые клетки гранулоцитарных рядов окружены протеогликанами. В процессе созревания гранулоциты депонируются в красном костном мозге, где их насчитывается примерно в 3 раза больше, чем эритроцитов, и в 20 раз больше, чем гранулоцитов в периферической крови.
Гранулоциты образуются также в костном мозге, причем нейтрофилы, базофилы и моноциты происходят из одной (полипотентной) клетки — предшественницы нейтрофилов и базофилов, а эозинофилы — из другой (унипотентной) клетки — предшественницы эозинофилов. По мере дифференцировки гранулоцитов размеры клеток уменьшаются, изменяется форма ядра, в цитоплазме накапливаются гранулы. Процесс развития гранулоцитов морфологически различают 6 стадий: миелобласт, промиелоцит, миелоцит, метамиелоцит, палочкоядерный и сегментоядерный гранулоциты. Специфические для каждого вида гранулоцитов гранулы появляются на стадии миелоцитов. Клеточные деления прекращаются на стадии метамиелоцитов.
17. Тромбоцитопоэз. Процесс образования и созревания мегакариоцитов.
Тромбоциты формируются в цитоплазме мегакариоцитов, отшнуровываются в синусы костного мозга, откуда поступают в циркуляцию. В процессе осуществления своих функций тромбоциты гибнут. 
Однако образование тромбоцитов имеет особенности, нехарактерные для других клеток. Из мегакариобласта образуется мегакариоцит, который является самой большой клеткой костного мозга. Мегакариоцит имеет огромную цитоплазму. В результате созревания в цитоплазме вырастают разделительные мембраны, то есть происходит разделение единой цитоплазмы на небольшие фрагменты. Данные небольшие фрагменты мегакариоцита «отшнуровываются», и это и есть самостоятельные тромбоциты.Из костного мозга тромбоциты выходят в кровоток, где живут 8 – 11 дней, после чего гибнут в селезенке, печени или легких.
18. Моноцитопоэз. Основные стадии развития и дифференцировки моноцитов.
Моноциты развиваются из общего предшественника гемацитобласта, из которого образуется промежуточная форма монобласт. Они входят в кровоток, с которым достигают тканей, где они проходят через капилляры и становятся свободными макрофагами (гистиоцитами) или фиксированными макрофагами (фагоцитирующими ретикулярными клетками), которые обычно находятся в лимфоузлах, селезенке, костном мозгу, печени и передней доле гипофиза. Как указывалось выше, зрелые макрофаги могут делиться, и поэтому их пролиферация, по всей видимости, происходит вне костного мозга. 
19.Т-лимфоциты: субпопуляции. Характеристика рецепторов, участие в иммунных реакциях , антигеннезависимая и антигензависимая пролиферация и дифференцировка.
T-лимфоциты, или Т-клетки (t — лат. thymus — тимус) — лимфоциты, развивающиеся у млекопитающих в тимусе[1] из предшественников — претимоцитов, поступающих в него из красного костного мозга. В тимусе T-лимфоциты дифференцируются, приобретая Т-клеточные рецепторы (TCR) и различные ко-рецепторы (поверхностные маркеры). Играют важную роль вприобретённом иммунном ответе. Обеспечивают распознавание и уничтожение клеток, несущих чужеродные антигены, усиливают действие моноцитов, NK-клеток, а также принимают участие в переключении изотипов иммуноглобулинов.
В отличие от миелопоэза, лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. В Т- и в В-лимфоцитопоэзе выделяют три этапа:
костномозговой этап;
этап антиген-независимой дифференцировки, осуществляемый в центральных иммунных органах;
этап антиген-зависимой дифференцировки, осуществляемый в периферических лимфоидных органах.
На первом этапе дифференцировки из стволовых клеток образуются клетки-предшественницы соответственно Т- и В-лимфоцитопоэза. На втором этапе образуются лимфоциты, способные только распознавать антигены. На третьем этапе из клеток второго этапа формируются эффекторные клетки, способные уничтожить и нейтрализовать антиген.
Процесс развития Т- и В-лимфоцитов имеет как общие закономерности, так и существенные особенности и потому подлежит отдельному рассмотрению.
Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:
1 класс - стволовые клетки;2 класс - полустволовые клетки-предшественницы лимфоцитопоэза;3 класс - унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса.Второй этап - этап антиген-независимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина, выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты - 4 класс, затем в Т-пролимфоциты - 5 класс, а последние в Т-лимфоциты - 6 класс. В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов:
киллеры;
хелперы;
супрессоры.
В корковом веществе тимуса все перечисленные субпопуляции Т-лимфоцитов приобретают разные рецепторы к разнообразным антигенным веществам (механизм образования Т-рецепторов остается пока невыясненным), однако сами антигены в тимус не попадают. Защита Т-лимфоцитопоэза от чужеродных антигенных веществ достигается двумя механизмами:
наличием в тимусе особого гемато-тимусного барьера;
отсутствием лимфатических сосудов в тимусе.
В результате второго этапа образуются рецепторные (афферентные или Т0) Т-лимфоциты - киллеры, хелперы, супрессоры. При этом лимфоциты в каждой из субпопуляций отличаются между собой разными рецепторами, однако имеются и клоны клеток, имеющие одинаковые рецепторы. В тимусе образуются Т-лимфоциты, имеющие рецепторы и к собственным антигенам, однако такие клетки здесь же разрушаются макрофагами. Образованные в корковом веществе Т-рецепторные лимфоциты (киллеры, хелперы и супрессоры), не заходя в мозговое вещество, проникают в сосудистое русло и током крови заносятся в периферические лимфоидные органы.
Третий этап - этап антиген-зависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов - лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену. Однако в большинстве случаев антиген действует на лимфоцит не непосредственно, а опосредованно - через макрофаг, то есть вначале макрофаг фагоцитирует антиген, частично расщепляет его внутриклеточно, а затем активные химические группировки антигена - антигенные детерминанты выносятся на поверхность цитолеммы, способствуя их концентрации и активации. Только затем эти детерминанты макрофагами передаются на соответствующие рецепторы разных субпопуляций лимфоцитов. Под влиянием соответствующего антигена Т-лимфоцит активизируется, изменяет свою морфологию и превращается в Т-лимфобласт, вернее в Т-иммунобласт, так как это уже не клетка 4 класса (образующаяся в тимусе), а клетка возникшая из лимфоцита под влиянием антигена.
Процесс превращения Т-лимфоцита в Т-иммунобласт носит название реакции бласттрансформации. После этого Т-иммунобласт, возникший из Т-рецепторного киллера, хелпера или супрессора, пролиферирует и образует клон клеток. Т-киллерный иммунобласт дает клон клеток, среди которых имеются:
Т-памяти (киллеры);
Т-киллеры или цитотоксические лимфоциты, которые являются эффекторными клетками, обеспечивающими клеточный иммунитет, то есть защиту организма от чужеродных и генетически измененных собственных клеток.
После первой встречи чужеродной клетки с рецепторным Т-лимфоцитом развивается первичный иммунный ответ - бласттрансформация, пролиферация, образование Т-киллеров и уничтожение ими чужеродной клетки. Т-клетки памяти при повторной встрече с тем же антигеном обеспечивают по тому же механизму вторичный иммунный ответ, который протекает быстрее и сильнее первичного.
Т-хелперный иммунобласт дает клон клеток, среди которых различают Т-памяти, Т-хелперы, секретирующие медиатор - лимфокин, стимулирующий гуморальный иммунитет - индуктор иммунопоэза. Аналогичен механизм образования Т-супрессоров, лимфокин которых угнетает гуморальный ответ.
Таким образом, в итоге третьего этапа Т-лимфоцитопоэза образуются эффекторные клетки клеточного иммунитета (Т-киллеры), регуляторные клетки гуморального иммунитета (Т-хелперы и Т-супрессоры), а также Т-памяти всех популяций Т-лимфоцитов, которые при повторной встрече с этим же антигеном снова обеспечат иммунную защиту организма в виде вторичного иммунного ответа. В обеспечении клеточного иммунитета рассматривают два механизма уничтожения киллерами антигенных клеток:
контактное взаимодействие - "поцелуй смерти", с разрушением участка цитолеммы клетки-мишени;
дистантное взаимодействие - посредством выделения цитотоксических факторов, действующих на клетку-мишень постепенно и длительно.
20. Механизм активации Т-лимфоцитов. Контакт Т-лимфоцита-киллера с антигеном. Механизм взаимодействия естественного киллера с клеткой-мишенью.
Т-лимфоциты, успешно прошедшие позитивную и негативную селекцию в тимусе, попавшие на периферию организма, но не имевшие контакта с антигеном называются наивными Т-клетками (англ. Naive T cells). Основной функцией наивных Т клеток является реакция на патогены, прежде не известные иммунной системе организма. После того как наивные Т клетки распознают антиген, они становятся активированными. Активированные клетки начинают активно делиться образуя множество клонов. Некоторые из этих клонов превращаются в эффекторные Т- клетки, которые выполняют функции специфичные для данного типа лимфоцита (например выделяют цитокины в случае Т-хелперов или же лизируют пораженные клетки в случае Т-киллеров). Другая половина активированных клеток трансформируется в Т-клетки памяти. Клетки памяти сохраняются в неактивной форме после первичного контакта с антигеном до тех пор, пока не наступает повторное взаимодействие с тем же антигеном. Таким образом, Т-клетки памяти хранят информацию о ранее действовавших антигенах и формируют вторичный иммунный ответ, осуществляющийся в более короткие сроки, чем первичный.
Взаимодействия Т-клеточного рецептора и корецепторов (СD4, CD8) с главным комплексом гистосовместимости важно для успешной активации наивных Т-клеток, однако само по себе не достаточно для дифференциации в эффекторные клетки. Для последующей пролиферации активированных клеток необходимо взаимодействие т.н. костимулирующих молекул. Для Т-хелперов такими молекулами являются CD28 рецептор на поверхности Т-клетки и иммуноглобулин B7 на поверхности антигенпрезентирующей клетки.
Т-киллеры, цитотоксические T-лимфоциты, CTL (от англ. killer — убийца) — Т-лимфоциты, главной функцией которых является уничтожение повреждённых клеток собственного организма. Мишени Т-киллеров — это клетки, поражённые внутриклеточными паразитами (к которым относятся вирусы и некоторые виды бактерий), опухолевые клетки. Т-киллеры являются главным компонентом антивирусного иммунитета. Основным признаком Т-киллеров служит наличие на поверхности клетки молекулыкорецептора CD8. Т-киллеры распознают антигены при взаимодействии их Т-клеточного рецептора с антигеном, связанным с молекулами главного комплекса гистосовместимости I класса (англ. Major Histocompatibility Complex I (MHC-I)).
Т-хелперы и Т-киллеры образуют группу эффекторных Т-лимфоцитов, непосредственно ответственных за иммунный ответ. В то же время существует другая группа клеток, регуляторные Т-лимфоциты, функция которых заключается в регулировании активности эффекторных Т-лимфоцитов. Модулируя силу и продолжительность иммунного ответа через регуляцию активности Т-эффекторных клеток, регуляторные Т-клетки поддерживают толерантность к собственным антигенам организма и предотвращают развитие аутоиммунных заболеваний. Существуют несколько механизмов супрессии: прямой, при непосредственном контакте между клетками, и дистантный, осуществляющийся на расстоянии — например, через растворимые цитокины.
Активированные Т-лимфоциты приобретают ряд изменений поверхностного фенотипа. На их мембранах повышается количество адгезионных молекул: LFA-1, LFA-2, LFA-3, ICAM-1, CD29, способствующих более эффективному взаимодействию с клетками-мишенями. При этом активированные Т-эффекторы утрачивают поверхностные L-селектины и хоминг-рецептор CD44, что снижает их способность к рециркуляции. Вместо этого они усиленно экспрессируют интегрин VLA-4(CD49d), позволяющий им прилипать к эндотелию сосудов с последующей миграцией в очаг инфекции или воспаления. Кроме того, на активированных Т-лимфо цитах экспрессируются новые маркеры: CD25 (IL-2R), CD40L, CD45RO вместо CD45RA, B, CD26 и антигены гистосовместимости MHC II класса 
21. В-лимфоциты ( субпопуляции). Характеристика рецепторов, антигеннезависимая и антигензависимая пролиферация и дифференцировка.
B-лимфоци́ты (B-клетки, от bursa fabricii птиц, где впервые были обнаружены) — функциональный тип лимфоцитов, играющих важную роль в обеспечении гуморального иммунитета. При контакте с антигеном или стимуляции со стороны T-клеток некоторые B-лимфоциты трансформируются в плазматические клетки, способные к продукции антител. Другие активированные B-лимфоциты превращаются в B-клетки памяти. Помимо продукции антител, В-клетки выполняют множество других функций: выступают в качестве антигенпрезентирующих клеток, продуцируют цитокины и экзосомы[1].
У эмбрионов человека и других млекопитающих B-лимфоциты образуются в печени и костном мозге из стволовых клеток, а у взрослых млекопитающих — только в костном мозге. Дифференцировка В-лимфоцитов проходит в несколько этапов, каждый из которых характеризуется присутствием определённых белковых маркеров и степенью генетической перестройки генов иммуноглобулинов.
B-лимфоциты происходят от плюрипотентных гемопоэтических стволовых клеток, дающих также начало всем клеткам крови. Стволовые клетки находятся в определённоммикроокружении, которое обеспечивает их выживание, самообновление или, при необходимости, дифференцировку. Микроокружение определяет, по какому пути пойдёт развитие стволовой клетки (эритроидному, миелоидному или лимфоидному)[1].
Дифференцировка В-лимфоцитов условно делится на две стадии — антигеннезависимую (в которую происходит перестройка генов иммуноглобулинов и их экспрессия) и антигензависимую (при которой происходит активация, пролиферация и дифференцировка в плазматические клетки). Выделяют следующие промежуточные формы созревающих В-лимфоцитов:
Ранние предшественники В-клеток — не синтезируют тяжёлых и лёгких цепей иммуноглобулинов, содержат зародышевые IgH и IgL гены, но содержат антигенный маркер, общий со зрелыми пре-В-клетками.
Ранние про-В-клетки — D-J перестройки в IgН генах.
Поздние про-В-клетки — V-DJ перестройки в IgН генах.
Большие пре-В-клетки — IgН гены VDJ-перестроены; в цитоплазме имеются тяжёлые цепи класса μ, экспрессируется пре-В-клеточный рецептор.
Малые пре-В-клетки — V-J перестройки в IgL генах; в цитоплазме имеются тяжёлые цепи класса μ.
Малые незрелые В-клетки — IgL гены VJ-перестроены; синтезируют тяжёлые и лёгкие цепи; на мембране экспрессируются иммуноглобулины (В-клеточный рецептор).
Зрелые В-клетки — начало синтеза IgD.
В-клетки поступают из костного мозга во вторичные лимфоидные органы (селезёнку и лимфатические узлы), где происходит их дальнейшее созревание, презентация антигена, пролиферация и дифференцировка в плазматические клетки и В-клетки памяти.
Выделяют две субпопуляции В-клеток: В-1 и B-2. Субпопуляцию В-2 составляют обычные В-лимфоциты, к которым относится всё сказанное выше. В-1 — это относительно небольшая группа В-клеток, обнаруживаемая у человека и мышей. Они могут составлять около 5% от общей популяции B-клеток. Такие клетки появляются в течение эмбрионального периода. На своей поверхности они экспрессируют IgM и небольшое количество (или вовсе не экспрессируют) IgD. Маркером этих клеток является CD5. Однако он не является обязательным компонентом клеточной поверхности. В эмбриональном периоде В1-клетки появляются из стволовых клеток костного мозга. В течение жизни пул B-1-лимфоцитов поддерживается за счёт активности специализированных клеток–предшественников и не пополняется за счёт клеток, происходящих из костного мозга. Клетка–предшественница отселяется из кроветворной ткани на свою анатомическую нишу — в брюшную и плевральную полости — ещё в эмбриональном периоде. Итак, место обитания B-1-лимфоцитов — прибарьерные полости.
B-1-лимфоциты значительно отличаются от B-2-лимфоцитов по антигенной специфичности продуцируемых антител. Антитела, синтезированные B-1-лимфоцитами, не имеют значительного разнообразия вариабельных участков молекул иммуноглобулинов, но, напротив, ограничены в репертуаре распознаваемых антигенов, и эти антигены — наиболее распространённые соединения клеточных стенок бактерий. Все B-1-лимфоциты — как бы один не слишком специализированный, но определённо ориентированный (антибактериальный) клон. Антитела, продуцируемые B-1-лимфоцитами, почти исключительно IgM, переключение классов иммуноглобулинов в B-1-лимфоцитах не «предусмотрено». Таким образом, B-1-лимфоциты — «отряд» противобактериальных «пограничников» в прибарьерных полостях, предназначенных для быстрой реакции на «просачивающиеся» через барьеры инфекционные микроорганизмы из числа широко распространённых. В сыворотке крови здорового человека преобладающая часть иммуноглобулинов — продукт синтеза как раз B-1-лимфоцитов, т.е. это относительно полиспецифичные иммуноглобулины антибактериального назначения.
22.Понятие об иммунитете. Растворимые и нерастворимые антигены. Гуморальный и клеточный иммунитет. Классификация иммунокомпетентных клеток. Роль и функции АПК (захват, процессинг и представление антигенов).
Иммунитет (лат. immunitas — освобождение, избавление от чего-либо) — невосприимчивость, сопротивляемость организма к инфекциям и инвазиям чужеродных организмов (в том числе — болезнетворных микроорганизмов), а также воздействию чужеродных веществ, обладающих антигенными свойствами. Иммунные реакции возникают и на собственные клетки организма, измененные в антигенном отношении[1].
Обеспечивает гомеостаз организма на клеточном и молекулярном уровне организации[1]. Реализуется иммунной системой.
Биологический смысл иммунитета — обеспечение генетической целостности организма на протяжении его индивидуальной жизни[2]. Развитие иммунной системы обусловило возможность существования сложно организованных многоклеточных организмов[3].
Антигенами (от греч. Anti – против, Genes – род) называют чужеродные для организма сложные органические вещества (белки, нуклеопротеиды, липиды, полисахариды и др.), которые при введении в организм вызывают в нем образование антител и изменение иммунологической реактивности.
Антигенами являются не только инфекционные агенты, продукты их жизнедеятельности, вакцины, но и просто чужеродные для данного организма вещества (яичный белок, сыворотка крови и т. д.). В функциональном отношении антигены обладают двумя свойствами: 1) антигенностью, т. е. способностью индуцировать антитела, и 2) возможностью вступать с последними в определенные специфические взаимодействия, что проявляется в виде реакций иммунитета.
Слабые антигены (пыльца, домашняя пыль, шерсть животных) чаще дают аллергическую реакцию первого первого типа (атопический тип). Корпускулярные и нерастворимые антигены (бактерии, споры грибов) приводят к аллергическим реакциям замедленного типа. Растворимые аллергены (сыворотки, гамма глобулины, продукты жизни бактерий) обычно вызывают аллергическую реакцию иммуннокомплексного типа (третий тип). Иммуноциты или иммунокомпетентные клетки - это клетки, обеспечивающие защиту организма от всего генетически чу-жого: микроорганизмов, чужих или переродившихся своих клеток. К ним относят Т-и В - лимфоциты, макрофаги, тучные клетки, гранулоциты. Макрофаг, фагоцитировавший антиген, как правило, не унич-тожает его полностью, а перерабатывает и выделяет на свою поверхность. Одновременно он выделяет интерлейкин-1, которым активизирует лимфоциты и запускает иммунную реакцию. Кроме того, макрофаг секретирует бактерицидные вещества, интерферон; факторы, стимулирующие и подавляющие размножение лимфоцитов, фактор некроза опухолей и др. Интердигитирующие и дендритные клетки лимфоидных органов, М-клетки кишечника как разновидности макрофагов, выполняют антигенпредставляющие функции соответственно по отношению к Т- и В-лимфоцитам. Информацию Т-хелперам могут также передавать и В-лим-фоциты, и натуральные киллеры. Эффекторные клетки в клеточном иммунитете - Т-киллеры. Они распознают антиген при помощи своих рецепторов и прикрепляются к нему. У Т-лимфоцитов, кроме рецептора к антигену, имеется рецептор для эритроцитов (Е-рецептор), Fc-рецептор, связывающий иммунные комплексы и обеспечивающий кооперацию между Т- и В-лимфоцитами и др. В месте прикрепления к антигену киллер с помощью выделяемых веществ разрывает мембрану антигенносителя и вызывает осмотический лизис. Другой механизм уничтожения - на расстоянии, с помощью токсических веществ. Эффекторные клетки в гуморальном иммунитете - плазмоциты, которые образуются из В-лимфоцитов под влиянием стимуляции со стороны антигена и Т-хелпера. Об антигене В-лимфо-цит получает информацию от макрофага, а Т-хелпер стимулирует процесс дифференцировки с помощью медиатора интерлейкина-2.
Антигенпредставляющие клетки или антигенпрезентирующие клетки (АПК, англ. antigen-presenting cell, APC) — клетки, которые экспонируют чужеродный антиген в комплексе с молекулами главного комплекса гистосовместимости (англ. MHC) на своей поверхности. Т-лимфоциты могут распознавать такие комплексы при помощи Т-клеточных рецепторов (англ. TCR). Антигенпредставляющие клеткипроцессируют антиген и представляют его Т-клеткам. Выделяют два типа антигенпрезентирующих клеток: «профессиональные» и «непрофессиональные».
Т-клетки не способны распознавать и, соответственно, реагировать на «чистый» антиген. Только антиген, который был предварительно процессирован другими клетками и представлен ими в комплексе с молекулами главного комплекса гистосовместимости, становится «видимым» для Т-клеток.
«Профессиональные» антигенпредставляющие клетки очень эффективно захватывают антиген путём фагоцитоза или рецептор-опосредованного эндоцитоза и затем представляют фрагмент этого антигена на своей мембране в комплексе с молекулами главного комплекса гистосовместимости II класса. Т-клетки распознают этот комплекс на мембране и взаимодействуют с ним. После этого антигенпредставляющие клетки продуцируют дополнительные ко-стимуляторные молекулы, что приводит к активации Т-клетки. Экспрессия этих ко-стимуляторных молекул является характерной чертой «профессиональных» антигенпрезентирующих клеток.
Существует несколько основных типов «профессиональных» антигенпрезентирующих клеток:
дендритные клетки, которые, вероятно, являются наиболее важными антигенпредставляющими клетками. Активированные дендритные клетки являются особенно эффективными активаторами Т-хелперов, потому что на их поверхности присутствуют ко-стимуляторные молекулы, такие как белок B7.
макрофаги, которые являются CD4-положительными клетками и потому могут быть инфицированы вирусом иммунодефицита человека.
B-лимфоциты, которые несут на своей поверхности (как В-клеточный рецептор) и секретируют специфичные антитела, а также могут захватывать антиген, связавшийся с В-клеточным рецептором, процессировать его и представлять в комплексе с молекулами главного комплекса гистосовместимости II класса. По отношению к другим видам антигенов В-лимфоциты неактивны как антигенпрезентирующие клетки.
некоторые активированные эпителиальные клетки.
«Непрофессиональные» антигенпредставляющие клетки в норме не содержат молекул главного комплекса гистосовместимости II класса, а синтезируют их только в ответ на стимуляцию определёнными цитокинами, например, γ-интерфероном.
К «непрофессиональным» антигенпредставляющим клеткам относятся:
фибробласты кожи
эпителиальные клетки тимусаэпителиальные клетки щитовидной железыклетки глииβ-клетки поджелудочной железыклетки эндотелия сосудовПосле того, как антигенпредставляющая клетка фагоцитировала антиген, она, как правило, мигрирует в систему лимфатических сосудов и переносится током лимфы в ближайшийлимфатический узел. В лимфатических узлах осуществляется взаимодействие антигенпредставляющих клеток, таких как дендритные клетки, с Т-клетками. Привлечение антигенпредставляющих клеток в лимфатические узлы осуществляется за счёт хемотаксиса: клетки реагируют на присутствие хемокинов, которые могут экспрессироваться на поверхности других клеток (например, на поверхности клеток сосудов) или выделяться во внеклеточное пространство. В ходе миграции в лимфатический узел дендритные клетки созревают: они теряют способность захватывать новые патогены и приобретают свойства, которые позволяют им лучше взаимодействовать с Т-клетками. Внутриклеточные ферменты расщепляют захваченный патоген на небольшие фрагменты, содержащие эпитопы, которые затем представляются Т-клеткам в комплексе с молекулами главного комплекса гистосовместимости.
Исследования показывают, что презентируются только определённые эпитопы патогена, потому что они обладают свойством иммунодоминантности, которое, по-видимому, проявляется в их аффинности к молекулам главного комплекса гистосовместимости. Более прочное связывание позволяет комплексу оставаться стабильным достаточно долго для того, чтобы он мог быть узнан Т-клеткой.
23.Рыхлая волокнистая соединительная ткань. Клеточный состав, источники развития и обновления. Механизмы связи клеток с компонентами межклеточного вещества.
Она состоит из клеток и межклеточного вещества, которое в свою очередь состоит из волокон (коллагеновых, эластических, ретикулярных) и аморфного вещества. Морфологические особенности, отличающие рыхлую волокнистую соединительную ткань от других разновидностей соединительных тканей:
многообразие клеточных форм (9 клеточных типов);
преобладание в межклеточном веществе аморфного вещества над волокнами.
Функции рыхлой волокнистой соединительной ткани:
трофическая;
опорнаяобразует строму паренхиматозных органов;
защитная - неспецифическая и специфическая (участие в иммунных реакциях) защита;
депо воды, липидов, витаминов, гормонов;
репаративная (пластическая).
Функционально ведущими структурными компонентами рыхлой волокнистой соединительной ткани являются клетки различной морфологии и функции, которые и будут рассмотрены в первую очередь, а затем уже межклеточное вещество.
Рыхлая волокнистая Соединительная ткань располагается преимущественно по ходу кровеносных и лимфатических сосудов, нервов, покрывает мышцы, образует строму (греч. stroma - подстилка) - каркас органов, собственную пластинку слизистой оболочки, наружную оболочку внутренних органов. РВСТ состоит из многочисленных собственных и пришлых клеток:
а) Тканеобразующие клетки:
1) фибробласты – синтезируют почти все компоненты межклеточного вещества;
2) фиброциты – представляют собой дефинитивную (конечную) форму развития фибробластов.
б) Клетки крови и их производные:
1) все виды лейкоцитов – нейтрофилы, эозинофилы, базофилы, лимфоциты, моноциты; они мигрируют из крови и участвуют в защитных реакциях;
2) плазматические клетки (плазмоциты) – согласно п. 8.3.3.1, образуются при антигенной стимуляции из В-лимфоцитов и продуцируют антитела (иммуноглобулины);
3) макрофаги – как отмечалось в п. 8.3.3.2, образуются из моноцитов и осуществляют фагоцитоз, представление антигенов лимфоцитам и секрецию биологически активных веществ;
4) тканевые базофилы (тучные клетки, или лаброциты) – возможно, происходят из базофилов крови (хотя есть и другая точка зрения) и выполняют те же функции, что и базофилы.
в) Клетки, окружающие сосуды:
1) адвентициальные клетки – находятся в наружной оболочке сосудов и, будучи ма- лоспециализированными, могут превращаться в другие клетки (фибробласты, адипоциты);
2) перициты – располагаются в стенке капилляров и венул.
г) Клетки со специальными функциями:
1) адипоциты (жировые клетки),
2) меланоциты, или пигментоциты, – содержат в мембранных гранулах цитоплазмы пигмент меланин.
2. Межклеточное вещество. Несмотря на столь богатое представительство клеток, в рассматриваемой ткани хорошо развито межклеточное вещество, а в нем, как отмечалось выше (п. 9.1.2.1), преобладает аморфный компонент. Имеются, помимо того, коллагеновые и эластические волокна, которые (как тоже уже отмечалось) располагаются рыхло и идут в разных направлениях, чем обусловлено полное название ткани (рыхлая неоформленная волокнистая соединительная ткань).
Источник развития, так же как у всех ТВС, — мезенхима
24. Дифферон фибробластов. Световая и электронная микроскопия. Функции фибробластов.
Фибробласты - это клетки-продуценты межклеточного вещества. Именно они синтезируют как волокнистые структуры, так и основные компоненты аморфного вещества. В определенном смысле фибробласты строят соединительную ткань. По их свойством образовывать основные опорные структуры организма фибробласты часто называют механоцитамы. О способности создавать волокна свидетельствует их название ("фибра" - волокно и "бластос" - зачаток). Деятельностью этих клеток обусловлено заживления ран, развитие рубца, образование капсулы вокруг инородного тела и т.п.. К фибробластов принадлежит многочисленная группа клеток, различных по степени дифференциации, образующих так называемый фибробластических ряд (или диферон): стволовые клетки - полустволовые клетки-предшественники - малоспециализовани фибробласты - зрелые фибробласты - фиброциты. Кроме того, к этому же ряду относятся миофибробласты.Малоспециализовани, или юные, фибробласты округлой или веретенообразной формы с базофильной цитоплазмой содержат большое количество свободных рибосом. Другие органеллы (эндоплазматическая сеть, митохондрии, комплекс Гольджи) развиты слабо. Эти клетки способны к митотического деления. Низкий уровень синтеза и секреции белка. Размеры их не превышают 20-25 мкм.Зрелые фибробласты - крупные клетки с отростками. На препарате-пленке в распластанном виде они могут достигать 40-50 мкм и более, толщина их невелика. Ядро этих клеток большое, овальное, светлое, содержит мелкораспыленной равномерно распределен хроматин, на фоне которого хорошо видно 1-2 крупных ядрышка. Цитоплазма окрашивается базофильно. На пленочном препарате можно видеть распределение клеточного тела фибробласта на две зоны - центральную ендоплазму, окрашиваемой интенсивнее, и периферическую эктоплазмы, окраска которого значительно слабее, она не имеет четких границ и сливается с прилегающей межклеточным веществом.Цитоплазма фибробласта содержит все общие органеллы. Особенно хорошо развита гранулярная эндоплазматическая сеть, которая занимает до 35% объема клетки, здесь происходит синтез проколлагена, эластина. Хорошо развит также и комплекс Гольджи, который занимает около 10% объема клетки, имеет вид цистерн и пузырьков, разбросанных по всей клетке, здесь синтезируются гликозаминогликаны. Последние, как и фибриллярные белки, выводятся в межклеточное пространство и включаются в состав волокон и аморфного вещества. Фибробласты также синтезируют фибриллярный гликопротеин внеклеточного матрикса - фибронектин, который обеспечивает связывание клеток с их микроокружения и регулирует передвижение. Митохондрии большие, количество их умеренная, как и лизосом.В периферийном слое цитоплазмы расположены микрофиламенты толщиной 5-6 нм, содержащие сократительные белки типа актина и миозина и обуславливают способность этих клеток к движению. Считают, что среди фибробластов существуют две популяции: с коротким жизненным циклом (несколько недель) и с длинным жизненным циклом (несколько месяцев).
Фибробласты — основной тип клеток дермы. Термин «фибробласт» обычно применяют к клеткам, активно продуцирующим компоненты межклеточного вещества. Морфологически они характеризуются круглой или удлиненной, веретенообразной плоской формой с отростками и плоским овальным ядром. Популяция фибробластов неоднородна и включает малодифференцированные, дифференцированные фиброциты, фиброкласты и миофибробласты. Кроме этих клеток, в дифферон (совокупность всех клеток одной линии дифференцировки от стволовой до конечной) фибробластов включаются стволовые клетки и полустволовые клетки предшественники. Источником развития всех клеток фибропластического ряда считают адвентициальные клетки, сопровождающие микрососуды.
25. Макрофаги (гистиоциты). Световая и электронная микроскопия. Роль макрофагов в иммунных реакциях организма.
Гистиоциты-макрофаги. Они составляют 10-20% от всего клеточного состава рыхлой соединительной ткани. Размер клеток — 12-25 мкм. Макрофаги, находящиеся в спокойном состоянии, называют гистиоцитами, оседлыми макрофагами или блуждающими клетками в покое (рис.51). Подвижные макрофаги, не имеющие определенной локализации в ткани, называют свободными макрофагами. Ядро макрофагов — темное, округлое, содержит крупные глыбки хроматина. Цитоплазма макрофагов четко контурирована. В ней содержатся большое количество вакуолей — фагосом и лизосом, комплекс Гольджи, многочисленные пиноцитозные пузырьки. Остальные органеллы развиты умеренно. Хорошо развитая опорно-двигательная система способствует миграции клеток и фагоцитозу инородних частиц.
По характеру и количеству ультраструктур выделяются макрофаги секреторного и фагоцитарного видов. У первых в цитоплазме преобладают секреторные вакуоли, у вторых — лизосомальный аппарат. Источником образования макрофагов являются моноциты крови. Особая разновидность макрофагов принимает участие в качестве антигенпредставляющей клетки и тем самым являются участниками кооперации Т- и В-лимфоцитов при иммунном ответе на чужеродные вещества. Макрофаги нейтрализуют токсины, могут накапливать витальные красители при введении их в кровь. Они проявляют антибактериальные свойства, выделяя лизоцим, кислые гидролазы, лактоферрин и др., обладают антиопухолевой активностью, выделяя фактор некроза опухолей. Факторы роста макрофагов влияют на пролиферацию эпителиальных клеток, пролиферацию и дифференцировку фибробластов, новообразование кровеносных сосудов и др.
Способность к фагоцитозу является общебиологическим свойством многих тканевых клеток. Однако только те клетки, которые способны захватывать и ферментативно перерабатывать в своей цитоплазме бактерии, инородние частицы, токсины и др., следует относить к макрофагической системе организма. Учение о макрофагической системе заложил И.И. Мечников (1882), который в экспериментах на беспозвоночных обнаружил подвижные клетки, накапливающиеся около инороднего тела. Именно эти клетки были названы макрофагами. Кроме макрофагов-гистиоцитов в состав макрофагической системы организма входят макрофаги печени (звездчатые макрофагоциты, остеокласты, глиальные макрофаги, макрофаги кроветворных органов, макрофаги легкого и др.). Регуляция макрофагической системы осуществляется как местными так и центральными (нервная и эндокринная системы) механизмами.
26. Уровни структурной организации коллагеновых и эластических волокон. Типы коллагена, зоны локализации в организме.
Коллагеновые волокна (3 на рис. 9.1) на снимке рыхлой соединительной ткани выглядят как широкие неветвящиеся тяжи. Они образованы фибриллярным белком коллагеном.
В организации коллагеновых волокон различают 5 уровней:
1) молекулы тропоколлагена (1), диаметр – 1,4 нм, длина – 280 нм; Первый (полипептидный) уровень представлен полипептидными цепочками, состоящих из трех аминокислот: пролина, глицина, лизина.
2) протофибриллы (2), диаметр – 5-10 нм; Второй (молекулярный) уровень представлен молекулой белка коллагена (длина 280 нм, ширина 1,4 нм), состоящей из трех полипептидных цепочек, закрученных в спираль.
3) фибриллы (3), диаметр – 50-100 нм; Третий уровень - протофибриллы (толщиной до 10 нм), состоящие из нескольких продольно расположенных молекул коллагена, соединенных между собой водородными связями.
4) волокна (4), диаметр – 1-3 мкм. Четвертый уровень - микрофибриллы (толщиной от 11-12 нм и более), состоящие из 5-6 протофибрилл, связанных боковыми цепями.
5) Пятый уровень - фибрилла или коллагеновое волокно (толщина 1-10 мкм), состоящие из нескольких микрофибрилл (в зависимости от толщины), связанных гликозоаминогликанами и протеогликанами. Коллагеновые волокна имеют поперечную исчерченность, обусловленную как расположением цепей в молекуле коллагена, так и расположением аминокислот в полипептидных цепях. Коллагеновые волокна с помощью углеводных компонентов соединяются в пучки толщиной до 150 нм.
1. Молекулярный уровеньа) Аминокислотный состав. Молекула тропоколлагена имеет палочковидную форму и включает три полипептидные цепи. Эти цепи содержат примерно по 1000 аминокислотных остатков и закручены друг относительно друга в протяженную спираль.
I. В каждой цепи высоко содержание трех аминокислотных остатков – глицина (33 %), пролина и лизина. Таким образом, каждый третий остаток – глицин, не имеющий бокового радикала. Именно это позволяет образовываться тройной спирали.
II. Остатки же пролина и лизина в новосинтезированных цепях коллагена сразу (еще внутри клеток) окисляются в гидроксипролин и гидроксилизин. Последние, во-первых, способны к образованию водородных связей, с помощью которых молекулы тропоколлагена объединяются в структуры более высокого порядка. Во-вторых, к гидроксипролину и гидроксилизину присоединяются боковые олигосахаридные цепи, составляющие углеводный компонент коллагена и значительно повышающие его гидрофильность.
б) Типы коллагена. В остальном аминокислотный и углеводный состав коллагена несколько различается в зависимости от локализации соединительной ткани. По этому признаку выделяют до 30 типов коллагена. Так,
– коллаген I типа содержится в рыхлой соединительной ткани различных органов, а также в других видах соединительной ткани кожи, сухожилий, костей;
– коллаген II типа – в двух видах хрящевой ткани;
– коллаген III типа – в ветвящихся ретикулярных волокнах (разновидности коллагеновых), в крупных кровеносных сосудах;
– коллагены IV и V типов – в базальных мембранах (и т. д.).
2-4. Высшие уровниа) Итак, молекулы тропоколлагена последовательно формируют структуры следующих трех уровней – протофибриллы, фибриллы и волокна.
В скреплении элементов данных структур участвуют,
– во-первых, определенные аминокислотные остатки коллагена (образуют водородные и ковалентные связи между соседними молекулами);
– во-вторых, олигосахаридные цепи, находящиеся в составе коллагена,
– и, в-третьих (на уровне фибрилл и волокон), некоторые протеогликаны и гликопротеины аморфного вещества.
б) Поперечная исчерченность. При этом фибриллы имеют поперечную исчерченность, которая выявляется при электронной микроскопии (рис. 9.3). Исчерченность обусловлена особым способом упаковки молекул тропоколлагена: между следующими друг за другом молекулами имеются промежутки, а соседние ряды молекул сдвинуты друг относительно друга по длине.
На уровне целых волокон поперечная исчерченность уже не наблюдается.
в) Физические свойства. Коллагеновые волокна имеют малую растяжимость и большую прочность на разрыв.
Кроме того, они отличаются (преимущественно за счет углеводного компонента) высокой способностью к набуханию – поглощению воды со значительным увеличением объема.

Различают более 20 типов коллагена, отличающихся молекулярной организацией, органной и тканевой принадлежностью. Например:
коллаген I типа встречается главным образом в соединительной ткани кожи, сухожилиях, костях, роговице глаза, склере, стенке артерий и др.;
коллаген II типа входит в состав гиалиновых и фиброзных хрящей, стекловидного тела и роговицы глаза;
коллаген III типа находится в дерме кожи плода, в стенках крупных кровеносных сосудов, а также в ретикулярных волокнах (например, органов кроветворения);
коллаген IV типа — встречается в базальных мембранах, капсуле хрусталика (в отличие от других типов коллагена он содержит гораздо больше боковых углеводных цепей, а также гидрооксилизина и гидрооксипролина);
V тип коллагена присутствует в хорионе, амнионе, эндомизии, перимизии,коже, а также вокруг клеток (фибробластов, эндотелиальных, гладкомышечных), синтезирующих коллаген.
Эластические волокна
Наличие эластических волокон в соединительной ткани определяет ее эластичность и растяжимость. По прочности эластические волокна уступают коллагеновым. Форма поперечного разреза волокон округлая и уплощенная. В рыхлой волокнистой соединительной ткани эластические волокна широко анастомозируют друг с другом. Толщина эластических волокон обычно меньше коллагеновых (0,2—1 мкм), но может достигать нескольких микрометров (например, в выйной связке). В составе эластических волокон различают микрофибриллярный и аморфный компоненты.
Основой эластических волокон является глобулярный гликопротеин —эластин, синтезируемый фибробластами и гладкими мышечными клетками. Для эластина характерно наличие двух производных аминокислот — десмозина и изодесмозина, которые участвуют в стабилизации молекулярной структуры эластина и придании ему способности к растяжению, эластичности.
Глобулярный белок эластин составляет первый, молекулярный, уровень организации эластического волокна.
Молекулы эластина вне клетки соединяются в цепочки — эластиновые протофибриллы - второй, надмолекулярный, уровень организации эластического волокна. Эластиновые протофибриллы в сочетании с гликопротеином (фибриллином) образуют микрофибриллы.
Четвертый уровень организации эластического волокна — волоконный. Зрелые эластические волокна содержат около 90 % аморфного компонента эластических белков (эластина) в центре, а по периферии — микрофибриллы.
Кроме зрелых эластических волокон, различают элауниновые иокситалановые волокна. В элауниновых волокнах соотношение микрофибрилл и аморфного компонента примерно равное, а окситалановые волокна состоят только из микрофибрилл.
Коллагеновые и эластические волокна в соединительной ткани образуют волокнистый остов с ориентированным, неориентированным и смешанным типами расположения волокон. Ориентированный (или оформленный) тип характеризуется параллельным расположением основной массы волокнистых структур (например, в сухожилиях, связках, фасциях). Неориентированный (или неоформленный) тип построен из волокон, не имеющих преимущественной ориентации (как например, дерма кожи). Смешанный тип волокнистого остова, как правило, имеет слоистое строение с чередованием направлений расположения волокнистых элементов.
27. Плотная волокнистая соединительная ткань , ее разновидности и функции . Строение сухожилия.
Плотная волокнистая соединительная ткань
Плотные волокнистые соединительные ткани (textus connectivus collagenosus compactus) характеризуются относительно большим количеством плотно расположенных волокон и незначительным количеством клеточных элементов и основного аморфного вещества между ними. В зависимости от характера расположения волокнистых структур эта ткань подразделяется на плотную неоформленную и плотную оформленную соединительную ткань.
Плотная неоформленная соединительная ткань характеризуется неупорядоченным расположением волокон (как, например, в нижних слоях кожи).
В плотной оформленной соединительной ткани расположение волокон строго упорядочено и в каждом случае соответствует тем условиям, в каких функционирует данный орган. Оформленная волокнистая соединительная ткань встречается в сухожилиях и связках, в фиброзных мембранах.
Сухожилие (tendo)
Сухожилие состоит из толстых, плотно лежащих параллельных пучков коллагеновых волокон. Между этими пучками располагаются фиброциты и небольшое количество фибробластов и основного аморфного вещества. Тонкие пластинчатые отростки фиброцитов входят в промежутки между пучками волокон и тесно соприкасаются с ними. Фиброциты сухожильных пучков называются сухожильными клетками - тендиноцитами.
Каждый пучок коллагеновых волокон, отделенный от соседнего слоем фиброцитов, называется пучком первого порядка. Несколько пучков первого порядка, окруженных тонкими прослойками рыхлой волокнистой соединительной ткани, составляют пучки второго порядка. Прослойки рыхлой волокнистой соединительной ткани, разделяющие пучки второго порядка, называются эндотенонием. Из пучков второго порядка слагаются пучки третьего порядка, разделенные более толстыми прослойками рыхлой соединительной ткани — перитенонием. Иногда пучком третьего порядка является само сухожилие. В крупных сухожилиях могут быть и пучки четвертого порядка.
В перитенонии и эндотенонии проходят кровеносные сосуды, питающие сухожилие, нервы и проприоцептивные нервные окончания, посылающие в центральную нервную систему сигналы о состоянии натяжения ткани сухожилий.
Некоторые сухожилия в местах прикрепления к костям заключены во влагалища, построенные из двух волокнистых соединительнотканных оболочек, между которыми находится жидкость (смазка), богатая гиалуроновой кислотой.
Фиброзные мембраны
К этой разновидности плотной волокнистой соединительной ткани относят фасции, апоневрозы, сухожильные центры диафрагмы, капсулы некоторых органов, твердую мозговую оболочку, склеру, надхрящницу, надкостницу, а также белочную оболочку яичника и яичка и др. Фиброзные мембраны трудно растяжимы вследствие того, что пучки коллагеновых волокон и лежащие между ними фибробласты и фиброциты располагаются в определенном порядке в несколько слоев друг над другом. В каждом слое волнообразно изогнутые пучки коллагеновых волокон идут параллельно друг другу в одном направлении, не совпадающем с направлением в соседних слоях. Отдельные пучки волокон переходят из одного слоя в другой, связывая их между собой. Кроме пучков коллагеновых волокон, в фиброзных мембранах есть эластические волокна.
Такие фиброзные структуры, как надкостница, склера, белочная оболочка яичка, капсулы суставов и др., характеризуются менее правильным расположением пучков коллагеновых волокон и большим количеством эластических волокон по сравнению с апоневрозами.

28. Хрящевая ткань. Классификация хрящевых тканей. Дифферон хрящевой ткани. Строение и функции надхрящницы. Зональность строения хряща (на примере гиалиновой хрящевой ткани ).
Хрящевая ткань - специализированный вид соединительной ткани, выполняющий опорную функцию. В эмбриогенезе она развивается из мезенхимы и формирует скелет зародыша, который в последующем в большей части замещается костью. Хрящевая ткань, за исключением суставных поверхностей, покрыта плотной соединительной тканью - надхрящницей, содержащей сосуды, питающие хрящ и его камбиальные клетки.
Хрящ состоит из клеток - хондроцитов и межклеточного вещества. В соответствии с характеристикой хондроцитов и особенно межклеточного вещества различают три вида хрящей: гиалиновый, эластический и волокнистый. По классификации выделяют три разновидности хрящевой ткани — гиалиновую(в состав ребер, грудины, покрывает суставные поверхности костей, образует хрящевой скелет воздухоносных путей: носа, гортани, трахеи, бронхов.), эластическую(ушной раковины и хрящевой части наружного слухового прохода;хрящей наружного носа;мелких хрящей гортани и средних бронхов;а также составляет основу надгортанника) и волокнистую(составляет часть межпозвоночных дисков (фиброзное кольцо)также локализуется в местах прикрепления связок и сухожилий к гиалиновым хрящам)
Развитие хрящевой ткани осуществляется как у эмбриона, так и в постэмбриональном периоде при регенерации. В процессе развития хрящевой ткани из мезенхимы образуется хрящевой дифферон:
стволовые клетки,
полустволовые (прехондробласты),
хондробласты (хондробластоциты),
хондроциты.
Хондробласты (от греч. chondros — хрящ, blastos — зачаток) — это молодые уплощенные клетки, способные к пролиферации и синтезу межклеточного вещества хряща (протеогликанов). Они являются разновидностями фибробластов, потомками стволовых и полустволовых клеток. Цитоплазма хондробластов имеет хорошо развитую гранулярную и агранулярную эндоплазматическую сеть, аппарат Гольджи. При окрашивании цитоплазма хондробластов оказывается базофильной в связи с богатым содержанием РНК. При участии хондробластов происходит периферический (аппозиционный) рост хряща. Эти клетки в процесссе развития хряща превращаются в хондроциты.
Хондроциты — основной вид клеток хрящевой ткани. Они бывают овальными, округлыми или полигональной формы — в зависимости от степени дифференцировки. Расположены хондроциты в особых полостях (лакунах) в межклеточном веществе поодиночке или группами. Группы клеток, лежащие в общей полости, называютсяизогенными (от греч. isos — равный, genesis — развитие). Они образуются путем деления одной клетки. В изогенных группах различают три типа хондроцитов.
Первый тип хондроцитов характеризуется высоким ядерно-цитоплазматическим отношением. Они часто делятся, т.е. являются источником репродукции изогенных групп клеток. Хондроциты I типа преобладают в молодом, развивающемся хряще.
Хондроциты II типа отличаются снижением ядерно-цитоплазматического отношения. Они обеспечивают образование и секрецию гликозаминогликанов и протеогликанов в межклеточное вещество.
Хондроциты III типа отличаются самым низким ядерно-цитоплазматическим отношением, сильным развитием и упорядоченным расположением гранулярной эндоплазматической сети. Эти клетки сохраняют способность к образованию и секреции белка (коллагена), но в них снижается синтез гликозаминогликанов.
Надхрящница (перихондрий) — плотная васкуляризированная соединительнотканная оболочка, покрывающая хрящ растущей кости, рёберный гиалиновый хрящ, хрящи гортани и т.д. Суставной хрящ лишён надхрящницы. Надхрящница служит для роста и репарации хрящевой ткани. Состоит из двух слоёв — наружного (фиброзного) и внутреннего (хондрогенного, камбиального). Фиброзный слой содержит фибробласты, продуцирующие коллагеновые волокна, и без резких границ переходит в окружающую соединительную ткань. Хондрогенный слой содержит незрелые хондрогенные клетки и хондробласты. В процессе окостенения надхрящница преобразуется в надкостницу.
Гиалиновая хрящевая ткань
Гиалиновая хрящевая ткань (textus cartilaginous hyalinus), называемая еще стекловидной (от греч. hyalos — стекло) — в связи с ее прозрачностью и голубовато-белым цветом, является наиболее распространенной разновидностью хрящевой ткани. Во взрослом организме гиалиновая ткань встречается на суставных поверхностях костей, в местах соединения ребер с грудиной, в гортани и воздухоносных путях.
Большая часть встречающейся в организме у человека гиалиновой хрящевой ткани покрыта надхрящницей (perichondrium) и представляет собой вместе с пластинкой хрящевой ткани анатомические образования — хрящи.
В надхрящнице выделяют два слоя: наружный, состоящий из волокнистой соединительной ткани с кровеносными сосудами; и внутренний, преимущественно клеточный, содержащий хондробласты и их предшественники — прехондробласты. Под надхрящницей в поверхностном слое хряща располагаются молодые хондроциты веретенообразной уплощенной формы. В более глубоких слоях хрящевые клетки приобретают овальную или округлую форму. В связи с тем что синтетические и секреторные процессы у этих клеток ослабляются, они после деления далеко не расходятся, а лежат компактно, образуя изогенные группы от 2 до 4 (реже до 6) хондроцитов.
Более дифференцированные хрящевые клетки и изогенные группы, кроме оксифильного перицеллюлярного слоя, имеют базофильную зону межклеточного вещества. Эти свойства объясняются неравномерным распределением химических компонентов межклеточного вещества — белков и гликозаминогликанов.
(Распределение белков и гликозаминогликанов межклеточного вещества неравномерное. Из-за этого в нем выделяют территориальный матрикс – непосредственно окружающий лакуны, а также межтерриториальный матрикс – весь остальной объем межклеточного вещества.)
В гиалиновом хряще любой локализации принято различать территориальные участки межклеточного вещества, или матрикса. К территориальному участку относится матрикс, непосредственно окружающий хрящевые клетки или их группы. Здесь коллагеновые волокна II типа и фибриллы, извиваясь, окружают изогенные группы хрящевых клеток, предохраняя их от механического давления. В межтерриториальном матриксе коллагеновые волокна ориентированы в направлении вектора действия сил основных нагрузок. Пространство между коллагеновыми структурами заполнено протеогликанами.
В структурной организации межклеточного вещества хряща большую роль играет хондронектин. Этот гликопротеин соединяет клетки между собой и с различными субстратами (коллагеном, гликозаминогликанами).
Опорная биомеханическая функция хрящевых тканей при сжатии-растяжении обеспечивается не только строением ее волокнистого каркаса, но и наличием гидрофильных протеогликанов с высоким уровнем гидратации (65—85%). Высокая гидрофильность межклеточного вещества способствует диффузии питательных веществ, солей. Газы и многие метаболиты также свободно диффундируют через него. Однако крупные белковые молекулы, обладающие антигенными свойствами, не проходят. Этим объясняется успешная трансплантация участков хряща в клинике. Метаболизм хондроцитов преимущественно анаэробный, гликолитический.
Структурной особенностью гиалинового хряща суставной поверхности является отсутствие надхрящницы на поверхности, обращенной в полость сустава. Суставной хрящ состоит из трех нечетко очерченных зон: поверхностной, промежуточной и базальной.
В поверхностной зоне суставного хряща располагаются мелкие уплощенные малоспециализированные хондроциты, напоминающие по строению фиброциты.
В промежуточной зоне клетки более крупные, округлой формы, метаболически активные.
Глубокая (базальная) зона делится базофильной линией на некальцинирующийся и кальцинирующийся слои. В последний из подлежащей субхондральной кости проникают кровеносные сосуды и могут происходить процессы обызвествления хряща.
Особенностью межклеточного вещества глубокой зоны суставного хряща является содержание в нем матриксных везикул — мембранных структур диаметром от 30 нм до 1 мкм, которые являются локусами инициальной минерализации скелетных тканей (помимо хряща, они обнаруживаются в костной ткани и предентине). Мембранные структуры образуются путем выбухания участка плазмолеммы хондроцита (соответственно остеобласта в костной ткани и одонтобласта в предентине) с последующим отпочковыванием от поверхности клетки и локализованным распределением в зонах минерализации. Они также могут являться продуктом полной дезинтеграции клеток.
Питание суставного хряща лишь частично осуществляется из сосудов глубокой зоны, а в основном происходит за счет диффузии из синовиальной жидкости полости сустава.
29. Гистогенез хрящевых тканей . Механизм интерстициального и аппозиционного
Гистогенез хрящевой ткани. В процессе эмбрионального развития зародыша мезенхима, интенсивно развиваясь, образует островки плотно прилегающих друг к другу клеток протохондральной (предхрящевой) ткани (рис. 115). Ее клетки характеризуются высокими значениями ядерно-цитоплазматических отношений, мелкими, плотными митохондриями, обилием свободных рибосом и слабым развитием гранулярной эндоплазматической сети. Комплекс Гольджи: в клетках протохондральной ткани рассредоточен в виде небольших цистерн и пузырьков (рис. 116). По мере дифференцировки хондробластов они включаются в процессы синтеза макромолекулярных соединений межклеточного вещества развивающегося хряща, соответственно изменяется их синтетический и секреторный аппарат. Увеличивается объем цитоплазмы и соответственно уменьшается показатель ядерно-цитоплазматических отношений. Возрастает количество цистерн гранулярной андоплазматической сети. Комплекс Гольджи сосредоточивается вокруг ядра и расширяются его размеры. Увеличивается объем митохондрий преимущественно за счет возрастания массы их матрикса. Наблюдается выведение в окружающее межклеточное вещество содержимого вакуолей клеток. В межклеточное вещество секретируют тропоколлаген и неколлагеновые белки, а затем гликозаминогликаны и протеогликаны. Формируется первичная хрящевая (прехондральная) ткань.
Дифференцированный хондробласт морфологически характеризуется хорошо развитой гранулярной эндонлазматической сетью и обширным комплексом Гольджи. В цитоплазме клеток много включений гликогена. Увеличение массы хрящевого зачатка в процессе эмбриогенеза идет как за счет увеличения количества межклеточного вещества, так и за счет размножения хондробластов.
По мере накопления межклеточного вещества клетки развивающегося хряща изолируются в отдельных полостях (лакунах) и дифференцируются в зрелые хрящевые клетки - хондроциты.
Дальнейший рост хрящевой ткани обеспечивается продолжающимся делением хондроцитов и формированием между дочерними клетками межклеточного вещества. В более поздних стадиях развития ткани образование межклеточного вещества замедляется. Дочерние клетки, оставаясь в одной лакуне или отделяясь друг от друга лишь тонкими перегородками основного вещества, образуют характерные для зрелого хряща изогенные группы клеток (от isos - равный, одинаковый, genesis - происхождение). В дальнейшем рост хрящевой ткани обеспечивается как увеличением ее массы размножением клеток хрящевой закладки и соответственно формированием межклеточного вещества - ее интерстициальным ростом, так и продолжающимся развитием хряща за счет внутреннего - камбиального слоя надхрящницы, клетки которой, размножаясь и дифференцируясь в хондроциты, обусловливают аппозиционный рост ткани.
По мере дифференцировки хрящевой ткани интенсивность размножения клеток падает, ядра пикнотизируются, ядрышковый аппарат редуцируется.
По периферии хрящевой закладки, на границе с мезенхимой, формируется надхрящница — оболочка, покрывающая развивающийся хрящ снаружи. Во внутренней зоне надхрящницы клетки интенсивно делятся, дифференцируются в хондробласты. В процессе секреции и наслаивания на уже имеющийся хрящ сами клетки «замуровываются» в продукты своей деятельности. Так происходит рост хряща способом наложения, или его аппозиционный (периферический) рост.Хрящевые клетки, лежащие в центре молодого развивающегося хряща, сохраняют способность в течение некоторого времени делиться митотически, оставаясь в одной лакуне (изогенные группы клеток), и вырабатывать коллаген II типа. За счет увеличения количества этих клеток происходит увеличение массы хряща изнутри, что называется интерстициальным ростом. Интерстициальный рост наблюдается в эмбриогенезе, а также при регенерации хрящевой ткани.
30.Костные ткани. Классификация. Матрикс костной ткани. Органический и минеральный компоненты. Диффероны костной ткани . (СМ и ЭМ). Особенности минерализации и резорбции костной ткани.
Костные ткани (textus ossei) — это специализированный тип соединительной ткани свысокой минерализацией межклеточного органического вещества, содержащего около 70% неорганических соединений, главным образом фосфатов кальция. В костной ткани обнаружено более 30 микроэлементов (медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме.
Органическое вещество — матрикс костной ткани — представлено в основном белками коллагенового типа и липидами. По сравнению с хрящевой тканью в нем содержится относительно небольшое количество воды, хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием, импрегнирующим органическую матрицу кости.
Таким образом, твердое межклеточное вещество костной ткани (в сравнении с хрящевой тканью) придает костям более высокую прочность, и в тоже время – хрупкость. Органические и неорганические компоненты в сочетании друг с другом определяют механические свойства костной ткани — способность сопротивляться растяжению и сжатию.
Несмотря на высокую степень минерализации, в костных тканях происходят постоянное обновление входящих в их состав веществ, постоянное разрушение и созидание, адаптивные перестройки к изменяющимся условиям функционирования. Морфофункциональные свойства костной ткани меняются в зависимости от возраста, физических нагрузок, условий питания, а также под влиянием деятельности желез внутренней секреции, иннервации и других факторов.
Классификация
Существует два основных типа костной ткани:
ретикулофиброзная (грубоволокнистая),
пластинчатая.
Эти разновидности костной ткани различаются по структурным и физическим свойствам, которые обусловлены главным образом строением межклеточного вещества. В грубоволокнистой ткани коллагеновые волокна образуют толстые пучки, идущие в разных направлениях, а в пластинчатой ткани костное вещество (клетки, волокна, матрикс) образуют системы пластинок.
К костной ткани относятся также дентин и цемент зуба, имеющие сходство с костной тканью по высокой степени минерализации межклеточного вещества и опорной, механической функции.
Клетки костной ткани: остеобласты, остеоциты и остеокласты. Все они развиваются из мезенхимы, как и клетки хрящевой ткани. Точнее – из мезенхимных клеток склеротома мезодермы. Однако остеобласты и остеоциты связаны в своём диффероне так же, как фибробласты и фиброциты (или хондробласты и ходроциты). А остеокласты имеют иное, - гематогенное происхождение.
Костный дифферон и остеогистогенез
Развитие костной ткани у эмбриона осуществляется двумя способами:
1) непосредственно из мезенхимы, - прямой остеогенез;
2) из мезенхимы на месте ранее развившейся хрящевой модели кости, - это непрямой остеогенез.
Постэмбриональное развитие костной ткани происходит при ее физиологической и репаративной регенерации.
В процессе развития костной ткани образуется костный дифферон:
стволовые клетки,
полустволовые клетки (преостеобласты),
остеобласты (разновидность фибробластов),
остеоциты.
Вторым структурным элементом являются остеокласты (разновидность макрофагов), развивающиеся из стволовых клеток крови.
Стволовые и полустволовые остеогенные клетки морфологически не идентифицируются.
Остеобласты (от греч. osteon — кость, blastos — зачаток), — это молодые клетки, создающие костную ткань. В кости они встречаются только в надкостнице. Они способны к пролиферации. В образующейся кости остеобласты покрывают почти непрерывным слоем всю поверхность развивающейся костной балки.
Форма остеобластов бывает различной: кубической, пирамидальной или угловатой. Размер их тела около 15—20 мкм. Ядро округлой или овальной формы, часто располагается эксцентрично, содержит одно или несколько ядрышек. В цитоплазме остеобластов хорошо развиты гранулярная эндоплазматическая сеть, митохондрии и аппарат Гольджи. В ней выявляются в значительных количествах РНК и высокая активность щелочной фосфатазы.
Остеоциты (от греч. osteon — кость, cytus — клетка) — это преобладающие по количеству зрелые (дефинитивные) клетки костной ткани, утратившие способность к делению. Они имеют отростчатую форму , компактное, относительно крупное ядро и слабобазофильную цитоплазму. Органеллы развиты слабо. Наличие центриолей в остеоцитах не установлено.
Костные клетки лежат в костных лакунах, которые повторяют контуры остеоцита.Длина полостей колеблется от 22 до 55 мкм, ширина — от 6 до 14 мкм. Канальцы костных лакун заполнены тканевой жидкостью, анастомозируют между собой и с периваскулярными пространствами сосудов, заходящих внутрь кости. Обмен веществ между остеоцитами и кровью осуществляется через тканевую жидкость этих канальцев.
Остеокласты (от греч. osteon — кость и clastos — раздробленный), - это клетки гематогенной природы, способные разрушать обызвествленный хрящ и кость. Диаметр их достигает 90 мкм и более, и они содержат от 3 до нескольких десятков ядер. Цитоплазма слабобазофильна, иногда оксифильна. Остеокласты располагаются обычно на поверхности костных перекладин. Та сторона остеокласта, которая прилежит к разрушаемой поверхности, богата цитоплазматическими выростами (гофрированная каемка); она является областью синтеза и секреции гидролитических ферментов. По периферии остеокласта находится зона плотного прилегания клетки к костной поверхности, которая как бы герметизирует область действия ферментов. Эта зона цитоплазмы светлая, содержит мало органелл, за исключением микрофиламентов, состоящих из актина.
Периферический слой цитоплазмы над гофрированным краем содержит многочисленные мелкие пузырьки и более крупные — вакуоли.
Полагают, что остеокласты выделяют СО2 в окружающую среду, а ферменткарбоангидраза способствует образованию угольной кислоты (Н2СО3) и растворению кальциевых соединений. Остеокласт богат митохондриями и лизосомами, ферменты которых (коллагеназа и другие протеазы) расщепляют коллаген и протеогликаны матрикса костной ткани.
Считается, что один остеокласт может разрушить столько кости, сколько создают 100 остеобластов за это же время. Функции остеобластов и остеокластов взаимосвязаны и регулируются гормонами, простагландинами, функциональной нагрузкой, витаминами и др.
Межклеточное вещество (substantia intercellularis) состоит из основного аморфного вещества, импрегнированного неорганическими солями, в котором располагаются коллагеновые волокна, образующие небольшие пучки. Они содержат в основном белок — коллаген I и V типов. Волокна могут иметь беспорядочное направление - в ретикулофиброзной костной ткани, или строго ориентированное направление - в пластинчатой костной ткани.
В основном веществе костной ткани, по сравнению с хрящевой, содержится относительно небольшое количество хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием, импрегнирующим органическую матрицу кости. Кроме коллагенового белка, в основном веществе костной ткани обнаруживают неколлагеновые белки (остеокальцин, сиалопротеин, остеонектин, различные фосфопротеины, протеолипиды, принимающие участие в процессах минерализации), а также гликозаминогликаны. Основное вещество кости содержит кристаллы гидроксиапатита, упорядоченно расположенные по отношению к фибриллам органической матрицы кости, а также аморфный фосфат кальция. В костной ткани обнаружено более 30 микроэлементов (медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме. Систематическое увеличение физической нагрузки приводит к нарастанию костной массы от 10 до 50% вследствие высокой минерализации.
31. Строение кости как органа . Компактное и губчатое вещество. Системы костных пластинок . Строение и функции надкостницы . Эндост. Возрастные изменения и регенерация костной ткани.
Гистологическое строение трубчатой кости как органа
Трубчатая кость как орган в основном построена из пластинчатой костной ткани, кроме бугорков. Снаружи кость покрыта надкостницей, за исключением суставных поверхностей эпифизов, покрытых гиалиновым хрящем.
Надкостница, или периост (periosteum). В надкостнице различают два слоя: наружный (волокнистый) и внутренний (клеточный). Наружный слой образован в основном волокнистой соединительной тканью. Внутренний слой содержит остеогенные камбиальные клетки, преостеобласты и остеобласты различной степени дифференцировки. Камбиальные клетки веретеновидной формы имеют небольшой объем цитоплазмы и умеренно развитый синтетический аппарат. Преостеобласты — энергично пролиферирующие клетки овальной формы, способные синтезировать мукополисахариды. Остеобласты характеризуются сильно развитым белоксинтезирующим (коллаген) аппаратом. Через надкостницу проходят питающие кость сосуды и нервы.
Надкостница связывает кость с окружающими тканями и принимает участие в ее трофике, развитии, росте и регенерации.
Строение диафиза
Компактное вещество, образующее диафиз кости, состоит из костных пластинок, [толщина которых колеблется от 4 до 12— 15 мкм]. Костные пластинки располагаются в определенном порядке, образуя сложные образования – остеоны, или гаверсовы системы. В диафизе различают три слоя:
наружный слой общих пластинок,
средний, остеонный слой, и
внутренний слой общих пластинок.
Наружные общие (генеральные) пластинки не образуют полных колец вокруг диафиза кости, перекрываются на поверхности следующими слоями пластинок. Внутренние общие пластинки хорошо развиты только там, где компактное вещество кости непосредственно граничит с костномозговой полостью. В тех же местах, где компактное вещество переходит в губчатое, его внутренние общие пластинки продолжаются в пластинки перекладин губчатого вещества.
В наружных общих пластинках залегают прободающие (фолькмановы) каналы, по которым из надкостницы внутрь кости входят сосуды. Со стороны надкостницы в кость под разными углами проникают коллагеновые волокна. Эти волокна получили названиепрободающих (шарпеевых) волокон. Чаще всего они разветвляются только в наружном слое общих пластинок, но могут проникать и в средний остеонный слой, однако они никогда не входят в пластинки остеонов.
В среднем слое костные пластинки располагаются в остеонах. В костных пластинках располагаются коллагеновые фибриллы, впаянные в обызвествленный матрикс. Фибриллы имеют разное направление, но преимущественно они ориентированы параллельно длинной оси остеона.
Остеоны (гаверсовы системы) являются структурными единицами компактного вещества трубчатой кости. Они представляют собой цилиндры, состоящие из костных пластинок, как бы вставленных друг в друга. В костных пластинках и между ними располагаются тела костных клеток и их отростки, замурованные в костном межклеточном веществе. Каждый остеон отграничен от соседних остеонов так называемой спайной линией, образованной основным веществом, цементирующим их. В центральном канале остеона проходят кровеносные сосуды с сопровождающей их соединительной тканью и остеогенными клетками.
В диафизе длинной кости остеоны расположены преимущественно параллельно длинной оси. Каналы остеонов анастомозируют друг с другом. , в местах анастомозов прилежащие к ним пластинки изменяют свое направление. Такие каналы называют прободающими, или питательными. Сосуды, расположенные в каналах остеонов, сообщаются друг с другом и с сосудами костного мозга и надкостницы.
Большую часть диафиза составляет компактное вещество трубчатых костей. На внутренней поверхности диафиза, граничащей с костномозговой полостью, пластинчатая костная ткань образует костные перекладины губчатого вещества кости. Полость диафиза трубчатых костей заполнена костным мозгом.
Эндост (endosteum) — оболочка, покрывающая кость со стороны костномозговой полости. В эндосте сформированной поверхности кости различают осмиофильную линию на наружном крае минерализованного вещества кости; остеоидный слой, состоящий из аморфного вещества, коллагеновых фибрилл и остеобластов, кровеносных капилляров и нервных окончаний, слоя чешуевидных клеток, нечетко отделяющих эндост от элементов костного мозга. Толщина эндоста превышает 1—2 мкм, но меньше, чем у периоста.
В областях активного формирования кости толщина эндоста возрастает в 10—20 разза счет остеоидного слоя вследствие повышения синтетической активности остеобластов и их предшественников. При ремоделировании кости в составе эндоста обнаруживаются остеокласты. В эндосте стареющей кости уменьшается популяция остеобластов и клеток-предшественников, но возрастает активность остеокластов, что ведет к истончению компактного слоя и перестройке губчатого вещества кости.
Между эндостом и периостом существует определенная микроциркуляция жидкости и минеральных веществ благодаря лакунарно-канальциевой системе костной ткани.
Васкуляризация костной ткани. Кровеносные сосуды образуют во внутреннем слое надкостницы густую сеть. Отсюда берут начало тонкие артериальные веточки, которые, помимо кровоснабжения остеонов, проникают в костный мозг через питательные отверстия и принимают участие в образовании питающей его сети капилляров. Лимфатические сосуды располагаются главным образом в наружном слое надкостницы.
Иннервация костной ткани. В надкостнице миелиновые и безмиелиновые нервные волокна образуют сплетение. Часть волокон сопровождает кровеносные сосуды и проникает с ними через питательные отверстия в одноименные каналы, а затем в каналы остеонов и далее достигает костного мозга. Другая часть волокон заканчивается в надкостнице свободными нервными разветвлениями, а также участвует в образовании инкапсулированных телец.
Возрастные изменения
Соединительные ткани с возрастом претерпевают изменения в строении, количестве и химическом составе. С возрастом увеличиваются общая масса соединительнотканных образований. Во многих разновидностях соединительнотканных структур изменяется соотношение типов коллагена, гликозаминогликанов; в частности, в них становится больше сульфатированных соединений.
32.Гистогенез костных тканей. Прямой и непрямой остеогенез. Строение эпифизарной хрящевой пластинки роста.
Остеогенез - развитие костной ткани
Различают два способа образования кости: прямой (первичный, из мезенхимы) и непрямой (вторичный, на месте хрящевой модели)
Прямой (первичный) остеогистогенез. Развитие кости из мезенхимы.
Такой способ остеогенеза характерен для развития грубоволокнистой костной тканипри образовании плоских костей, например покровных костей черепа. Этот процесс наблюдается в основном в течение первого месяца внутриутробного развития и характеризуется образованием сначала первичной «перепончатой», остеоидной костной ткани с последующим отложением солей кальция, фосфора и др. в межклеточном веществе.
Первая стадия — образование скелетогенного островка. В местах развития будущей кости происходят очаговое размножение мезенхимных клеток и васкуляризация скелетогенного островка.
Вторая стадия – остеоидная. Во второй стадии происходит дифференцировка клеток островков, образуется органическая матрица костной ткани, или остеоид, – оксифильное межклеточное вещество с коллагеновыми фибриллами. Разрастающиеся волокна раздвигают клетки, которые, не теряя своих отростков, остаются связанными друг с другом. В основном веществе появляются мукопротеиды (оссеомукоид), цементирующие волокна в одну прочную массу.
Некоторые клетки, дифференцирующиеся в остеоциты, уже в этой стадии могут оказаться включенными в толщу волокнистой массы. Другие, располагающиеся по поверхности, дифференцируются в остеобласты. В течение некоторого времени остеобласты располагаются по одну сторону волокнистой массы, но вскоре коллагеновые волокна появляются и с других сторон, отделяя остеобласты друг от друга. Постепенно эти клетки оказываются «замурованными» в межклеточном веществе, теряют способность размножаться и превращаются в остеоциты. В то же время из окружающей мезенхимы образуются новые генерации остеобластов, которые наращивают кость снаружи. Т.е. обеспечивают аппозиционный рост костной ткани.
Третья стадия (прямого остегенеза) — обызвествление, или кальцификация, межклеточного вещества. При этом остеобласты выделяют фермент щелочную фосфатазу, расщепляющую содержащиеся в периферической крови глицерофосфаты на углеводные соединения (сахара) и фосфорную кислоту. Последняя вступает в реакцию с солями кальция, который осаждается в основном веществе и волокнах сначала в виде соединений кальция, формирующих аморфные отложения Са3(РО4)2, в дальнейшем из него образуются кристаллы гидроксиапатитаСа10(РО4)6(ОН)2.
Кальцификацию оссеоида связывают с матриксными везикулами.
Процесс биологической минерализации протекает в 2 фазы.
I фаза заключается в образовании исходных кристаллов гидроксиапатита внутри матриксных везикул. Эта фаза контролируется фосфатазами (включая щелочную фосфатазу), а также кальцийсвязывающими молекулами (фосфолипидами и белками), которыми богаты матриксные везикулы.
II фаза состоит в разрыве мембран матриксных везикул с выходом сформированных кристаллов в экстрацеллюлярное пространство, где дальнейшее размножение их контролируется условиями внеклеточного микроокружения. Важную роль имеют протеазы и мембранные фосфолипазы, которые обеспечивают разрыв мембран и выход минералов наружу.
Одним из посредников кальцификации является остеонектин — гликопротеин, избирательно связывающий соли кальция и фосфора с коллагеном. В результате кальцификации образуются костныеперекладины, или балки. Затем от этих перекладин ответвляются выросты, соединяющиеся между собой и образующие широкую сеть. Пространства между перекладинами оказываются занятыми соединительной волокнистой тканью с проходящими в ней кровеносными сосудами.
К моменту завершения остеогенеза по периферии зачатка кости в эмбриональной соединительной ткани появляется большое количество волокон и остеогенных клеток. Часть этой волокнистой ткани, прилегающей непосредственно к костным перекладинам, превращается в надкостницу, или периост (periosteum), который обеспечивает трофику и регенерацию кости. Такая кость, появляющаяся на стадиях эмбрионального развития и состоящая из перекладин ретикулофиброзной костной ткани, называется первичной губчатой костью. В более поздних стадиях развития она заменяется вторичной губчатой костью взрослых, которая отличается от первой тем, что построена уже из пластинчатой костной ткани (четвертая стадия остеогенеза).
Развитие пластинчатой костной ткани тесно связано с процессом разрушения отдельных участков кости и врастанием кровеносных сосудов в толщу ретикулофиброзной кости. В этом процессе как в период эмбрионального остеогенеза, так и после рождения принимают участие остеокласты.
Костные пластинки обычно образуются вокруг кровеносных сосудов путем дифференцировки прилегающей к ним мезенхимы. Над такими пластинками образуется слой новых остеобластов и возникают новые пластинки. Коллагеновые волокна в каждой пластинке ориентированы под углом к волокнам предыдущей пластинки. Таким образом, вокруг сосуда формируются как бы костные цилиндры, вставленные один в другой, -первичные остеоны. С момента появления остеонов ретикулофиброзная костная ткань перестает развиваться и заменяется пластинчатой костной тканью. Со стороны надкостницы формируются общие, или генеральные, пластинки, охватывающие всю кость снаружи. Так развиваются плоские кости. В дальнейшем образовавшаяся в эмбриональном периоде кость подвергается перестройке: разрушаются первичные остеоны и развиваются новые генерации остеонов. Такая перестройка кости практически продолжается всю жизнь.
В отличие от хрящевой ткани кость всегда растет способом наложения новой ткани на уже имеющуюся, т.е. путем аппозиции, а оптимальное кровоснабжение необходимо для дифференцировки клеток скелетогенного островка.
Непрямой (вторичный) остеогистогенез. Развитие кости на месте хряща.
На 2-м месяце эмбрионального развития в местах будущих трубчатых костей закладывается из мезенхимы хрящевой зачаток, который очень быстро принимает форму будущей кости (хрящевая модель). Зачаток состоит из эмбрионального гиалинового хряща, покрытого надхрящницей. Некоторое время он растет как за счет клеток, образующихся со стороны надхрящницы, так и за счет размножения клеток во внутренних участках.
Развитие кости на месте хряща, т.е. непрямой остеогенез, начинается в области диафиза (т.н. перихондральное окостенение). Образованию перихондральной костной манжетки предшествует разрастание кровеносных сосудов. Происходит дифференцировка остеобластов, образующих в виде манжетки сначала ретикулофиброзную костную ткань (первичный центр окостенения), затем заменяющуюся на пластинчатую.
Образование костной манжетки нарушает питание хряща. Вследствие этого в центре диафизарной части хрящевого зачатка возникают дистрофические изменения.Хондроциты вакуолизируются, их ядра пикнотизируются, образуются так называемые пузырчатые хондроциты. Рост хряща в этом месте прекращается. Удлинение перихондральной костной манжетки сопровождается расширением зоны деструкции хряща и появлением остеокластов, которые очищают пути для врастающих в модель трубчатой кости кровеносных сосудов и остеобластов.
Это приводит к появлению очагов «внутреннего» эндохондрального окостенения(вторичные центры окостенения). В связи с продолжающимся ростом соседних неизмененных дистальных отделов диафиза хондроциты на границе эпифиза и диафиза собираются в продольные колонки. Таким образом, в колонке хондроцитов имеются два противоположно направленных процесса — размножение и рост в дистальных отделах диафиза и дистрофические процессы в его проксимальном отделе.
Одновременно между набухшими клетками происходит отложение минеральных солей, обусловливающее появление резкой базофилии и хрупкости хряща.
С момента разрастания сосудистой сети и появления остеобластов надхрящница перестраивается, превращаясь в надкостницу. В дальнейшем кровеносные сосуды с окружающей их мезенхимой, остеогенными клетками и остеокластами врастают через отверстия костной манжетки и входят в соприкосновение с обызвествленным хрящом. Под влиянием ферментов, выделяемых остеокластами, происходит растворение (хондролиз) обызвествленного межклеточного вещества. Диафизарный хрящ разрушается, в нем возникают удлиненные пространства, в которых «поселяются» остеоциты, образующие на поверхности оставшихся участков обызвествленного хряща костную ткань.
Процесс отложения кости внутри хрящевого зачатка получил название эндохондрального, или энхондрального, окостенения (греч. endon — внутри).
Одновременно с процессом развития энхондральной кости появляются и признаки ее разрушения остеокластами. Вследствие разрушения энхондральной костной ткани образуются еще большие полости и пространства (полости резорбции) и, наконец, возникает костномозговая полость. Из проникшей сюда мезенхимы образуется строма костного мозга, в которой поселяются стволовые клетки крови и соединительной ткани. В это же время по периферии диафиза со стороны надкостницы нарастают все новые и новые перекладины костной ткани, образующейся из надкостницы.
Разрастаясь в длину по направлению к эпифизам и увеличиваясь в толщину, они образуют плотный (компактный) слой кости. Дальнейшая организация периостальной кости протекает иначе, чем организация энхондральной костной ткани. Вокруг сосудов, которые идут по длинной оси зачатка кости из прилегающей к ним мезенхимы, на месте разрушающейся ретикулофиброзной кости начинают образовываться концентрические пластинки, состоящие из параллельно ориентированных тонких коллагеновых волокон и цементирующего межклеточного вещества. Так возникают первичные остеоны. Просвет их широк, границы пластинок нерезко контурированы. Вслед за появлением первой генерации остеонов со стороны периоста начинается развитие общих (генеральных) пластинок, окружающих кость в области диафиза.
Вслед за диафизом центры окостенения появляются в эпифизах. Этому предшествуют сначала дифференцировка хондроцитов, их гипертрофия, сменяемая ухудшением питания, дистрофией и кальцинацией. В дальнейшем отмечается процесс окостенения, подобный описанному выше. Оссификация сопровождается врастанием в эпифизы сосудов.
В промежуточной области между диафизом и эпифизами сохраняется хрящевая ткань — метафизарный хрящ, являющийся зоной роста костей в длину.
Рост трубчатых костей.
Рост костей — процесс очень длительный. Он начинается у человека с ранних эмбриональных стадий и кончается в среднем к 20-летнему возрасту. В течение всего периода роста кость увеличивается как в длину, так и в ширину.
Рост трубчатой кости в длину обеспечивается наличием метаэпифизарной хрящевой пластинки, в которой проявляются два противоположных гистогенетических процесса. Один — это разрушение эпифизарной пластинки с образованием костной ткани, а другой процесс — непрестанное пополнение хрящевой ткани путем новообразования клеток. Однако со временем процессы разрушения хрящевой ткани начинают преобладать над процессами новообразования, вследствие чего хрящевая пластинка истончается и исчезает.
В метаэпифизарном хряще различают три зоны:
пограничную зону (интактного хряща),
зону столбчатых (активно делящихся) клеток и
зону пузырчатых (дистрофически измененных) клеток.
Пограничная зона, расположенная вблизи эпифиза, состоит из округлых и овальных клеток и единичных изогенных групп, которые обеспечивают связь хрящевой пластинки с костью эпифиза. В полостях между костью и хрящом находятся кровеносные капилляры, обеспечивающие питанием клетки глубжележащих зон хрящевой пластинки. Зона столбчатых клеток содержит активно размножающиеся клетки, которые формируют колонки, расположенные по оси кости, и обеспечивают ее рост и длину. Проксимальные концы колонок состоят из созревающих, дифференцирующихся хрящевых клеток. Они богаты гликогеном и щелочной фосфатазой. Обе эти зоны наиболее реактивны при действии гормонов и других факторов, оказывающих влияние на процессы окостенения и роста костей. Зона пузырчатых клеток характеризуется гидратацией и разрушением хондроцитов с последующим эндохондральным окостенением. Дистальный отдел этой зоны граничит с диафизом, откуда в нее проникают остеогенные клетки и кровеносные капилляры. Продольно ориентированные колонки энхондральной кости являются по существу костными трубочками, на месте которых формируются остеоны.
Впоследствии центры окостенения в диафизе и эпифизе сливаются и рост кости в длину заканчивается.
Рост трубчатой кости в ширину осуществляется за счет периоста. Со стороны периоста очень рано начинает образовываться концентрическими слоями тонковолокнистая кость. Этот аппозиционный рост продолжается до окончания формирования кости. Количество остеонов непосредственно после рождения невелико, но уже к 25 годам в длинных костях конечностей количество их значительно увеличивается.
33. Мышечное волокно. Световая, поляризационная и электронная микроскопия. Миосателлитоциты.
Основной структурно-функциональной единицей скелетных мышц является мышечное волокно. Это очень большое вытянутое многоядерное образование длиной в несколько сантиметров, при поперечнике около 100 мкм. Размер мышечного волокна в десятки тысяч раз превышает размер  средней по величине клетки под микроскопом на продольном срезе мышечного волокна видна поперечная исчерченность, которая обусловлена тем, что его внутренние структуры периодически (через каждые 2—2,5 мкм) многократно повторяются. Подобные гигантские поперечно-полосатые волокна составляют мышечную ткань не только скелетной мускулатуры, но также сердца и некоторых внутренних органов.Под микроскопом можно также обнаружить мелкие клетки — миосателлиты, прилегающие к многоядерным мышечным волокнам. Эти клетки в определенных условиях быстро многократно делятся, принимая участие в процессах дальнейшего развития ткани и регенерации мышечного волокна после травм.
Миосателлитоциты - это малодифференцированные клетки, являющиеся источником регенерации мышечной ткани. Они прилежат к поверхности миосимпласта, так что их плазмолеммы соприкасаются. Миосателлитоциты одноядерны, их ядра овальной формы и мельче, чем в симпластах. Они обладают всеми органеллами общего значения (в том числе и клеточным центром).
Ядра миосимпластов делиться не могут, так как у них отсутствуют клеточные центры. Камбиальными элементами служат миосателлитоциты. Пока организм растет, они делятся, а дочерние клетки встраиваются в концы симпластов. По окончании роста размножение миосателлитоцитов затухает. После повреждения мышечного волокна на некотором протяжении от места травмы оно разрушается и его фрагменты фагоцитируются макрофагами.
34. Миофибрилла. Саркомер, строение, формула саркомера. Молекулярная организация актиновых и миозиновых миофиламентов. Саркотубулярная система. Механизм мышечного сокращения.
Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящее из миосимпласта и миосателлитоцитов, покрытых общей базальной мембраной.
Длина всего волокна может измеряться сантиметрами при толщине всего 50—100 мкм. Комплекс, состоящий из плазмолеммы миосимпласта и базальной мембраны, называют сарколеммой.
Миосимпласт имеет множество продолговатых ядер, расположенных непосредственно под сарколеммой. Их количество в одном симпласте может достигать нескольких десятков тысяч. У полюсов ядер располагаются органеллы общего значения — аппарат Гольджи и небольшие фрагменты гранулярной эндоплазматической сети. Миофибриллы заполняют основную часть миосимпласта и расположены продольно.
Саркомер — это структурная единица миофибриллы. Каждая миофибрилла имеет поперечные темные и светлые диски, имеющие неодинаковое лучепреломление (анизотропные A-диски и изотропные I-диски). Каждая миофибрилла окружена продольно расположенными и анастомозирующими между собой петлями агранулярной эндоплазматической сети — саркоплазматической сети, или саркоплазматического ретикулума. Соседние саркомеры имеют общую пограничную структуру — Z-линию (или телофрагму). Она построена в виде сети из белковых фибриллярных молекул, среди которых существенную роль играет альфа-актинин. С этой сетью связаны концы тонких, актиновых, филаментов. От соседних Z-линий актиновые филаменты направляются к центру саркомера, но не доходят до его середины. Филаменты актина объединены с Z-линией и нитями миозина фибриллярными нерастяжимыми молекулами небулина. Посередине темного диска саркомера располагается сеть, построенная из миомезина. Она образует в сечении М-линию, или мезофрагму. В узлах этой М-линии закреплены концы толстых, миозиновых филаментов. Другие их концы направляются в сторону Z-линий и располагаются между филаментами актина, но до самих Z-линий тоже не доходят. Вместе с тем эти концы фиксированы по отношению к Z-линиям растяжимыми гигантскими белковыми молекулами титина.
right000Молекулы миозина имеют длинный хвост и на его конце две головки. При повышении концентрации ионов кальция в области присоединения головок (в своеобразном шарнирном участке) молекула миозина изменяет свою конфигурацию. При этом (поскольку между миозиновыми филаментами расположены актиновые) головки миозина связываются с актином (при участии вспомогательных белков — тропомиозина и тропонина). Затем головка миозина наклоняется и тянет за собой актиновую молекулу в сторону М-линии. Z-линии сближаются, саркомер укорачивается.
Альфа-актининовые сети Z-линий соседних миофибрилл связаны друг с другом промежуточными филаментами. Они подходят к внутренней поверхности плазмолеммы и закрепляются в кортикальном слое цитоплазмы, так что саркомеры всех миофибрилл располагаются на одном уровне. Это и создает при наблюдении в микроскоп впечатление поперечной исчерченности всего волокна.
Источником ионов кальция служат цистерны агранулярной эндоплазматической сети. Они вытянуты вдоль миофибрилл около каждого саркомера и образуют саркоплазматическую сеть. Именно в ней аккумулируются ионы кальция, когда миосимпласт находится в расслабленном состоянии. На уровне Z-линий (у амфибии) или на границе А- и I-дисков (у млекопитающих) канальцы сети меняют направление и располагаются поперечно, образуя расширенные терминальные или (латеральные) L-цистерны.
С поверхности миосимпласта плазмолемма образует длинные трубочки, идущие поперечно в глубину клетки (Т-трубочки) на уровне границ между темными и светлыми дисками. Когда клетка получает сигнал о начале сокращения, этот сигнал перемещается по плазмолемме в виде потенциала действия и распространяется отсюда на мембрану Т-трубочек. Поскольку эта мембрана сближена с мембранами саркоплазматической сети, состояние последних меняется, кальций освобождается из цистерн сети и взаимодействует с актино-миозиновыми комплексами (они сокращаются). Когда потенциал действия исчезает, кальций снова аккумулируется в цистернах саркоплазматического ретикулума и сокращение миофибрилл прекращается. Для развития усилия сокращения нужна энергия. Она освобождается за счет АТФ- АДФ-превращений. Роль АТФазы выполняет миозин. Источником АТФ служат главным образом митохондрии, поэтому они и располагаются непосредственно между миофибриллами.
Большую роль в деятельности миосимпластов играют включения миоглобина и гликогена. Гликоген служит источником энергии, необходимой не только для совершения мышечной работы, но и поддержания теплового баланса всего организма.Миоглобин связывает кислород, когда мышца расслаблена и через мелкие кровеносные сосуды свободно протекает кровь. Во время сокращения мышцы сосуды сдавливаются, а запасенный кислород освобождается из миоглобина и участвует в биохимических реакциях.
Миозиновые и актиновые филаменты в быкове почитать, там норм написано
35. Поперечно-полосатая сердечная мышечная ткань. Структурно-функциональная характеристика.
Сердечная мышечная ткань
Гистогенез и виды клеток. Источники развития сердечной поперечнополосатой мышечной ткани — симметричные участки висцерального листка спланхнотома в шейной части зародыша — так называемые миоэпикардиалъные пластинки. Из них дифференцируются также клетки мезотелия эпикарда. В ходе гистогенеза возникает 3 вида кардиомиоцитов:
рабочие, или типичные, или же сократительные, кардиомиоциты,
атипичные кардиомиоциты (сюда входят пейсмекерные, проводящие и переходные кардиомиоциты, а также
секреторные кардиомиоциты.
Рабочие (сократительные) кардиомиоциты образуют свои цепочки. Укорачиваясь, они обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу. Синусные (пейсмекерные) кардиомиоциты способны автоматически в определенном ритме сменять состояние сокращения на состояние расслабления. Они воспринимают управляющие сигналы от нервных волокон, в ответ на что изменяют ритм сократительной деятельности. Синусные (пейсмекерные) кардиомиоциты передают управляющие сигналы переходным кардиомиоцитам, а последние — проводящим. Проводящие кардиомиоциты образуют цепочки клеток, соединенных своими концами. Первая клетка в цепочке воспринимает управляющие сигналы от синусных кардиомиоцитов и передает их далее — другим проводящим кардиомиоцитам. Клетки, замыкающие цепочку, передают сигнал через переходные кардиомиоциты рабочим.
Секреторные кардиомиоциты выполняют особую функцию. Они вырабатывают гормон - натрийуретический фактор, участвующий в процессах регуляции мочеобразования и в некоторых других процессах.
Сократительные кардиомиоциты имеют удлиненную (100—150 мкм) форму, близкую к цилиндрической. Их концы соединяются друг с другом, так что цепочки клеток составляют так называемые функциональные волокна (толщиной до 20 мкм). В области контактов клеток образуются так называемые вставочные диски. Кардиомиоциты могут ветвиться и образуют трехмерную сеть. Их поверхности покрыты базальной мембраной, в которую снаружи вплетаются ретикулярные и коллагеновые волокна. Ядро кардиомиоцита (иногда их два) овальное и лежит в центральной части клетки. У полюсов ядра сосредоточены немногочисленные органеллы общего значения. Миофибриллы слабо обособлены друг от друга, могут расщепляться. Их строение аналогично строению миофибрилл миосимпласта скелетного мышечного волокна. От поверхности плазмолеммы в глубь кардиомиоцита направлены Т-трубочки, находящиеся на уровне Z-линии. Их мембраны сближены, контактируют с мембранами гладкой эндоплазматической (т.е. саркоплазматической) сети. Петли последней вытянуты вдоль поверхности миофибрилл и имеют латеральные утолщения (L-системы), формирующие вместе с Т-трубочками триады или диады. В цитоплазме имеются включения гликогена и липидов, особенно много включений миоглобина. Механизм сокращения кардиомиоцитов такой же, как у миосимпласта.
Кардиомиоциты соединяются друг с другом своими торцевыми концами. Здесь образуются так называемые вставочные диски: эти участки выглядят как тонкие пластинки при увеличении светового микроскопа. Фактически же концы кардиомиоцитов имеют неровную поверхность, поэтому выступы одной клетки входят во впадины другой. Поперечные участки выступов соседних клеток соединены друг с другом интердигитациями и десмосомами. К каждой десмосоме со стороны цитоплазмы подходит миофибрилла, закрепляющаяся концом в десмоплакиновом комплексе. Таким образом, при сокращении тяга одного кардиомиоцита передается другому. Боковые поверхности выступов кардиомиоцитов объединяются нексусами (или щелевыми соединениями). Это создает между ними метаболические связи и обеспечивает синхронность сокращений.
Возможности регенерации сердечной мышечной ткани. При длительной усиленной работе (например, в условиях постоянно повышенного артериального давления крови) происходит рабочая гипертрофия кардиомиоцитов. Стволовых клеток или клеток-предшественников в сердечной мышечной ткани не обнаружено, поэтому погибающие кардиомиоциты (в частности, при инфаркте миокарда) не восстанавливаются, а замещаются элементами соединительной ткани.
36. Общая характеристика гладкой мышечной ткани . Типы гладких миоцитов ( миоэпителиальные клетки, мионейральные клетки, эндокринные гладкие миоциты, миофибробласты). Строение, локализация и функции.
Гладкие мышечные ткани
По происхождению различают три группы гладких (или неисчерченных) мышечных тканей — мезенхимные, эпидермальные и нейральные.
Мышечная ткань мезенхимного происхождения
Гистогенез. Стволовые клетки и клетки-предшественники гладкой мышечной ткани, будучи уже детерминированными, мигрируют к местам закладки органов. Дифференцируясь, они синтезируют компоненты матрикса и коллаген базальной мембраны, а также эластин. У дефинитивных клеток (миоцитов) синтетическая способность снижена, но не исчезает полностью.
Структурно-функциональной единицей гладкой, или неисчерченной, мышечной ткани является гладко-мышечная клетка, или гладкий миоцит — это веретеновидная клетка длиной 20—500 мкм, шириной 5—8 мкм. Ядро клетки палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены в цитоплазме около полюсов ядра. Аппарат Гольджи и гранулярная эндо плазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно.
Филаменты актина образуют в цитоплазме трехмерную сеть, вытянутую преимущественно продольно, точнее косо-продольно. Концы филаментов скреплены между собой и с плазмолеммой специальными сшивающими белками. Эти участки хорошо видны на электронных микрофотографиях как плотные тельца.
Миозиновые филаменты находятся в деполимеризованном состоянии. Мономеры миозина располагаются рядом с филаментами актина. Сигнал к сокращению обычно поступает по нервным волокнам. Медиатор, который выделяется из их терминалей, изменяет состояние плазмолеммы. Она образует впячивания — кавеолы, в которых концентрируются ионы кальция. Кавеолы отшнуровываются в сторону цитоплазмы в виде пузырьков (здесь из пузырьков освобождается кальций). Это влечет за собой как полимеризацию миозина, так и взаимодействие миозина с актином. Актиновые филаменты смещаются друг другу навстречу, плотные пятна сближаются, усилие передается на плазмолемму, и вся клетка укорачивается. Когда поступление сигналов со стороны нервной системы прекращается, ионы кальция эвакуируются из кавеол, миозин деполимеризуется и «миофибриллы» распадаются. Таким образом, актино-миозиновые комплексы существуют в гладких миоцитах только в период сокращения.
Гладкие миоциты располагаются без заметных межклеточных пространств и разделены базальной мембраной. На отдельных участках в ней образуются «окна», поэтому плазмолеммы соседних миоцитов сближаются. Здесь формируются нексусы, и между клетками возникают не только механические, но и метаболические связи. Поверх «чехликов» из базальной мембраны между миоцитами проходят эластические и ретикулярные волокна, объединяющие клетки в единый тканевой комплекс. Ретикулярные волокна проникают в щели на концах миоцитов, закрепляются там и передают усилие сокращения клетки всему их объединению.
Регенерация. Физиологическая регенерация гладкой мышечной ткани проявляется в условиях повышенных функциональных нагрузок. Наиболее отчетливо это видно в мышечной оболочке матки при беременности. Такая регенерация осуществляется не столько на тканевом, сколько на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, количество миофиламентов увеличивается (рабочая гипертрофия клеток). Не исключена, однако, и пролиферация клеток (т.е. гиперплазия).
В составе органов миоциты объединяются в пучки, между которыми располагаются тонкие прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и эластические волокна, окружающие миоциты. В прослойках проходят кровеносные сосуды и нервные волокна. Терминали последних оканчиваются не непосредственно на миоцитах, а между ними. Поэтому после поступления нервного импульса медиатор распространяется диффузно, возбуждая сразу многие клетки. Гладкая мышечная ткань мезенхимного происхождения представлена главным образом в стенках кровеносных сосудов и многих трубчатых внутренних органов, а также образует отдельные мелкие мышцы.
Гладкая мышечная ткань в составе конкретных органов имеет неодинаковые функциональные свойства. Это обусловлено тем, что на поверхности органов имеются разные рецепторы к конкретным биологически активным веществам. Поэтому и на многие лекарственные препараты их реакция неодинакова.
Гладкая мышечная ткань эпидермального происхождения
Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с железистыми секреторными клетками. Миоэпителиальные клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки восстанавливаются из общих малодифференцированных предшественников. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез. В теле клетки располагаются ядро и органеллы общего значения, а в отростках — сократительный аппарат, организованный, как и в клетках мышечной ткани мезенхимного типа.
Гладкая мышечная ткань нейрального происхождения
Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы — суживающую и расширяющую зрачок.

37. Морфо - функциональная характеристика гладкого миоцита ( СМ и ЭМ).
Структурно-функциональной единицей гладкой, или неисчерченной, мышечной ткани является гладко-мышечная клетка, или гладкий миоцит — это веретеновидная клетка длиной 20—500 мкм, шириной 5—8 мкм. Ядро клетки палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены в цитоплазме около полюсов ядра. Аппарат Гольджи и гранулярная эндо плазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно.
Структура дефинитивных гладких миоцитов (лейомиоцитов), входящих в состав внутренних органов и стенки сосудов, имеет много общего, но в то же время характеризуется гетероморфией. Так, в стенках вен и артерий обнаруживаются овоидные, веретеновидные, отростчатые миоциты длиной 10-40 мкм, доходящие иногда до 140 мкм. Наибольшей длины гладкие миоциты достигают в стенке матки — до 500 мкм. Диаметр миоцитов колеблется от 2 до 20 мкм. В зависимости от характера внутриклеточных биосинтетических процессов различают контрактилъные и секреторные миоциты. Первые специализированы на функции сокращения, но вместе с тем сохраняют секреторную активность. Плазмолемма расслабленной клетки имеет ровную поверхность, а при сокращении становится складчатой. В центре клетки имеется палочковидное ядро, которое при сокращении клетки спиралевидно изгибается. Практически все ядра миоцитов содержат диплоидное количество ДНК. Гладкая эндоплазматическая сеть занимает примерно 2-7% объема цитоплазмы, а гранулярная сеть в контрактильных миоцитах выражена плохо. Митохондрии мелкие, сферические или овоидные, расположены у полюсов ядра. Характерной чертой гладких миоцитов является наличие множества впячиваний (кавеол) плазмолеммы, содержащих ионы кальция. 
38. Особенности строения сократительного и опорного аппарата гладкого миоцита. Актиновые и миозиновые филаменты. Механизм мышечного сокращения.
Гладкие миоциты: строение и функционирование
1. Мембранные системы гладких миоцитова) Гранулярная ЭПС. I. В гладких миоцитах часто хорошо выражена гранулярная ЭПС (3). Это связано с тем, что данные клетки, помимо сократительной функции, могут выполнять и другую – синтетическую. А именно: подобно фибробластам, синтезировать компоненты межклеточного вещества – протеогликаны, коллаген, эластин и пр.
II. Данная функция является очень важной и заметной, например, у гладких миоцитов в стенке разнообразных сосудов.
III. Не исключено, что в миоцитарных комплексах существует функциональная специализация миоцитов: одни выполняют преимущественно сократительную функцию, а другие – преимущественно синтетическую функцию.
б) Системы транспорта ионов Са2+.
I. В то же время гладкие миоциты не содержат тех специфических мембранных систем, которые характерны для поперечнополосатых мышечных тканей. Имеются в виду Т-трубочки и L-канальцы с терминальными цистернами.
II. Поэтому по-другому решается проблема повышения в клетке концентрации ионов Са2+ при возбуждении: эти ионы поступают в цитозоль не столько из эндоплазматического ретикулума, сколько из межклеточной среды.
A) В ходе этого транспорта ионов Са2+ плазмолемма образует многочисленные впячивания – кавеолы, которые превращаются в пузырьки.
B) Кроме того, в плазмолемме имеются Са2+-каналы, которые (наряду с Nа+-каналами) открываются лишь при возбуждении клетки или при действии на мембранные рецепторы определенных регуляторов.
2. Сократительный аппарат. Гладкие миоциты содержат тонкие миофиламенты и (в несобранном виде) компоненты толстых миофиламентов.
а) Тонкие (актиновые) миофиламенты состоят только из актина (т. е. не содержат тропонин и тропомиозин) и прикрепляются к т.н. плотным тельцам (аналогам телофрагмы), которые либо связаны с плазмолеммой, либо находятся в цитоплазме.
б) Толстые же (миозиновые) миофиламенты в состоянии покоя, видимо, диссоциированы на фрагменты или даже отдельные молекулы миозина и поэтому не имеют фиксированного положения.
Соответственно, в покое в клетках нет миофибрилл (отчего клетки не имеют поперечной исчерченности).
3. Плотные тельца – специфические компоненты цитоскелета гладкого миоцита. Они делятся на два вида: плотные пластинки плазмолеммы и плотные тельца цитоплазмы.
а) Плотные пластинки плазмолеммы – пучки тонких микрофиламентов (из т. н. немышечного актина), которые идут под плазмолеммой вдоль длинной оси клетки на некотором расстоянии друг от друга и формируют «ребристый» каркас миоцита.
Лишь в промежутках между пластинками плазмолемма способна образовывать кавеолы.
б) Плотные тельца цитоплазмы имеют овальную форму. Они связаны нитями немышечного актина в цепочки, которые тоже расположены вдоль длинной оси миоцита и зафиксированы, видимо, с помощью промежуточных филаментов, идущих от телец к плазмолемме и прочим структурам.
Несмотря на разное строение, плотные пластинки плазмолеммы и плотные тельца цитоплазмы содержат отчасти те же белки (α-актинин и пр.), что и телофрагма в поперечнополосатых мышечных тканях (п. 11.2.2.3). Поэтому подобно телофрагме плотные тельца и пластинки служат (как уже было сказано) местом фиксации тонких миофиламентов.
4. Процесс сокращенияа) Поступление ионов Са2+. Под влиянием нервного импульса из внешней среды в клетку тем или иным способом (с помощью кавеол или через Са2+-каналы) начинают поступать ионы Са2+.
Это происходит значительно медленней, чем выход Са2+ из цистерн в поперечнополосатых мышечных тканях. Поэтому сокращения гладкой мускулатуры развиваются не так быстро, как в тех тканях.
б) Фосфорилирование миозина. Еще одно отличие от тех же тканей состоит в том, что в гладких миоцитах ионы Са2+влияют на состояние не тонких, а толстых миофиламентов. Причем это происходит опосредованным способом, а именно: ионы Са2+, связавшись с белком кальмодулином, активируют миозинкиназу (более точно – киназу легких цепей миозина), которая фосфорилирует молекулы миозина.
В итоге миозин начинает объединяться в толстые миофиламенты, а последние – взаимодействовать с тонкими миофиламентами.
в) Взаимодействие миофиламентов. Толстые миофиламенты внедряются между тонкими – образуются временные миофибриллы.
Далее, как обычно, миофиламенты перемещаются навстречу друг другу (за счет образования и разрыва мостиков и гидролиза АТФ). В результате плотные тельца сближаются, что и означает сокращение миоцита.
В сокращенном состоянии гладкие миоциты могут пребывать достаточно долго без заметного утомления. Это объясняется тем, что часть миозиновых мостиков сохраняется и после дефосфорилирования миозина.
г) Выход из сокращения совершается тоже медленно. Его инициирует удаление ионов Са2+ из клетки Са2+-насосами.
После этого начинает преобладать активность миозинфосфатазы (точнее, фосфатазы легких цепей миозина). Происходит дефосфорилирование миозина. Но и далее, как уже было сказано, еще какое-то время могут сохраняться некоторые миозиновые мостики.
Тем не менее со временем толстые миофиламенты распадаются на фрагменты или даже на молекулы миозина. Клетка возвращается в расслабленное состояние.

39 . Нервная ткань. Гистогенез. Производные нервной трубки (нейробласты, глиобласты), нервного гребня и нейральных плакод.
НЕРВНАЯ ТКАНЬ
Часть первая – общая характеристика, классификация и развитие нервной ткани.
Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки импульса и его передачи. Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой.
В нервной ткани выделяют два типа клеток – нервные и глиальные. Нервные клетки(нейроны, или нейроциты) — основные структурные компоненты нервной ткани, выполняющие специфическую функцию. Нейроглия обеспечивает существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции.
Развитие
right000Нейруляция (схема).
А — стадия нервной пластинки; Б - стадия нервного желобка; В - стадия нервной трубки.1 - нервный желобок; 2 - нервный валик; 3 - кожная эктодерма; 4 - хорда; 5 - сомитная мезодерма; 6 - нервный гребень (ганглиозная пластинка); 7 - нервная трубка; 8 - мезенхима; 9 - эндодерма.
Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок.
Передний конец нервной пластинки расширяется, образуя позднее головной мозг. Латеральные края продолжают подниматься и растут медиально, пока не встретятся и не сольются по средней линии в нервную трубку, которая отделяется от лежащей над ней кожной эктодермы. Полость нервной трубки сохраняется у взрослых в виде системы желудочков головного мозга и центрального канала спинного мозга.
Часть клеток нервной пластинки не входит в состав ни нервной трубки, ни кожной эктодермы, а образует скопления по бокам от нервной трубки, которые сливаются в рыхлый тяж, располагающийся между нервной трубкой и кожной эктодермой, — это нервный гребень(или ганглиозная пластинка).
Из нервной трубки в дальнейшем формируются нейроны и макроглия центральной нервной системы. Нервный гребень дает начало нейронам чувствительных и автономных ганглиев, клеткам мягкой мозговой и паутинной оболочек мозга и некоторым видам глии: нейролеммоцитам (шванновским клеткам), клеткам-сателлитам ганглиев. Из нервного гребня развиваются также клетки мозгового вещества надпочечников, меланоциты кожи, часть клеток APUD-системы, сенсорные клетки каротидных телец.
В формировании ганглиев V, VII, IX и X пар черепных нервов принимают участие, кроме нервного гребня, также нейрогенные плакоды, представляющие собой утолщения эктодермы по бокам формирующейся нервной трубки в краниальном отделе зародыша.
Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных, или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны:
внутренняя - вентрикулярная (или эпендимная) зона,
вокруг нее – субвентрикулярная зона,
затем промежуточная (или плащевая, или же мантийная, зона) и, наконец,
наружная - краевая (или маргинальная) зона нервной трубки.
Вентрикулярная (эпендимная), внутренняя, зона состоит из делящихся клеток цилиндрической формы. Вентрикулярные (или матричные) клетки являются предшественниками нейронов и клеток макроглии.
Субвентрикулярная зона состоит из клеток, сохраняющих высокую пролиферативную активность и являющихся потомками матричных клеток.
Промежуточная (плащевая, или мантийная) зона состоит из клеток, переместившихся из вентрикулярной и субвентрикулярной зон — нейробластов и глиобластов. Нейробласты утрачивают способность к делению и в дальнейшем дифференцируются в нейроны. Глиобласты продолжают делиться и дают начало астроцитам и олигодендроцитам. Способность к делению не утрачивают полностью и зрелые глиоциты. Новообразование нейронов прекращается в раннем постнатальном периоде.
Поскольку число нейронов в головном мозге составляет примерно 1 триллион, очевидно, в среднем в течение всего пренатального периода в 1 мин формируется 2,5 миллиона нейронов.
Из клеток плащевого слоя образуются серое вещество спинного и часть серого вещества головного мозга.
Маргинальная зона (или краевая вуаль) формируется из врастающих в нее аксонов нейробластов и макроглии и дает начало белому веществу. В некоторых областях головного мозга клетки плащевого слоя мигрируют дальше, образуя кортикальные пластинки — скопления клеток, из которых формируется кора большого мозга и мозжечка (т.е. серое вещество).
По мере дифференцировки нейробласта, изменяется субмикроскопическое строение его ядра и цитоплазмы.
Специфическим признаком начавшейся специализации нервных клеток следует считать появление в их цитоплазме тонких фибрилл — пучков нейрофиламентов и микротрубочек. Количество нейрофиламентов, содержащих белок — нейрофиламентный триплет, в процессе специализации увеличивается. Тело нейробласта постепенно приобретает грушевидную форму, а от его заостренного конца начинает развиваться отросток — аксон. Позднее дифференцируются другие отростки — дендриты. Нейробласты превращаются в зрелые нервные клетки — нейроны. Между нейронами устанавливаются контакты (синапсы).
В процессе дифференцировки нейронов из нейробластов различают до-медиаторный и медиаторный периоды. Для домедиаторного периода характерно постепенное развитие в теле нейробласта органелл синтеза — свободных рибосом, а затем эндоплазматической сети. В медиаторном периоде у юных нейронов появляются первые пузырьки, содержащие нейромедиатор, а в дифференцирующихся и зрелых нейронах отмечаются: значительное развитие органелл синтеза и секреции, накопление медиаторов и поступление их в аксон, образование синапсов.
Несмотря на то, что формирование нервной системы завершается только в первые годы после рождения, известная пластичность центральной нервной системы сохраняется до старости. Эта пластичность может выражаться в появлении новых терминалей и новых синаптических связей. Нейроны центральной нервной системы млекопитающих способны формировать новые ветви и новые синапсы. Пластичность проявляется в наибольшей степени в первые годы после рождения, но частично сохраняется и у взрослых — при изменении уровней гормонов, обучении новым навыкам, травме и других воздействиях. Хотя нейроны постоянны, их синаптические связи могут модифицироваться в течение всей жизни, что может выражаться, в частности, в увеличении или уменьшении их числа. Пластичность при малых повреждениях мозга проявляется в частичном восстановлении функций.
В популяции нейронов, начиная с ранних стадий развития нервной системы и в течение всего онтогенеза, имеет место массовая гибель клеток. Эта запрограммированная физиологическая гибель клеток наблюдается как в центральной, так и в периферической нервной системе. У человека ежегодно погибает около 10 млн нервных клеток.
40.Морфологическая и функциональная классификация нейронов. Морфофункциональные зоны нейрона (классификация по Бодиану). Органеллы общего и специального значения.
Существует множество классификаций нервных клеток, так как нейроны отличаются по размерам и форме перикариона, числу отростков, их синаптическим связям, характеру ветвления дендритов, электрофизиологическим характеристикам, химии нейромедиаторов, позиции в нейронных сетях и множеству других характеристик. В зависимости от класса выполняемой функции выделяют афферентные (чувствительные, сенсорные), эфферентные (двигательные, моторные) и вставочные нервные клетки (ассоциативные нейроны, или интернейроны).
Афферентные нейроны проводят возбуждение от рецепторов периферических органов в структуры ЦНС.
Эфферентные нейроны осуществляют передачу сигналов от ЦНС к органам-эффекторам (мышцам и железам).
Ассоциативные нейроны проводят возбуждение между нейронами.
Морфологическая классификация. По количеству отростков нейроны разделяют на псевдоуниполярные, биполярные и мультиполярные.
Псевдоуниполярные нейроны имеют один короткий отросток, который разделяется на некотором расстоянии от сомы на два длинных — дендрит и аксон. К псевдоуниполярным относятся нейроны сенсорных ганглиев спинного мозга.
Биполярные нейроны имеют один дендрит и один аксон. Этот вид нейронов встречается в периферическом отделе зрительного, обонятельного и слухового анализаторов.
Мультиполярные нейроны имеют один аксон и несколько дендритов, это наиболее распространённый вид нейронов. К ним относятся мотонейроны спинного мозга.
Исходя из характера электрогенеза в различных зонах нервных клеток (рецептивная и интегративная зоны, начальный сегмент аксона, аксон, терминали аксона), предложена универсальная классификация (рис. 5–2, см. также рис. 5–1). Эта классификация учитывает направление (вход и выход) сигналов в пределах одной нервной клетки, но находящейся в составе нейронных сетей или цепочек, а также характер мембранного электрогенеза (изменения МП в рецептивной и пресинаптической зонах и передача ПД по аксону).

Рис. 5–2. Универсальная классификация частей различных типов нейронов [11]. Дендриты — рецепторная зона — возбуждающий или тормозящий вход. Перикарион с дендритами — интегративная зона. Аксон — проводящая возбуждение (ПД) часть нейрона, его концевые разветвления образуют синапсы (выход) с соседними клетками. А–Г — афферентные (чувствительные) нейроны; Д — мотонейрон; Е — интернейроны.
Специфическими органеллами нейрона являются нейро-филаменты и нейротубулы+ -тигровидное вещество, или вещество Ниссля, которое представляет собой участки цитоплазмы с большим содержанием рибосом..
Нейрофиламенты представляют собой промежуточные филаменты диаметром 8-10 нм, образованные фибриллярными белками (белками так называемого нейрофибриллярного триплета, или нейрофибрилляр-ными кислыми белками). Основными функциями данной органеллы являются опорно-каркасная, обеспечение стабильной формы нейрона и нервной системы в целом. Аналогичную роль играют тонкие микрофи-ламенты (поперечный диаметр 6-8 нм), содержащие белки актины. В отличие от подобных микрофиламентов в других тканях и клетках, они не соединяются с микромиозинами, что делает невозможным активные сократительные функции в зрелых нервных клетках.
Нейротубулы по основным принципам своего строения практически не отличаются от микротрубочек. Они, как и все микротрубочки, имеют поперечный диаметр около 24 нм и на поперечном разрезе сформированы 13 молекулами глобулярных белков тубулинов. Как и везде, они поляризованы. В отличие от большинства микротрубочек в других клетках, нейротубулы весьма стабильны. Тубулин в них находится в метилированной форме и нередко кэпирован (концы нейроту-бул прикрыты белковыми молекулами, функция которых заключается в стабилизации нейротубул и предохранении их от разрушения). В нервной ткани они выполняют очень важную, если не сказать, уникальную роль. Они несут опорно-каркасную функцию, обеспечивают процессы циклоза, направляя органеллы и включения. Полярность ор-ганеллы, в которой имеется отрицательно и положительно заряженный конец, позволяет контролировать диффузионно-транспортные потоки в аксоне (так называемый быстрый и медленный аксоток). Кроме того, значительное число нейрофизиологов приписывает микротрубочкам роль хранилища поступающей в мозг информации.
41.Транспортные процессы в нейроне. Дендритный и аксонный транспорт Роль плазмолеммы нейронов в рецепции, генерации и проведении нервного импульса.
Аксональный (точнее аксоплазматический) транспорт — это перемещение веществ от тела в отростки и от отростков в тело нейрона. Он направляется нейротубулами, а в транспорте участвуют белки — кинезин и динеин. Транспорт веществ от тела клетки в отростки называется прямым, или антероградным, транспорт веществ от отростков к телу — обратным, или ретроградным. Аксональный транспорт представлен двумя главными компонентами: быстрым компонентом (400—2000 мм в сутки) и медленным (1—2 мм в сутки). Обе транспортные системы присутствуют как в аксонах, так и в дендритах.
Антероградная быстрая система проводит мембранные структуры, включая компоненты мембраны, митохондрии, пузырьки, содержащие пептиды, предшественники нейромедиаторов и другие белки. Ретроградная быстрая система проводит использованные материалы для деградации в лизосомах, распределения и рециркуляции и, возможно, факторы роста нервов.
Нейротубулы — органеллы, ответственные за быстрый транспорт, который называется также нейротубулозависимым. Каждая нейротубула содержит несколько путей, вдоль которых движутся различные частички. АТФ и ионы Са2+ обеспечивают эти движения. На одной микротубуле пузырьки могут обгонять другие пузырьки, движущиеся в том же направлении. Два пузырька могут двигаться в противоположных направлениях одновременно по различным путям одной нейротубулы.
Медленный транспорт — это антероградная система, проводящая белки и другие вещества для обновления и поддержания аксоплазмы зрелых нейронов и обеспечения аксоплазмой роста аксонов и дендритов при развитии и регенерации.

Во ещё раз по нормальному
Аксональный транспорт – это непрерывная циркуляция аксоплазмы от перикариона (антеградный ток) и назад к нему (ретроградный ток).
Антеградный ток: а) медленный поток: 0,1 – 3 мм/сутки, который несёт новосинтезированную аксоплазму к окончанию аксона (глиальная оболочка выполняет при это роль перистальтики); б) быстрый поток: 100-500 мм/сутки, а в нейросекреторных клетках гипоталамуса – 2800мм/сутки. Этот поток несёт вещества для синаптической функции: ферменты, гликопротеиды, фосфолипиды, митохондрии.
Ретроградный ток происходит от дистальной части аксона в сторону перикариона и осуществляется со скоростью быстрого потока. Это перемешение белков и других веществ, захваченных нервными окончаниями.
Дендритный транспорт осуществляет перенос белков и ферментов (ацетилхолинестераза) от тела к дендритам со скоростью 3мм/сутки (медленный поток).
Механизм транспорта. Транспорт обеспечивается микротрубочками и связанными с ними белками кинезинами и динеинами и происходит с затратой АТФ. Кинезин отвечает за антеградный транспорт, а динеин – за ретроградный транспорт, который происходит по поверхности микротрубочек, а не внутри них.
Трансверсальный транспорт – это передача кислорода, энергетических субстратов,удаление продуктов метаболизма через местное кровеносное русло в области перехватов Ранвье. После прекращения кровоснабжения нервное волокно теряет способность к проведению возбуждения.

Плазмолемма нейрона является возбудимой мембраной, т.е. обладает способностью генерировать и проводить импульс. Ее интегральными белками являются белки, функционирующие как ионно-избирательные каналы, и рецепторные белки, вызывающие реакции нейронов на специфические стимулы. В нейроне мембранный потенциал покоя равен —60 —70 мВ. Потенциал покоя создается за счет выведения Na+ из клетки. Большинство Na+- и К+-каналов при этом закрыты. Переход каналов из закрытого состояния в открытое регулируется мембранным потенциалом.
В результате поступления возбуждающего импульса на плазмолемме клетки происходит частичная деполяризация. Когда она достигает критического (порогового) уровня, натриевые каналы открываются, позволяя ионам Na+ войти в клетку. Деполяризация усиливается, и при этом открывается еще больше натриевых каналов. Калиевые каналы также открываются, но медленнее и на более продолжительный срок, что позволяет К+ выйти из клетки и восстановить потенциал до прежнего уровня. Через 1—2 мс (т.н. рефрактерный период) каналы возвращаются в нормальное состояние, и мембрана может вновь отвечать на стимулы.
Итак, распространение потенциала действия обусловлено вхождением в нейрон ионов Na+, которые могут деполяризовать соседний участок плазмолеммы, что в свою очередь создает потенциал действия на новом месте.
При окрашивании нервной ткани анилиновыми красителями в цитоплазме нейронов выявляется хроматофильная субстанция в виде базофильных глыбок и зерен различных размеров и форм (другие названия хроматофильной субстанции - тигроид, тельца Ниссля). Базофильные глыбки локализуются в перикарионах и дендритах нейронов, но никогда не обнаруживаются в аксонах и их конусовидных основаниях — аксональных холмиках. Базофилия глыбок объясняется высоким содержанием рибонуклеопротеидов. Каждая глыбка хроматофильной субстанции состоит из цистерн гранулярной эндоплазматической сети, свободных рибосом и полисом. Для поддержания целостности нейронов и выполнения ими функций нейронам требуется огромное количество белков. Для аксонов, не имеющих органелл белкового синтеза, характерен постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1—3 мм в сутки.
42.Нейроглия. Морфофункциональная характеристика . Локализация. Строение. Функция.
Нейроглия
Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы.
Клетки глии центральной нервной системы делятся на макроглию и микроглию.
Макроглия
Макроглия развивается из глиобластов нервной трубки и включает: эпендимоциты, астроциты и олигодендроглиоциты.
right000Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы. Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцируетцереброспинальную жидкость (ликвор).
right000Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе.
Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром. Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя (изолируя) их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности.
right000Олигодендроциты – имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы – нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов.
Микроглия
Микроглия представляет собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки (возможно, из премоноцитов красного костного мозга). Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной (ветвистой, или покоящейся) микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы.
В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты – филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию.
Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы.
Рассмотренные выше глиальные элементы относились к центральной нервной системе.
Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты (или шванновские клетки) и глиоциты ганглиев (или мантийные глиоциты).
Нейролеммоциты Шванна формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.
43.Безмиелиновые и миелиновые нервные волокна. Ультраструктурная организация миелинового нервного волокна.
Нервные волокна
Отростки нервных клеток, покрытые оболочками, называются нервными волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном, так как чаще всего (за исключением чувствительных нервов) в составе нервных волокон находятся именно аксоны.
right000В центральной нервной системе оболочки отростков нейронов образуются отростками олигодендроглиоцитов, а в периферической —нейролеммоцитами Шванна.
Безмиелиновые нервные волокна находятся преимущественно в составе автономной, или вегетативной, нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в соседнее. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. По мере погружения осевых цилиндров в тяж нейролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану —мезаксон, на которой как бы подвешен осевой цилиндр.
Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Они также состоят из осевого цилиндра, «одетого» оболочкой из нейролеммоцитов Шванна, но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее.
right000Миелиновый слой оболочки такого волокна содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. В миелиновом слое периодически встречаются узкие светлые линии—насечки миелина, или насечки Шмидта — Лантермана. Через определенные интервалы (1—2 мм) видны участки волокна, лишенные миелинового слоя, — это т.н. узловатые перехваты, или перехваты Ранвье.
В процессе миелинизации аксон погружается в желобок на поверхности нейролеммоцита. Края желобка смыкаются. При этом образуется двойная складка плазмолеммы нейролеммоцита —мезаксон. Мезаксон удлиняется, концентрически наслаивается (как бы накручивается) на осевой цилиндр и образует вокруг него плотную слоистую зону — миелиновый слой. Отсутствие миелинового слоя в области узловых перехватов объясняется тем, что в этом участке волокна кончается один нейролеммоцит и начинается другой. Осевой цилиндр в этом месте частично прикрыт интердигитирующими отростками нейролеммоцитов. Оболочка аксона (аксолемма) обладает в области перехвата значительной электронной плотностью.
right000Отрезок волокна между смежными перехватами называется межузловым сегментом. Длина межузлового сегмента, так же как и толщина миелинового слоя, зависит от толщины осевого цилиндра. Насечка миелина (Шмидта—Лантермана) представляет собой участок миелинового слоя, где завитки мезаксона лежат неплотно друг к другу, образуя спиральный туннель, идущий снаружи внутрь и заполненный цитоплазмой нейролеммоцита, т.е. место расслоения миелина. Снаружи от нейролеммоцита располагается базальная мембрана.
Миелиновые волокна центральной нервной системы не имеют насечек миелина, а нервные волокна не окружены базальными мембранами.
44. Механизм и скорость проведения нервного импульса по нервным волокнам ( потенциал покоя, действия, реполяризация ). Регенерация нервных волокон.
Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1—2 м/с, тогда как толстые миелиновые — со скоростью 5—120 м/с.
В безмиелиновом волокне волна деполяризации мембраны идет по всей аксолемме, не прерываясь, а в миелиновом возникает только в области перехватов. Таким образом, для миелиновых волокон характерно сальтаторное проведение возбуждения, т.е. прыжками. Между перехватами идет электрический ток, скорость которого выше, чем прохождение волны деполяризации по аксолемме.
НЕРВНЫЙ ИМПУЛЬС
- волна возбуждения, к-рая распространяется по нервному волокну и служит для передачи информации от периферич. рецепторных (чувствительных) окончаний к нервным центрам, внутри центр. нервной системы и от неё к исполнительным аппаратам - мышцам и железам. Прохождение Н. и. сопровождается переходными электрич. процессами, к-рые можно зарегистрировать как внеклеточными, так и внутриклеточными электродами.
Генерацию, передачу и переработку Н. и. осуществляет нервная система. Осн. структурным элементом нервной системы высших организмов является нервная клетка, или нейрон, состоящий из тела клетки и многочисл. отростков - дендритов (рис. 1). Один из отростков у нериферич. нейронов имеет большую длину - это нервное волокно, или аксон, протяжённость к-рого ~ 1 м, а толщина от 0,5 до 30 мкм. Различают два класса нервных волокон: мякотные (миелинизированные) и безмякотные. У мякотных волокон имеется миелиновая оболочка, образованная спец. мембраной, к-рая подобно изоляции накручивается на аксон. Протяжённость участков сплошной миелиновой оболочки составляет от 200 мкм до 1 мм, они прерываются т. н. перехватами Ранвье шириной 1мкм. Миелиновая оболочка играет роль изоляции; нервное волокно на этих участках пассивно, электрически активна только мембрана в перехватах Ранвье. Безмякотные волокна не имеют изолир. участков; их структура однородна по всей длине, а мембрана обладает электрич. активностью по всей поверхности.
Нервные волокна заканчиваются на телах или ден-дритах др. нервных клеток, но отделены от них промежутком шириной ~ 10 нм. Эта область контакта двух клеток наз. синапсом. Входящая в синапс мембрана аксона наз. пресинаптической, а соответствующая мембрана дендритов или мышцы - постсинаптической (см. Клеточные структуры).
В нормальных условиях по нервному волокну постоянно бегут серии Н. и., возникающих на дендритах или теле клетки и распространяющихся по аксону в направлении от тела клетки (аксон может проводить Н. и. в обоих направлениях). Частота этих периодич. разрядов несёт информацию о силе вызвавшего их раздражения; напр., при умеренной активности частота ~ 50-100 импульсов/с. Существуют клетки, к-рые разряжаются с частотой ~ 1500 импульсов/с.
Скорость распространения Н. и. u. зависит от типа нервного волокна и его диаметра d,u.~ d1/2. В тонких волокнах нервной системы человека u.~ 1 м/с, а в толстых волокнах u.~ 100-120 м/с.
Каждый Н. и. возникает в результате раздражения тела нервной клетки или нервного волокна. Н. и. всегда имеет одни и те же характеристики (форму и скорость) независимо от силы раздражения, т. е. при подпороговом раздражении Н. и. не возникает совсем, а при надпороговым - имеет полную амплитуду.
После возбуждения наступает рефракторный период, в течение к-рого возбудимость нервного волокна снижена. Различают абс. рефракторный период, когда волокно нельзя возбудить никакими раздражителями, и относит. рефракторный период, когда возбуждение возможно, но его порог оказывается выше нормы. Абс. рефракторный период ограничивает сверху частоту передачи Н. и. Нервное волокно обладает свойством аккомодации, т. е. привыкает к постоянно действующему раздражению, что выражается в постепенном повышении порога возбудимости. Это приводит к снижению частоты Н. и. и даже к их полному исчезновению. Если сила раздражения нарастает медленно, то возбуждения может не произойти даже после достижения порога.

Вдоль нервного волокна Н. и. распространяется в виде волны электрич. потенциала. В синапсе происходит смена механизма распространения. Когда Н. и. достигает пресинаптич. окончания, в синаптич. щель выделяется активное хим. вещество - м е д и а т о р. Медиатор диффундирует через синаптич. щель и меняет проницаемость постсинаптич. мембраны, в результате чего на ней возникаетпотенциал, вновь генерирующий распространяющийся импульс. Так действует хим. синапс. Встречается также электрич. синапс, когда след. нейрон возбуждается электрически.
Реакция нейронов и их волокон на травму
Перерезка нервного волокна вызывает различные реакции в теле нейрона, в участке волокна между телом нейрона и местом перерезки (проксимальный сегмент) и в отрезке, расположенном дистальнее от места травмы и не связанном с телом нейрона (дистальный сегмент). Изменения в теле нейрона выражаются в его набухании, тигролизе — растворении глыбок хроматофильной субстанции, и в перемещении ядра на периферию тела клетки. Дегенеративные изменения в центральном отрезке ограничиваются распадом миелинового слоя и осевого цилиндра вблизи травмы. В дистальном отрезке миелиновый слой и осевой цилиндр фрагментируются и продукты распада удаляются макрофагами.
Регенерация зависит от места травмы. Как в центральной, так и в периферической нервной системе погибшие нейроны не восстанавливаются. Полноценной регенерации нервных волокон в центральной нервной системе обычно не происходит, но нервные волокна в составе периферических нервов обычно хорошо регенерируют. При этом нейролеммоциты периферического отрезка и ближайшего к области травмы участка центрального отрезка пролиферируют и выстраиваются компактными тяжами. Осевые цилиндры центрального отрезка дают многочисленные коллатерали, которые растут со скоростью 1—3 мм в сутки вдоль нейролеммальных тяжей, создавая, таким образом, избыточный рост нервных волокон. Выживают только те волокна, которые достигают соответствующих окончаний. Остальные дегенерируют. Если существует препятствие для врастания аксонов центрального отрезка нерва в тяжи нейролеммоцитов периферического отрезка (например, при наличии рубца), аксоны центрального отрезка растут беспорядочно и могут образовать клубок, называемый ампутационной невромой. При ее раздражении возникает сильная боль, которая воспринимается как происходящая из первоначально иннервируемой области, например как боль в ампутированной конечности (это т.н. фантомные боли).
Поврежденные нервные волокна головного и спинного мозга не регенерируют. Возможно, регенерации нервных волокон в центральной нервной системе не происходит потому, что глиоциты без базальной мембраны лишены хемотаксических факторов, необходимых для проведения регенерирующих аксонов. Однако при малых травмах центральной нервной системы возможно частичное восстановление ее функций, обусловленное пластичностью нервной ткани.
45. Нервные окончания. Классификация . Нейронный состав простой рефлекторной дуги.
Нервные окончания
Нервные волокна заканчиваются концевыми аппаратами — нервными окончаниями. Различают три группы нервных окончаний:
межнейрональные синапсы, осуществляющие связь нейронов между собой;
эффекторные окончания (эффекторы), передающие нервный импульс на ткани рабочего органа (на мышечные или железистые клетки)
рецепторные (или аффекторные, или же чувствительные) окончания
Понятие о рефлекторной дуге
Нервная ткань входит в состав нервной системы, функционирующей по рефлекторному принципу, морфологическим субстратом которого является рефлекторная дуга.
Рефлекторная дуга представляет собой цепь нейронов, связанных друг с другом синапсами и обеспечивающих проведение нервного импульса от рецептора чувствительного нейрона до эфферентного окончания в рабочем органе.
Самая простая рефлекторная дуга состоит из двух нейронов — чувствительного и двигательного. В подавляющем большинстве случаев между чувствительными и двигательными нейронами включены вставочные, или ассоциативные, нейроны. У высших животных рефлекторные дуги состоят обычно из многих нейронов и имеют значительно более сложное строение. Конкретные нервные связи будут рассмотрены при изучениинервной системы.
125349011874500
46. Рецепторные нервные окончания . Классификация. Свободные и несвободные нервные окончания .Рецепторы скелетных мышц и сухожилий.
Рецепторные нервные окончания
Эти нервные окончания — рецепторы — рассеяны по всему организму и воспринимают различные раздражения как из внешней среды, так и от внутренних органов. Соответственно выделяют две большие группы рецепторов: экстерорецепторы и интерорецепторы.
К экстерорецепторам(внешним) относятся: слуховые, зрительные, обонятельные, вкусовые и осязательные рецепторы.
К интерорецепторам(внутренним) относятся: висцеро-рецепторы (сигнализирующие о состоянии внутренних органов) и проприорецепторы (или рецепторы опорно-двигательного аппарата).
В зависимости от специфичности раздражения, воспринимаемого данным видом рецептора, все чувствительные окончания делят на механорецепторы, барорецепторы,хеморецепторы, терморецепторы и некоторые другие.
По особенностям строения чувствительные окончания подразделяют на свободные нервные окончания, т.е. состоящие только из конечных ветвлений осевого цилиндра, и несвободные, содержащие в своем составе все компоненты нервного волокна, а именно ветвления осевого цилиндра и клетки глии. Несвободные окончания, кроме того, могут быть покрыты соединительнотканной капсулой, и тогда они называются инкапсулированными. Несвободные нервные окончания, не имеющие соединительнотканной капсулы, называются неинкапсулированными.
Свободные нервные окончания обычно воспринимают холод, тепло и боль. Такие окончания характерны для эпителия. В этом случае миелиновые нервные волокна подходят к эпителиальному пласту, теряют миелин, а осевые цилиндры проникают в эпителий и распадаются там между клетками на тонкие терминальные ветви.
Инкапсулированные рецепторы соединительной ткани при всем их разнообразии всегда состоят из ветвления осевого цилиндра и глиальных клеток. Снаружи такие рецепторы покрыты соединительнотканной капсулой. Примером подобных окончаний могут служить весьма распространенные у человека пластинчатые тельца (или тельца Фатера-Пачини). В центре такого тельца располагается внутренняя луковица, или колба, образованная видоизмененными леммоцитами. Миелиновое чувствительное нервное волокно теряет около пластинчатого тельца миелиновый слой, проникает во внутреннюю луковицу и разветвляется. Снаружи тельце окружено слоистой капсулой, состоящей из фибробластов и спирально ориентированных волокон. Заполненные жидкостью пространства между пластинками содержат коллагеновые микрофибриллы. Давление на капсулу передается через заполненные жидкостью пространства между пластинками на внутреннюю луковицу и воспринимается безмиелиновыми волокнами во внутренней луковице. Пластинчатые тельца воспринимают давление и вибрацию. Они присутствуют в глубоких слоях дермы (особенно в коже пальцев), в брыжейке и внутренних органах.
К чувствительным инкапсулированным окончаниям относятся осязательные тельца —тельца Мейснера. Эти структуры имеют овоидную форму, располагаются в верхушках соединительнотканных сосочков кожи. Осязательные тельца состоят из видоизмененных нейролеммоцитов — тактильных клеток, расположенных перпендикулярно длинной оси тельца. Части тактильных клеток, содержащие ядра, расположены на периферии, а уплощенные части, обращенные к центру, формируют пластинчатые отростки, интердигитирующие с отростками противоположной стороны. Тельце окружено тонкой капсулой. Миелиновое нервное волокно входит в основание тельца снизу, теряет миелиновый слой и формирует ветви, извивающиеся между тактильными клетками. Коллагеновые микрофибриллы и волокна связывают тактильные клетки с капсулой, а капсулу с базальным слоем эпидермиса, так что любое смещение эпидермиса передается на осязательное тельце Мейснера.
К инкапсулированным нервным окончаниям относятся также рецепторы мышц и сухожилий: это нервно-мышечные веретена и нервно-сухожильные веретена.
Нервно-мышечные веретена являются сенсорными органами в скелетных мышцах, которые функционируют как рецептор на растяжение. Веретено состоит из нескольких исчерченных мышечных волокон — интрафузальных волокон, заключенных в растяжимую соединительнотканную капсулу. Между капсулой и интрафузальными волокнами имеется заполненное жидкостью пространство.
Интрафузальные волокна имеют актиновые и миозиновые миофиламенты только на концах, которые и сокращаются. Рецепторной частью интрафузального мышечного волокна является центральная, несокращающаяся часть. К интрафузальным мышечным волокнам подходят афферентные нервные волокна.
При расслаблении (или растяжении) мышцы увеличивается и длина интрафузальных волокон, что регистрируется рецепторами. Одни окончания реагируют на изменение длины мышечного волокна и на скорость этого изменения, другие — реагируют только на изменение длины. При внезапном растяжении в спинной мозг поступает сильный сигнал, вызывающий резкое сокращение мышцы, с которой поступил сигнал, — динамический рефлекс на растяжение. При медленном, длительном растяжении волокна возникает статический сигнал на растяжение. Этот сигнал может поддерживать мышцу в состоянии сокращения в течение нескольких часов.
Интрафузальные волокна имеют также эфферентную иннервацию. К ним подходят тонкие моторные волокна, оканчивающиеся аксо-мышечными синапсами на концах мышечного волокна. Вызывая сокращение концевых участков интрафузального волокна, они усиливают растяжение центральной рецепторной его части, повышая реакцию рецептора.
Нервно-сухожильные веретена обычно располагаются в месте соединения мышцы с сухожилием. Коллагеновые пучки сухожилия, связанные с 10—15 мышечными волокнами, окружены соединительнотканной капсулой. К нервно-сухожильному веретену подходит толстое миелиновое волокно, которое теряет миелин и образует терминали, ветвящиеся между пучками коллагеновых волокон сухожилия. Сигнал с нервно-сухожильных веретен, вызванный напряжением мышцы, возбуждает тормозные нейроны спинного мозга. Последние тормозят соответствующие двигательные нейроны, предотвращая перерастяжение мышцы.
88265010541000
47. Межнейронные контакты (синапсы). Классификация. Ультраструктурная организация химических синапсов. Механизм передачи нервного импульса .
Межнейрональные синапсы
right000Синапсы — это структуры, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры. Синапсы определяют направление проведения импульса. Если раздражать аксон электрическим током, импульс пойдет в обоих направлениях; но импульс, идущий в сторону тела нейрона и его дендритов, не может быть передан на другие нейроны. Только импульс, достигающий терминалей аксона, с помощью синапсов может передать возбуждение на другой нейрон, мышечную или железистую клетку. В зависимости от способа передачи импульса синапсы могут быть химическими или электрическими(электротоническими).
В зависимости от локализации окончаний терминальных веточек аксона, межнейрональные синапсы различают: аксо-дендритические, аксо-соматические,аксо-аксональные.
Химические синапсы передают импульс на другую клетку с помощью специальных биологически активных веществ — нейромедиаторов, или нейротрансмиттеров, находящихся в синаптических пузырьках. Терминаль аксона представляет собой пресинаптическую часть, а область второго нейрона, или другой иннервируемой клетки, с которой она контактирует, — постсинаптическую часть. В пресинаптической части находятся синаптические пузырьки, многочисленные митохондрии и отдельные нейрофиламенты. Форма и содержимое синаптических пузырьков связаны с функцией синапса.
Если передача импульса совершается с помощью медиатора ацетилхолина, - синапсы называют холинергическими, если медиатором служит норадреналин - адренергическими. В зависимости от передаваемого сигнала, нейромедиаторы, и соответственно синапсы, могут быть возбуждающими или тормозными. Такие нейромедиаторы, как дофамин, глицин и гамма-аминомасляная кислота (ГАМК) являются медиаторами тормозящих синапсов.
Область синаптического контакта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны.
Пресинаптическая мембрана — это мембрана клетки, передающей импульс. В этой области локализованы кальциевые каналы, способствующие слиянию синаптических пузырьков с пресинаптической мембраной и выделению медиатора в синаптическую щель.
right000Синаптическая щель между пре- и постсинаптической мембранами имеет ширину 20—30 нм. Мембраны прочно прикреплены друг к другу в синаптической области филаментами, пересекающими синаптическую щель.
Постсинаптическая мембрана — это участок плазмолеммы клетки, воспринимающий медиаторы и генерирующий импульс. Она снабжена рецепторными зонами для восприятия соответствующего нейромедиатора.
В целом процессы в синапсе происходят в следующем порядке:
1. Волна деполяризации доходит до пресинаптической мембраны.
2. При этом открываются кальциевые каналы, и ионы Са2+ входят в терминаль.
3. Повышение концентрации ионов Са2+ в терминали вызывает экзоцитоз нейромедиатора, и медиатор попадает в синаптическую щель.
4. Далее, нейромедиатор диффундирует через синаптическую щель и связывается со специфическими рецепторными участками на постсинаптической мембране, что вызывает молекулярные изменения в постсинаптической мембране, приводящие к открытию ионных каналов и созданию постсинаптических потенциалов, обусловливающих реакции возбуждения или торможения.
Электрические, или электротонические, синапсы в нервной системе млекопитающих встречаются относительно редко. В области таких синапсов цитоплазмы соседних нейронов связаны щелевидными соединениями, обеспечивающими прохождение ионов из одной клетки в другую, а следовательно, электрическое взаимодействие этих клеток. Эти синапсы способствуют синхронизации нейральной активности.
48.Двигательные нервные окончания. Классификация. Ультраструктурная организация нервно - мышечного синапса. Особенности передачи нервного импульса в двигательных нервных окончаниях.
Эффекторные нервные окончания
Среди эффекторных нервных окончаний различают двигательные и секреторные.
right000Двигательные нервные окончания — это концевые аппараты аксонов двигательных клеток соматической или вегетативной нервной системы. При их участии нервный импульс передается на ткани рабочих органов.
Двигательные окончания в поперечнополосатых мышцах называются нервно-мышечными окончаниями. Они представляют собой окончания аксонов клеток двигательных ядер передних рогов спинного мозга или моторных ядер головного мозга. Нервно-мышечное окончание состоит из концевого ветвления осевого цилиндра нервного волокна и специализированного участка мышечного волокна. Миелиновое нервное волокно, подойдя к мышечному волокну, теряет миелиновый слой и погружается в него, вовлекая за собой его плазмолемму и базальную мембрану. Мембрана мышечного волокна образует многочисленные складки, формирующие вторичные синаптические щели эффекторного окончания. В области окончания мышечное волокно не имеет типичной поперечной исчерченности и характеризуется обилием митохондрий, скоплением круглых или слегка овальных ядер.
Терминальные ветви нервного волокна в нервно-мышечном соединении характеризуются обилием митохондрий и многочисленными пресинаптическими пузырьками, содержащими характерный для этого вида окончаний медиатор —ацетилхолин. При возбуждении ацетилхолин поступает через пресинаптическую мембрану в синаптическую щель на холинорецепторы постсинаптической (мышечной) мембраны, вызывая ее возбуждение (волну деполяризации).
Постсинаптическая мембрана моторного нервного окончания содержит фермент ацетилхолинэстеразу, разрушающий медиатор и ограничивающий этим срок его действия.
Двигательные нервные окончания в гладкой мышечной ткани представляют собой чёткообразные утолщения (или варикозы) нервного волокна, идущего среди неисчерченных гладких миоцитов. Варикозы содержат адренергические илихолинергические пресинаптические пузырьки. Нейролеммоциты в области варикозов часто отсутствуют, и волокно проходит «обнаженным».
Сходное строение имеют секреторные нервные окончания (нейрожелезистые). Они представляют собой концевые утолщения терминали или утолщения по ходу нервного волокна, содержащие пресинаптические пузырьки, главным образом холинергические.
ЧАСТНАЯ ГИСТОЛОГИЯ
1. Спинномозговые узлы. Строение. Тканевый состав. Судьба нейритов псевдоуниполярных нейронов.
Нервные узлы, периферические нервы
Нервная ткань (при участии ряда других тканей) формирует нервную систему, обеспечивающую регуляцию всех жизненных процессов в организме и его взаимодействие с внешней средой.
Анатомически нервную систему делят на центральную и периферическую. К центральной относят головной и спинной мозг, периферическая объединяет нервные узлы, нервы и нервные окончания.
Нервная система развивается из нервной трубки и ганглиозной пластинки. Из краниальной части нервной трубки дифференцируются головной мозг и органы чувств. Из туловищного отдела нервной трубки - спинной мозг, из ганглиозной пластинки формируются спинномозговые и вегетативные узлы и хромаффинная ткань организма.
Нервные узлы (ганглии)
Нервные узлы, или ганглии, это скопления нейронов вне центральной нервной системы. Выделяют чувствительные и вегетативные нервные узлы.
Чувствительные нервные узлы лежат по ходу задних корешков спинного мозга и по ходу черепно-мозговых нервов. Афферентные нейроны в спиральном и вестибулярном ганглии являются биполярными, в остальных чувствительных ганглиях -псевдоуниполярными.
Спинномозговой узел (спинальный ганглий)
Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани. От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды.
Нейроны спинномозгового узла характеризуются крупным сферическим телом и светлым ядром с хорошо заметным ядрышком. Клетки располагаются группами, преимущественно по периферии органа. Центр спинномозгового узла состоит главным образом из отростков нейронов и тонких прослоек эндоневрия, несущих сосуды. Дендриты нервных клеток идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Аксоны в совокупности образуют задние корешки, несущие нервные импульсы в спинной мозг или продолговатый мозг.
В спинномозговых узлах высших позвоночных животных и человека биполярные нейроны в процессе созревания становятся псевдоуниполярными. От тела псевдоуниполярного нейрона отходит один отросток, который многократно обвивает клетку и часто образует клубок. Этот отросток разделяется Т-образно на афферентную (дендритную) и эфферентную (аксональную) ветви.
Дендриты и аксоны клеток в узле и за его пределами покрыты миелиновыми оболочками из нейролеммоцитов. Тело каждой нервной клетки в спинномозговом узле окружено слоем уплощенных клеток олигодендроглии, которые здесь называются мантийными глиоцитами, или глиоцитами ганглия, или же клетками-сателлитами. Они расположены вокруг тела нейрона и имеют мелкие округлые ядра. Снаружи глиальная оболочка нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер.
Нейроны спинномозговых узлов содержат такие нейромедиаторы, как ацетилхолин, глутаминовая кислота, вещество P.
2. Спинной мозг. Общая морфофункциональная характеристика. Строение серого и белого вещества спинного мозга. Ядра серого вещества, нейронный состав.
Спинной мозг
Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди - глубокой срединной щелью, а сзади - срединной бороздой. Спинной мозг характеризуется сегментарным строением; с каждым сегментом связана пара передних (вентральных) и пара задних (дорсальных) корешков.
В спинном мозге различают серое вещество, расположенное в центральной части, и белое вещество, лежащее по периферии.
Белое вещество спинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых нервных волокон. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются трактами, или проводящими путями, спинного мозга.
Внешнюю границу белого вещества спинного мозга образует пограничная глиальная мембрана, состоящая из слившихся уплощенных отростков астроцитов. Эту мембрану пронизывают нервные волокна, составляющие передние и задние корешки.
На протяжении всего спинного мозга в центре серого вещества проходит центральный канал спинного мозга, сообщающийся с желудочками головного мозга.
Серое вещество на поперечном разрезе имеет вид бабочки и включает передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В сером веществе находятся тела, дендриты и (частично) аксоны нейронов, а также глиальные клетки. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны. Между телами нейронов находится нейропиль - сеть, образованная нервными волокнами и отростками глиальных клеток.
В процессе развития спинного мозга из нервной трубки нейроны группируются в 10 слоях, или пластинах Рекседа. При этом I-V пластины соответствуют задним рогам, VI-VII пластины - промежуточной зоне, VIII-IX пластины - передним рогам, X пластина - зона около центрального канала. Такое деление на пластины дополняет организацию структуры серого вещества спинного мозга, основывающейся на локализации ядер. На поперечных срезах более отчетливо видны ядерные группы нейронов, а на сагиттальных - лучше видно пластинчатое строение, где нейроны группируются в колонки Рекседа. Каждая колонка нейронов соответствует определенной области на периферии тела.
Клетки, сходные по размерам, тонкому строению и функциональному значению, лежат в сером веществе группами, которые называются ядрами.
Среди нейронов спинного мозга можно выделить три вида клеток:
корешковые,
внутренние,
пучковые.
Аксоны корешковых клеток покидают спинной мозг в составе его передних корешков. Отростки внутренних клеток заканчиваются синапсами в пределах серого вещества спинного мозга. Аксоны пучковых клеток проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определенных ядер спинного мозга в его другие сегменты или в соответствующие отделы головного мозга, образуя проводящие пути. Отдельные участки серого вещества спинного мозга значительно отличаются друг от друга по составу нейронов, нервных волокон и нейроглии.
В задних рогах различают губчатый слой, желатинозное вещество, собственное ядро заднего рога и грудное ядро Кларка. Между задними и боковыми рогами серое вещество вдается тяжами в белое, вследствие чего образуется его сетеобразное разрыхление, получившее название сетчатого образования, или ретикулярной формации, спинного мозга.
Задние рога богаты диффузно расположенными вставочными клетками. Это мелкие мультиполярные ассоциативные и комиссуральные клетки, аксоны которых заканчиваются в пределах серого вещества спинного мозга той же стороны (ассоциативные клетки) или противоположной стороны (комиссуральные клетки).
Нейроны губчатой зоны и желатинозного вещества осуществляют связь между чувствительными клетками спинальных ганглиев и двигательными клетками передних рогов, замыкая местные рефлекторные дуги.
Нейроны ядра Кларка получают информацию от рецепторов мышц, сухожилий и суставов (проприоцептивная чувствительность) по самым толстым корешковым волокнам и передают ее в мозжечок.
В промежуточной зоне расположены центры вегетативной (автономной) нервной системы - преганглионарные холинергические нейроны ее симпатического и парасимпатического отделов.
В передних рогах расположены самые крупные нейроны спинного мозга, которые образуют значительные по объему ядра. Это так же, как и нейроны ядер боковых рогов, корешковые клетки, поскольку их нейриты составляют основную массу волокон передних корешков. В составе смешанных спинномозговых нервов они поступают на периферию и образуют моторные окончания в скелетной мускулатуре. Таким образом, ядра передних рогов представляют собой моторные соматические центры.
Глия спинного мозга
Основную часть глиального остова серого вещества составляют протоплазматические и волокнистые астроциты. Отростки волокнистых астроцитов выходят за пределы серого вещества и вместе с элементами соединительной ткани принимают участие в образовании перегородок в белом веществе и глиальных мембран вокруг кровеносных сосудов и на поверхности спинного мозга.
Олигодендроглиоциты входят в состав оболочек нервных волокон, преобладают в белом веществе.
Эпендимная глия выстилает центральный канал спинного мозга. Эпендимоцитыучаствуют в выработке спинномозговой жидкости (ликвора). От периферического конца эпендимоцита отходит длинный отросток, входящий в состав наружной пограничной мембраны спинного мозга.
Непосредственно под слоем эпендимы располагается субэпендимальная (перивентрикулярная) пограничная глиальная мембрана, образованная отростками астроцитов. Эта мембрана входит в состав т.н. гемато-ликворного барьера.
Микроглия поступает в спинной мозг по мере врастания в него кровеносных сосудов и распределяется в сером и белом веществе.
Соединительнотканные оболочки спинного мозга соответствуют оболочкам головного мозга.
3. Кора больших полушарий головного мозга. Цитоархитектоника коры больших полушарий. Представление о модульной организации коры. Глиоциты коры. Строение и функции гематоэнцефалического барьера. Основные этапы постнатального развития.
КОРА БОЛЬШИХ ПОЛУШАРИЙ (КБПШ). Эмбриональный гистогенез КБПШ начинается на 2-ом месяце эмбрионального развития. Учитывая значение КБПШ для человека сроки ее закладки и развития являются одним из важных критических периодов. Воздействия многих неблагоприятных факторов в эти сроки могут привести к нарушениям и порокам развития головного мозга.Итак, на 2-ом месяце эмбриогенеза из вентрикулярного слоя стенки конечного мозга нейробласты мигрируют вертикально вверх вдоль радиально расположенных волокон глиоцитов и формируют самый внутренний 6-ой слой коры. Затем следуют следующие волны миграции нейробластов, причем мигрирующие нейробласты при этом проходят сквозь ранее образовавшиеся слои и это способствует установлению между клетками большого числа синаптических контактов. Шестислойная структура КБПШ становится четко выраженной на 5-8-ые месяцы эмбриогенеза, причем гетерохронно в разных областях и зонах коры.
Кора БПШ представлена слоем серого вещества толщиной 3-5 мм. В коре насчитывают до 15 и более млрд. нейроцитов, некоторые авторы допускают до 50 млрд. Все нейроциты коры по морфологии мультиполярные. Среди них по форме различают звездчатые, пирамидные, веретеновидные, паукообразные и горизонтальные клетки. Пирамидные нейроциты имеют тело треугольной или пирамидной формы, диаметр тела 10-150 мкм (малые, средние, крупные и гигантские). От основания пирамидной клетки отходит аксон, участвующий при формировании нисходящих пирамидных путей, ассоциативных и комиссуральных пучков, т.е. пирамидные клетки являются эфферентными нейроцитами коры. От вершины и боковых поверхностей треугольного тела нейроцитов отходят длинные дендриты. Дендриты имеют шипики — места синаптических контактов. У одной клетки таких шипиков может быть до 4-6 тысяч.
Звездчатые нейроциты имеют форму звезды; дендриты отходят от тела во все стороны, короткие и без шипиков. Звездчатые клетки являются главными воспринимающими сенсорными элементами КБПШ и основная их масса располагается во 2-ом и 4-ом слое КБПШ.КБПШ подразделяют на лобную, височную, затылочную и теменную долю. Доли делят на области и цитоархитектонические поля. Цитоархитектонические поля — это корковые центры экранного типа. По анатомии Вы подробно изучаете локализации этих полей (центр обоняния, зрения, слуха и т.д.). Эти поля взаимоперекрываются, поэтому при нарушении функций, повреждениях какого либо поля, его функцию частично могут взять на себя соседние поля.Для нейроцитов коры БПШ характерно закономерное послойное расположение, что образует цитоархитектонику коры.
В коре принято различать 6 слоев:1. Молекулярный слой (самый поверхностный) — состоит в основном из тангенциальных нервных волокон, имеется небольшое количество веретеновидных ассоциативных нейроцитов.2. Наружный зернистый слой — слой из мелких звездчатых и пирамидных клеток. Их дендриты находятся в молекулярном слое, часть аксонов направляются в белое вещество, другая часть аксонов поднимается в молекулярный слой.3. Пирамидный слой — состоит из средних и крупных пирамидных клеток. Аксоны идут в белое вещество и в виде ассоциативных пучков направляются в другие извилины данного полушария или в виде комиссуральных пучков в противоположное полушарие.4. Внутренний зернистый слой — состоит из сенсорных звездчатых нейроцитов, имеющих ассоциативные связи с нейроцитами выше- и нижележащих слоев.5. Ганглионарный слой — состоит из крупных и гигантских пирамидных клеток. Аксоны этих клеток направляются в белое вещество и образуют нисходящие проекционные пирамидные пути, также комиссуральные пучки в противоположное полушарие.6. Слой полиморфных клеток — образован нейроцитами самой различной формы (отсюда название). Аксоны нейроцитов участвуют при формировании нисходящих проекционных путей. Дендриты пронизывают всю толщу коры и достигают молекулярного слоя.
Структурно-функциональной единицей коры БПШ является модуль или колонка. Модуль — это совокупность нейроцитов всех 6-ти слоев, расположенных на одном перпендикулярном пространстве и тесно взаимосвязанных между собой и подкорковыми образованьями. В пространстве модуль можно представить как цилиндр, пронизывающий все 6 слоев коры, ориентированный своей длинной осью перпендикулярно к поверхности коры и имеющий диаметр около 300 мкм. В коре БПШ человека насчитывается около 3 млн. модулей. В каждом модуле содержится до 2 тысяч нейроцитов. Вход импульсов в модуль происходит с таламуса по 2-м таламокортикальным волокнам и по 1-му кортикокортикальному волокну с коры данного или противоположного полушария. Кортикокортикальные волокна начинаются с пирамидных клеток 3-го и 5-го слоя коры данного или противоположного полушария, входят в модуль и пронизывают ее с 6-го по 1-й слой, отдавая коллатерали для синапсов на каждом слое. Таламокортикальные волокна — специфические афферентные волокна идущие с таламуса, пронизывают отдавая коллатерали с 6-го по 4-ый слой в модуле. Благодаря наличию сложной взаимосвязи нейроцитов всех 6-ти слоев поступившая информация анализируется в модуле. Выходные эфферентные пути из модуля начинаются с крупных и гигантских пирамидных клеток 3-го, 5-го и 6-го слоя. Кроме участия в формировании проекционных пирамидных путей каждый модуль устанавливает связи с 2-3 модулями данного и противоположного полушария.
Белое вещество конечного мозга состоит из ассоциативных (соединяют извилины одного полушария), комиссуральных (соединяют извилины противоположных полушарий) и проекционных (соединяют кору с нижележащими отделами НС) нервных волокон.Кора БПШ содержит также мощный нейроглиальный аппарат, выполняющий трофическую, защитную, опорно-механическую функцию. Глия содержит все известные элементы — астроциты, олигодендроглиоциты и мозговые макрофаги.
ОСОБЕННОСТИ КРОВОСНАБЖЕНИЯ ЦНС1. Характерно обильное кровоснабжение; обусловлено высоким уровнем потребления кислорода нейроцитами. Если нарушается доставка кислорода более чем на 1 минуту, нейроциты не в состоянии выполнять свои функции и в них включается защитный механизм — запредельное торможение (пример: даже кратковременное пережатие сонных артерий приводит к отключению коры БПШ — человек как бы «засыпает»).2. Гемокапилляры ЦНС имеют непрерывную эндотелиальную выстилку и хорошо выраженную сплошную базальную мембрану. Снаружи гемокапилляры плотно окружены пластинчатыми окончаниями отростков астроцитов. Эндотелий и утолщенная базальная мембрана капилляров вместе с пластинчатыми окончаниями отростков астроцитов образуют гематоэнцефалический барьер.
Периваскулярные пограничные мембраны окружают капилляры головного мозга и входят в состав гемато-энцефалического барьера, отделяющего нейроны центральной нервной системы от крови и тканей внутренней среды. Гемато-энцефалический барьер препятствует проникновению в центральную нервную систему переносимых кровью токсических веществ, нейромедиаторов, гормонов, антибиотиков (что затрудняет лечение инфекционных поражений мозга и его оболочек), поддерживает электролитный баланс мозга, обеспечивает избирательный транспорт ряда веществ (глюкозы, аминокислот) из крови в мозг.
Гемато-энцефалический барьер включает в себя следующие компоненты:
эндотелий кровеносных капилляров (с непрерывной выстилкой) - главный компонент гемато-энцефалического барьера. Его клетки связаны мощными плотными соединениями, образование которых индуцируется контактом с астроцитами. Эндотелий препятствует переносу одних веществ, содержит специфические транспортные системы для других и метаболически изменяет третьи, превращая их в соединения, неспособные проникнуть в мозг; 
базальную мембрану капилляров;
периваскулярную пограничную глиальную мембрану из отростков астроцитов.
Поверхностная пограничная глиальная мембрана (краевая глия) мозга, расположена под мягкой мозговой оболочкой, образует наружную границу головного и спинного мозга, отделяя ткани центральной нервной системы от мозговых оболочек.
Субэпендимальная (перивентрикулярная) пограничная глиальная мембрана располагается под слоем эпендимы и входит в состав нейро-ликворного барьера, который отделяет нейроны от спинномозговой жидкости, называемой также ликвором. Этот барьер представлен эпендимной глией, ее базальной мембраной (присутствует не везде) и отростки астроцитов.
Эпендимная глия образует выстилку желудочков головного мозга и входит в состав гематоликворного барьера (между кровью и спинномозговой жидкости).
Олигодендроглия встречается в сером и белом веществе; она обеспечивает барьерную функцию, участвует в формировании миелиновых оболочек нервных волокон, регулирует метаболизм нейронов, захватывает нейромедиаторы.
Микроглия - специализированные макрофаги центральной нервной системы, обладающие значительной подвижностью. Активируется при воспалительных и дегенеративных заболеваниях. Выполняет в центральной нервной системе роль антиген-представляющих дендритных клеток.
ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ В НЕРВНОЙ СИСТЕМЕИзменения в ЦНС в раннем постнатальном возрасте связаны с созреванием нервной ткани. У новорожденных для корковых нейроцитов характерно высокое ядерно-цитоплазматическое отношение. С возрастом это соотношение снижается за счет увеличения массы цитоплазмы; увеличивается число синапсов.Изменения в ЦНС в старческом возрасте связаны прежде всего со склеротическими изменениями сосудов, приводящие к ухудшению трофики. Утолщается мягкая и паутинная оболочка, там откладываются соли кальция. Наблюдается атрофия коры БПШ, особенно в лобной и теменной долях. Снижается число нейроцитов в единице обьема мозговой ткани из-за гибели клеток. Нейроциты уменьшаются в размерах, в них уменьшается содержание базофильной субстанции (уменьшение числа рибосом и РНК), в ядрах увеличивается доля гетерохроматина. В цитоплазме накапливается пигмент липофусцин. Быстрее других изменяются пирамидные клетки V слоя коры БПШ, грушевидные клетки ганглионарного слоя мозжечка.
4. Морфофункциональная характеристика мозжечка. Строение и нейронный состав коры мозжечка. Основные этапы постнатального развития мозжечка.
Мозжечок
Мозжечок представляет собой центральный орган равновесия и координации движений. Он образован двумя полушариями с большим числом бороздок и извилин, и узкой средней частью - червем.
Основная масса серого вещества в мозжечке располагается на поверхности и образует его кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер мозжечка.
Кора мозжечка является нервным центром экранного типа и характеризуется высокой упорядоченностью расположения нейронов, нервных волокон и глиальных клеток. В коре мозжечка различают три слоя: молекулярный, ганглионарный и зернистый.
Наружный молекулярный слой содержит сравнительно мало клеток. В нем различают корзинчатые и звездчатые нейроны.
Средний ганглионарный слой образован одним рядом крупных грушевидных клеток, впервые описанных чешским ученым Яном Пуркинье.
Внутренний зернистый слой характеризуется большим количеством плотно лежащих клеток, а также наличием т.н. клубочков мозжечка. Среди нейронов здесь выделяют клетки-зерна, клетки Гольджи, и веретеновидные горизонтальные нейроны.
Более детальное строение коры мозжечка
Молекулярный слой содержит два основных вида нейронов: корзинчатые и звездчатые. Корзинчатые нейроны находятся в нижней трети молекулярного слоя. Их дендриты образуют связи с параллельными волокнами в наружной части молекулярного слоя. Длинные аксоны корзинчатых клеток идут поперек извилины и отдают коллатерали к телам грушевидных нейронов, густо оплетая их наподобие корзинки. Активность корзинчатых нейронов вызывает торможение грушевидных нейронов Пуркинье.
Звездчатые нейроны лежат выше корзинчатых и бывают двух типов. Мелкие звездчатые нейроны снабжены короткими дендритами и слаборазветвленными аксонами, образующими синапсы на дендритах грушевидных клеток. Крупные звездчатые нейроны в отличие от мелких имеют длинные и сильно разветвленные дендриты и аксоны. Ветви их аксонов входят в состав так называемых корзинок. Корзинчатые и звездчатые нейроны молекулярного слоя представляют собой единую систему вставочных нейронов, передающую тормозные нервные импульсы на дендриты и тела грушевидных клеток в плоскости, поперечной извилинам.
Ганглионарный слой содержит лежащие в один ряд тела клеток Пуркинье, оплетенные коллатералями аксонов корзинчатых клеток. От крупного грушевидного тела этих нейронов в молекулярный слой отходят 2-3 дендрита, которые обильно ветвятся и пронизывают всю толщу молекулярного слоя. Все ветви дендритов располагаются только в одной плоскости, перпендикулярной к направлению извилин. На дендритах находятся шипики - контактные зоны возбуждающих синапсов, образуемых параллельными волокнами и тормозных синапсов, образуемых лазящими волокнами.
От основания тел клеток Пуркинье отходят аксоны, проходящие через зернистый слой коры мозжечка в белое вещество и заканчивающиеся на клетках ядер мозжечка. Это начальное звено эфферентных тормозных путей мозжечка. В пределах зернистого слоя от этих аксонов отходят коллатерали, которые возвращаются в ганглионарный слой и вступают в синаптическую связь с соседними грушевидными нейронами.
Зернистый слой коры мозжечка содержит близко расположенные тела зерновидных нейронов, или клеток-зерен. Клетка имеет 3-4 коротких дендрита, заканчивающихся в этом же слое концевыми ветвлениями в виде "птичьей лапки". Вступая в синаптическую связь с окончаниями приходящих в мозжечок возбуждающих моховидных волокон, дендриты клеток-зерен образуют характерные структуры, именуемые клубочками мозжечка.
Аксоны клеток-зерен поднимаются в молекулярный слой и в нем Т-образно делятся на две ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка. Преодолевая большие расстояния, эти параллельные волокна пересекают ветвления дендритов многих грушевидных клеток и образуют с ними и дендритами корзинчатых и звездчатых нейронов синапсы. Таким образом, аксоны клеток-зерен передают возбуждение, полученное ими от моховидных волокон, на значительное расстояние многим грушевидным клеткам.
Вторым типом клеток зернистого слоя мозжечка являются тормозные звездчатые нейроны, они же большие клетки-зерна, они же клетки Гольджи. Различают два вида таких клеток: с короткими и длинными аксонами. Нейроны с короткими аксонами лежат вблизи ганглионарного слоя. Их разветвленные дендриты распространяются в молекулярном слое и образуют синапсы с параллельными волокнами - аксонами клеток-зерен. Короткие аксоны направляются к клубочкам мозжечка и заканчиваются синапсами на концевых ветвлениях дендритов клеток-зерен проксимальнее синапсов моховидных волокон. Возбуждение звездчатых нейронов может блокировать импульсы, поступающие по моховидным волокнам.
Немногочисленные звездчатые нейроны с длинными аксонами имеют обильно ветвящиеся в зернистом слое дендриты и аксоны, выходящие в белое вещество. Предполагают, что эти клетки обеспечивают связь между различными областями коры мозжечка.
Третий тип клеток зернистого слоя составляют веретеновидные горизонтальные клетки. Они имеют небольшое вытянутое тело, от которого в обе стороны отходят длинные горизонтальные дендриты, заканчивающиеся в ганглионарном и зернистом слоях. Аксоны этих клеток дают коллатерали в зернистый слой и уходят в белое вещество.
Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами - моховидными и лазящими волокнами. Моховидные волокна через клетки-зерна оказывают на грушевидные клетки возбуждающее действие. Они заканчиваются в клубочках зернистого слоя мозжечка в виде расширений-розеток, где вступают в контакт с дендритами клеток-зерен. Каждое моховидное волокно дает ветви ко многим клубочкам мозжечка, и каждый клубочек получает ветви от многих моховидных волокон. Аксоны клеток-зерен по параллельным волокнам молекулярного слоя передают импульс дендритам грушевидных, корзинчатых, звездчатых нейронов зернистого слоя.
Лазящие, или лиановидные, волокна пересекают зернистый слой, прилегают к грушевидным нейронам и стелются по их дендритам, заканчиваясь на их поверхности возбуждающими синапсами. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам. С каждой клеткой Пуркинье обычно контактирует одно такое волокно.
Таким образом, возбуждающие импульсы, поступающие в кору мозжечка, достигают грушевидных нейронов или непосредственно по лазящим волокнам или по параллельным волокнам клеток-зерен.
Торможение в мозжечке - функция звездчатых нейронов молекулярного слоя, корзинчатых нейронов, а также клеток Гольджи зернистого слоя. Аксоны двух первых, следуя поперек извилин и тормозя активность грушевидных клеток, ограничивают их возбуждение узкими дискретными зонами коры. Поступление в кору мозжечка возбуждающих сигналов по моховидным волокнам, через клетки-зерна и параллельные волокна может быть прервано тормозными синапсами больших звездчатых нейронов, локализованными на концевых ветвлениях дендритов клеток-зерен проксимальнее возбуждающих синапсов.
Эфферентные волокна коры мозжечка представлены аксонами клеток Пуркинье, которые в виде миелиновых волокон направляются в белое вещество и достигают глубоких ядер мозжечка и вестибулярного ядра, на нейронах которых они образуют тормозные синапсы.
Кора мозжечка содержит различные глиальные элементы. В зернистом слое имеются волокнистые и протоплазматические астроциты. Ножки отростков волокнистых астроцитов образуют периваскулярные мембраны, являющиеся компонентом гемато-энцефалического барьера, а также оболочки вокруг клубочков мозжечка. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этими клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат особые астроциты с темными ядрами - клетки Бергмана. Отростки этих клеток направляются к поверхности коры и образуют глиальные волокна молекулярного слоя мозжечка (волокна Бергмана), поддерживающие ветвления дендритов грушевидных клеток. Микроглия в большом количестве содержится в молекулярном и ганглионарном слоях.
5. Органы чувств. Понятие об анализаторах . Орган обоняния . Строение и клеточный состав обонятельной выстилки. Гистофизиология органа обоняния.
Под сенсорной системой понимают совокупность органов и структур, обеспечивающих:
восприятие различных раздражителей, действующих на организм;
преобразование и кодирование внешней энергии в нервный импульс,
передачу по нервным путям в подкорковые и корковые центры, где происходят
анализ поступившей информации и формирование субъективных ощущений.
Сенсорная система - это анализаторы внешней и внутренней среды, которые обеспечивают адаптацию организма к конкретным условиям.
В каждом анализаторе различают 3 части:
периферическую (рецепторную),
промежуточную и
центральную.
Периферическая часть представлена органами, в которых находятся специализированные рецепторные клетки. По специфичности восприятия стимулов различают механорецепторы(рецепторы органа слуха, равновесия, тактильные рецепторы кожи, рецепторы аппарата движения, барорецепторы), хеморецепторы (органов вкуса, обоняния, сосудистые интерорецепторы),фоторецепторы (сетчатки глаза), терморецепторы (кожи, внутренних органов), болевые рецепторы.
Рецепторные клетки периферического отдела анализаторов являются составной частью органов чувств (например, глаз, ухо и др.), а также органов, выполняющих в основном несенсорные функции (т.к. нос, язык и др.).
Промежуточная (проводниковая) часть сенсорной системы представляет собой цепь вставочных нейронов, по которым нервный импульс от рецепторных клеток передается к корковым центрам. На этом пути могут быть промежуточные, подкорковые, центры, где происходят обработка афферентной информации и переключение ее на эфферентные центры.
Центральная часть сенсорной системы представлена участками коры больших полушарий. В центре осуществляются анализ поступившей информации, формирование субъективных ощущений. Здесь информация может быть заложена в долговременную память или переключена на эфферентные пути.
Классификация органов чувств
В зависимости от строения и функции рецепторной части органы чувств делятся на три типа.
К первому типу относятся органы чувств, у которых рецепторами являются специализированные нейросенсорные клетки, преобразующие внешнюю энергию в нервный импульс. К таким «первичным» органам чувств относятся орган зрения и орган обоняния.
Ко второму типу относятся органы чувств, у которых рецепторами являются не нервные, а эпителиальные клетки (сенсоэпителиальные). От них преобразованное раздражение передается дендритам чувствительных нейронов, которые воспринимают возбуждение сенсоэпителиальных клеток и порождают нервный импульс. К таким «вторичночувствующим» органам относятся органы слуха, равновесия, вкуса.
К третьему типу с невыраженной анатомически органной формой относятся проприоцептивная (т.е скелетно-мышечная), кожная и висцеральная сенсорные системы. Периферические отделы в них представлены различными инкапсулированными и неинкапсулированными рецепторами.
Обонятельные сенсорные системы. Органы обоняния
Обонятельный анализатор представлен двумя системами — основной и вомероназальной, каждая из которых имеет три части: периферическую (органы обоняния), промежуточную, состоящую из проводников (аксоны нейросенсорных обонятельных клеток и нервных клеток обонятельных луковиц), и центральную, локализующуюся в гиппокампе коры больших полушарий для основной обонятельной системы.
Основной орган обоняния (organum olfactus), являющийся периферической частью сенсорной системы, представлен ограниченным участком слизистой оболочки носа — обонятельной областью, покрывающей у человека верхнюю и отчасти среднюю раковины носовой полости, а также верхнюю часть носовой перегородки. Внешне обонятельная область отличается от респираторной части слизистой оболочки желтоватым цветом.
Периферической частью вомероназальной, или дополнительной, обонятельной системы является вомероназальный (якобсонов) орган (organum vomeronasale Jacobsoni). Он имеет вид парных эпителиальных трубок, замкнутых с одного конца и открывающихся другим концом в полость носа. У человека вомероназальный орган расположен в соединительной ткани основания передней трети носовой перегородки по обе ее стороны на границе между хрящом перегородки и сошником. Кроме якобсонова органа, вомероназальная система выключает в себя вомероназальный нерв, терминальный нерв и собственное представительство в переднем мозге — добавочную обонятельную луковицу.
Функции вомероназальной системы связаны с функциями половых органов (регуляция полового цикла и сексуального поведения), и также связаны с эмоциональной сферой.
Развитие. Органы обоняния имеют эктодермальное происхождение. Основной орган развивается из плакод — утолщений передней части эктодермы головы. Из плакод формируются обонятельные ямки. У зародышей человека на 4-м месяце развития из элементов, составляющих стенки обонятельных ямок, образуются поддерживающие эпителиоциты и нейросенсорные обонятельные клетки. Аксоны обонятельных клеток, объединившись между собой, образуют в совокупности 20—40 нервных пучков (обонятельных путей — fila olfactoria), устремляющихся через отверстия в хрящевой закладке будущей решетчатой кости к обонятельным луковицам головного мозга. Здесь осуществляется синаптический контакт между терминалями аксонов и дендритами митральных нейронов обонятельных луковиц. Некоторые участки эмбриональной обонятельной выстилки, погружаясь в подлежащую соединительную ткань, образуют обонятельные железы.
Вомероназальный (якобсонов) орган формируется в виде парной закладки на 6-й неделе развития из эпителия нижней части перегородки носа. К 7-й неделе развития завершается формирование полости во-мероназального органа, а вомероназальный нерв соединяет его с добавочной обонятельной луковицей. В вомероназальном органе плода 21-й недели развития имеются опорные клетки с ресничками и микроворсинками и рецепторные клетки с микроворсинками. Структурные особенности вомероназального органа указывают на его функциональную активность уже в перинатальном периоде.
Строение. Основной орган обоняния — периферическая часть обонятельного анализатора — состоит из пласта многорядного эпителия высотой 60—90 мкм, в котором различают три типа клеток: обонятельные нейросенсорные клетки, поддерживающие и базальные эпителиоциты. От подлежащей соединительной ткани они отделены хорошо выраженной базальной мембраной. Обращенная в носовую полость поверхность обонятельной выстилки покрыта слоем слизи.
Рецепторные, или нейросенсорные, обонятельные клетки (cellulae neurosensoriae olfactoriae) располагаются между поддерживающими эпителиоцитами и имеют короткий периферический отросток — дендрит и длинный - центральный — аксон. Их ядросодержащие части занимают, как правило, срединное положение в толще обонятельной выстилки.
У собак, которые отличаются хорошо развитым органом обоняния, насчитывается около 225 млн обонятельных клеток, у человека их число значительно меньше, но все же достигает 6 млн (30 тыс. на 1 мм2). Дистальные части дендритов обонятельных клеток заканчиваются характерными утолщениями — обонятельными булавами (clava olfactoria). Обонятельные булавы клеток на своей округлой вершине несут до 10—12 подвижных обонятельных ресничек.
Цитоплазма периферических отростков содержит митохондрии и вытянутые вдоль оси отростка микротрубочки диаметром до 20 нм. Около ядра в этих клетках отчетливо выявляется гранулярная эндоплазматическая сеть. Реснички булав содержат продольно ориентированные фибриллы: 9 пар периферических и 2 — центральных, отходящих от базальных телец. Обонятельные реснички подвижны и являются своеобразными антеннами для молекул пахучих веществ. Периферические отростки обонятельных клеток могут сокращаться под действием пахучих веществ. Ядра обонятельных клеток светлые, с одним или двумя крупными ядрышками. Назальная часть клетки продолжается в узкий, слегка извивающийся аксон, который проходит между опорными клетками. В соединительнотканном слое центральные отростки составляют пучки безмиелинового обонятельного нерва, которые объединяются в 20—40 обонятельных нитей (filia olfactoria) и через отверстия решетчатой кости направляются в обонятельные луковицы.
Поддерживающие эпителиоциты (epitheliocytus sustentans) формируют многорядный эпителиальный пласт, в котором и располагаются обонятельные клетки. На апикальной поверхности поддерживающих эпителиоцитов имеются многочисленные микроворсинки длиной до 4 мкм. Поддерживающие эпителиоциты проявляют признаки апокриновой секреции и обладают высоким уровнем метаболизма. В цитоплазме их имеется эндоплазматическая сеть. Митохондрии большей частью скапливаются в апикальной части, где находится также большое число гранул и вакуолей. Аппарат Гольджи располагается над ядром. В цитоплазме поддерживающих клеток содержится коричнево-желтый пигмент.
Базальные эпителиоциты (epitheliocytus basales) находятся на базальной мембране и снабжены цитоплазматическими выростами, окружающими пучки аксонов обонятельных клеток. Цитоплазма их заполнена рибосомами и не содержит тонофибрилл. Существует мнение, что базальные эпителиоциты служат источником регенерации рецепторных клеток.
Эпителий вомероназального органа состоит из рецепторной и респираторной частей. Рецепторная часть по строению сходна с обонятельным эпителием основного органа обоняния. Главное отличие состоит в том, что обонятельные булавы рецепторных клеток вомероназального органа несут на своей поверхности не реснички, способные к активному движению, а неподвижные микроворсинки.
Промежуточная, или проводниковая, часть основной обонятельной сенсорной системы начинается обонятельными безмиелиновыми нервными волокнами, которые объединяются в 20—40 нитевидных стволиков (fila olfactoria) и через отверстия решетчатой кости направляются в обонятельные луковицы. Каждая обонятельная нить представляет собой безмиелиновое волокно, содержащее от 20 до 100 и более осевых цилиндров аксонов рецепторных клеток, погруженных в леммоциты. В обонятельных луковицах расположены вторые нейроны обонятельного анализатора. Это крупные нервные клетки, называемыемитральными, имеют синаптические контакты с несколькими тысячами аксонов нейросенсорных клеток одноименной, а частично и противоположной стороны. Обонятельные луковицы построены по типу коры больших полушарий головного мозга, имеют концентрически расположенные 6 слоев: 1 -слой обонятельных волокон, 2 — клубочковый слой, 3 — наружный сетевидный слой, 4 — слой тел митральных клеток, 5 — внутренний сетевидный, 6 — зернистый слой.
Контакт аксонов нейросенсорных клеток с дендритами митральных происходит в клубочковом слое, где суммируются возбуждения рецепторных клеток. Здесь же осуществляется взаимодействие рецепторных клеток между собой и с мелкими ассоциативными клетками. В обонятельных клубочках реализуются и центробежные эфферентные влияния, исходящие из вышележащих эфферентных центров (переднее обонятельное ядро, обонятельный бугорок, ядра миндалевидного комплекса, препириформная кора). Наружный сетевидный слой образован телами пучковых клеток и многочисленными синапсами с дополнительными дендритами митральных клеток, аксонами межклубочковых клеток и дендро-дендритическими синапсами митральных клеток. В 4-м слое лежат тела митральных клеток. Их аксоны проходят через 4—5-й слои луковиц, а на выходе из них образуют обонятельные контакты вместе с аксонами пучковых клеток. В области 6-го слоя от аксонов митральных клеток отходят возвратные коллатерали, распределяющиеся в разных слоях. Зернистый слой образован скоплением клеток-зерен, которые по своей функции являются тормозными. Их дендриты образуют синапсы с возвратными коллатералями аксонов митральных клеток.
Промежуточная, или проводниковая, часть вомероназальной системы представлена безмиелиновыми волокнами вомероназального нерва, которые, подобно основным обонятельным волокнам, объединяются в нервные стволики, проходят через отверстия решетчатой кости и соединяются с добавочной обонятельной луковицей, которая расположена в дорсомедиальной части основной обонятельной луковицы и имеет сходное строение.
Центральный отдел обонятельной сенсорной системы локализуется в древней коре — в гиппокампе и в новой — гиппокамповой извилине, куда направляются аксоны митральных клеток (обонятельный тракт). Здесь происходит окончательный анализ обонятельной информации.
Сенсорная обонятельная система через ретикулярную формацию связана с вегетативными центрами, чем и объясняются рефлексы с обонятельных рецепторов на пищеварительную и дыхательную системы.
На животных установлено, что из дополнительной обонятельной луковицы аксоны вторых нейронов вомероназальной системы направляются в медиальное преоптическое ядро и гипоталамус, а также в вентральную область премамиллярного ядра и среднее амигдалярное ядро. Связи проекций вомероназального нерва у человека пока мало исследованы.
Обонятельные железы. В подлежащей рыхлой волокнистой ткани обонятельной области располагаются концевые отделы трубчато-алъвеолярных желез, выделяющие секрет, который содержит мукопротеиды. Концевые отделы состоят из элементов двоякого рода: снаружи лежат более уплощенные клетки — миоэпителиальные, внутри — клетки, секретирующие по мерокриновому типу. Их прозрачный, водянистый секрет вместе с секретом поддерживающих эпителиоцитов увлажняет поверхность обонятельной выстилки, что является необходимым условием для функционирования обонятельных клеток. В этом секрете, омывающем обонятельные реснички, растворяются пахучие вещества, присутствие которых только в этом случае и воспринимается рецепторными белками, вмонтированными в мембрану ресничек обонятельных клеток.
Васкуляризация. Слизистая оболочка полости носа обильно снабжена кровеносными и лимфатическими сосудами. Сосуды микроциркуляторного типа напоминают кавернозные тела. Кровеносные капилляры синусоидного типа образуют сплетения, которые способны депонировать кровь. При действии резких температурных раздражителей и молекул пахучих веществ слизистая оболочка носа может сильно набухать и покрываться значительным слоем слизи, что затрудняет носовое дыхание и обонятельную рецепцию.
Возрастные изменения. Чаще всего они обусловлены перенесенными в течение жизни воспалительными процессами (риниты), которые приводят к атрофии рецепторных клеток и разрастанию респираторного эпителия.
Регенерация. У млекопитающих в постнатальном онтогенезе обновление рецепторных обонятельных клеток происходит в течение 30 сут (за счет малодифференцированных базальных клеток). В конце жизненного цикла нейроны подвергаются деструкции. Малодифференцированные нейроны базального слоя способны к митотическому делению, лишены отростков. В процессе их дифференцировки увеличивается объем клеток, появляются специализированный дендрит, растущий к поверхности, и аксон, растущий в сторону базальной мембраны. Клетки постепенно перемещаются к поверхности, замещая погибшие нейроны. На дендрите формируются специализированные структуры (микроворсинки и реснички).
6. Орган зрения. Эмбриогенез глаза . Общий план строения глазного яблока.
Зрительная сенсорная система. Орган зрения
Глаз (ophthalmos oculus) — орган зрения, представляющий собой периферическую часть зрительного анализатора, в котором рецепторную функцию выполняют нейроны сетчатой оболочки.
Развитие. Глаз развивается из различных эмбриональных зачатков. Сетчатка и зрительный нерв формируются из нервной трубки путем образования сначала так называемых глазных пузырьков, сохраняющих связь с эмбриональным мозгом при помощи полых глазных стебельков. Передняя часть глазного пузырька впячивается внутрь его полости, благодаря чему он приобретает форму двухстенного глазного бокала. Часть эктодермы, расположенная напротив отверстия глазного бокала, утолщается (т.н. плакоды), инвагинирует и отшнуровывается от кожной эктодермы, давая начало зачатку хрусталика. Эктодерма претерпевает эти изменения под влиянием индукторов дифференцировок, образующихся в глазном пузырьке. Первоначально хрусталик имеет вид полого эпителиального пузырька. Затем клетки эпителия его задней стенки удлиняются и превращаются в так называемые хрусталиковые волокна, заполняющие полость пузырька. В процессе развития внутренняя стенка глазного бокала преобразуется в сетчатку, а наружная - в пигментный слой сетчатки. Из нейробластов внутренней стенки глазного бокала образуются колбочковые и палочковые фоторецепторные (нейросенсорные) клетки и другие нейроны сетчатки. Развитие фоторецепторных элементов тесно связано с развитием пигментного слоя сетчатки. При этом диски будущих колбочковых и палочковых клеток развиваются сначала одинаково — путем образования складок плазматической мембраны и ресничек, затем часть эмбриональных колбочковых клеток претерпевает дополнительную дифференцировку, приводящую к замыканию дисков, отрыву их от плазмолеммы и превращению в палочковые клетки. Образование дисков индуцируется витамином А. В его отсутствие они не развиваются, а у взрослых при продолжительной недостаточности витамина А диски разрушаются.
Стебелек глазного бокала пронизывается аксонами образующихся в сетчатке ганглиозных клеток. Эти аксоны и формируют зрительный нерв, направляющийся в мозг. Из окружающей глазной бокал мезенхимы формируются сосудистая оболочка и склера. В передней части глаза склера переходит в покрытую многослойным плоским эпителием прозрачную роговицу. Сосуды и мезенхима, проникающие на ранних стадиях развития внутрь глазного бокала, совместно с эмбриональной сетчаткой принимают участие в образовании стекловидного тела и радужки. Мышца радужки, суживающая зрачок, развивается из краевого утолщения наружного и внутреннего листков глазного бокала, а мышца, расширяющая зрачок, - из наружного листка. Таким образом, обе мышцы радужки по своему происхождению являются нейральными.
Строение глаза
Глазное яблоко (bulbus oculi) состоит из трех оболочек: фиброзной, сосудистой и сетчатой.
Наружная (фиброзная) оболочка глазного яблока (tunica fibrosa bulbi), к которой прикрепляются наружные мышцы глаза, обеспечивает защитную функцию. В ней различают передний прозрачный отдел - роговицу и задний непрозрачный отдел — склеру.
Средняя (сосудистая) оболочка (tunica vasculosa bulbi, uvea) выполняет основную роль в обменных процессах. Она имеет три части: часть радужки, часть цилиарного тела и собственно сосудистую - хориодею (choriodea).
Внутренняя, чувствительная оболочка глаза — сетчатка (tunica interna sensoria bulbi,retina) — сенсорная, рецепторная часть зрительного анализатора, в которой происходят под воздействием света фотохимические превращения зрительных пигментов, фототрансдукция, изменение биоэлектрической активности нейронов и передача информации о внешнем мире в подкорковые и корковые зрительные центры.
Оболочки глаза и их производные формируют три функциональных аппарата:светопреломляющий, или диоптрический (роговица, жидкость передней и задней камер глаза, хрусталик и стекловидное тело); аккомодационный (радужка, ресничное тело с ресничными отростками); рецепторный аппарат (сетчатка).
Наружная фиброзная оболочка — склера (sclera) — образована плотной оформленной волокнистой соединительной тканью, содержащей пучки коллагеновых волокон, между которыми находятся уплощенной формы фибробласты и отдельные эластические волокна. Пучки коллагеновых волокон, истончаясь, переходят в собственное вещество роговицы.
Толщина склеры в заднем отделе вокруг зрительного нерва наибольшая — 1,2— 1,5 мм, кпереди склера истончается до 0,6 мм у экватора и до 0,3—0,4 мм позади места прикрепления прямых мышц. В области диска зрительного нерва большая часть (⅔) истонченной фиброзной оболочки сливается с твердой оболочкой зрительного нерва, а истонченные внутренние слои образуют решетчатую пластинку (lamina cribrosa). При повышении внутриглазного давления фиброзная оболочка истончается, что является причиной некоторых патологических изменений.
Светопреломляющий аппарат глаза
Светопреломляющий (диоптрический) аппарат глаза включает роговицу, хрусталик, стекловидное тело, жидкости передней и задней камер глаза.
Роговица (cornea) занимает 1/16 площади фиброзной оболочки глаза и, выполняя защитную функцию, отличается высокой оптической гомогенностью, пропускает и преломляет световые лучи и является составной частью светопреломляющего аппарата глаза. Пластинки коллагеновых фибрилл, из которых состоит основная часть роговицы, имеют правильное расположение, одинаковый показатель преломления с нервными ветвями и межуточной субстанцией, что вместе с химическим составом определяет ее прозрачность.
Толщина роговицы 0,8—0,9 мкм в центре и 1,1 мкм на периферии, радиус кривизны 7,8 мкм, показатель преломления — 1,37, сила преломления 40 дптр.
В роговице микроскопически выделяют 5 слоев: 1) передний многослойный плоский неороговевающий эпителий; 2) переднюю пограничную мембрану (боуменову оболочку); 3) собственное вещество роговицы; 4) заднюю пограничную эластическую мембрану (десцеметову оболочку); 5) задний эпителий («эндотелий»).
Клетки переднего эпителия роговицы плотно прилегают друг к другу, располагаются в 5 слоев, соединены десмосомами. Базальный слой расположен на боуменовой оболочке. В патологических условиях (при недостаточно прочной связи базального слоя и боуменовой оболочки) происходит отслойка от базального слоя боуменовой оболочки. Клетки базального слоя эпителия (герминативный, зародышевый слой) имеют призматическую форму и овальное ядро, расположенное близко к вершине клетки. К базальному слою примыкают 2—3 слоя многогранных клеток. Их вытянутые в стороны отростки внедряются между соседними клетками эпителия, подобно крыльям (крылатые, или шиповидные, клетки). Ядра крылатых клеток округлые. Два поверхностных эпителиальных слоя состоят из резко уплощенных клеток, не имеют признаков ороговения. Удлиненные узкие ядра клеток наружных слоев эпителия располагаются параллельно поверхности роговицы. В эпителии имеются многочисленные свободные нервные окончания, обусловливающие высокую тактильную чувствительность роговицы. Поверхность роговицы увлажнена секретом слезных и конъюнктивальных желез, который защищает глаз от вредных физико-химических воздействий внешнего мира, бактерий. Эпителий роговицы отличается высокой регенерационной способностью. Под эпителием роговицы расположена бесструктурная передняя пограничная мембрана (lamina limitans interna) — боуменова оболочка толщиной 6—9 мкм. Она представляет собой модифицированную гиалинизированную часть стромы, трудноотличима от последней и имеет тот же состав, что и собственное вещество роговицы. Граница между боуменовой оболочкой и эпителием хорошо выражена, а слияние боуменовой оболочки со стромой происходит незаметно.
Собственное вещество роговицы (substantia propria cornea) — строма — состоит из гомогенных тонких соединительнотканных пластинок, взаимопересекающихся под углом, но правильно чередующихся и расположенных параллельно поверхности роговицы. В пластинках и между ними располагаются отростчатые плоские клетки, являющиеся разновидностями фибробластов. Пластинки состоят из параллельно расположенных пучков коллагеновых фибрилл диаметром 0,3—0,6 мкм (по 1000 в каждой пластинке). Клетки и фибриллы погружены в аморфное вещество, богатое гликозаминогликанами (в основном кератинсульфатами), которое обеспечивает прозрачность собственного вещества роговицы. В области радужно-роговичного угла оно продолжается в непрозрачную наружную оболочку глаза — склеру. Собственное вещество роговицы не имеет кровеносных сосудов.
Задняя пограничная пластинка (lamina limitans posterior) - десцеметова оболочка — толщиной 5—10 мкм, представлена коллагеновыми волокнами диаметром 10 нм, погруженными в аморфное вещество. Это стекловидная, сильно преломляющая свет мембрана. Она состоит из 2 слоев: наружного - эластического, внутреннего — кутикулярного и является производным клеток заднего эпителия («эндотелия»). Характерными особенностями десцеметовой оболочки являются прочность, резистентность к химическим агентам и расплавляющему действию гнойного экссудата при язвах роговицы.
При гибели передних слоев десметова оболочка выпячивается в виде прозрачного пузырька (десцеметоцеле). На периферии она утолщается, и у людей пожилого возраста на этом месте могут формироваться округлые бородавчатые образования — тельца Гассаля—Генле.
У лимба десцеметова оболочка, истончаясь и разволокняясь, переходит в трабекулы склеры.
«Эндотелий роговицы», или задний эпителий (epithelium posterius), состоит из одного слоя плоских полигональных клеток. Он защищает строму роговицы от воздействия влаги передней камеры. Ядра клеток «эндотелия» округлые или слегка овальные, их ось располагается параллельно поверхности роговицы. Клетки «эндотелия» нередко содержат вакуоли. На периферии «эндотелий» переходит непосредственно на волокна трабекулярной сети, образуя наружный покров каждого трабекулярного волокна, вытягиваясь в длину.
В регуляции водного обмена играют роль боуменова и десцеметова оболочки, а процессы обмена в роговице обеспечиваются диффузией питательных веществ из передней камеры глаза за счет краевой петлистой сети роговицы, многочисленными концевыми капиллярными ветвями, образующими густое перилимбальное сплетение.
Лимфатическая система роговицы формируется из узких лимфатических щелей, сообщающихся с ресничным венозным сплетением. Роговица отличается высокой чувствительностью, что объясняется наличием в ней нервных окончаний.
Длинные цилиарные нервы, представляя ветви назоцилиарного нерва, отходящего от первой ветви тройничного нерва, на периферии роговицы проникают в ее толщу, теряют миелин на некотором расстоянии от лимба, делясь дихотомически. Нервные ветви образуют следующие сплетения: в собственном веществе роговицы, претерминальное и под боуменовой оболочкой — терминальное, суббазальное (сплетение Райзера).
При воспалительных процессах кровеносные капилляры и клетки (лейкоциты, макрофаги и др.) проникают из области лимба в собственное вещество роговицы, что приводит к ее помутнению и ороговению, образованию бельма.
Передняя камера глаза образована роговицей (наружная стенка) и радужной оболочкой (задняя стенка), в области зрачка — передней капсулой хрусталика. На крайней ее периферии в углу передней камеры имеется камерный, или радужно-роговичный, угол (spatia anguli iridocornealis) с небольшим участком цилиарного тела. Камерный (еще называемый фильтрационный) угол граничит с дренажным аппаратом — шлеммовым каналом. Состояние камерного угла играет большую роль в обмене внутриглазной жидкости и в изменении внутриглазного давления. Соответственно вершине угла в склере проходит кольцевидно располагающийся желобок (sulcus sclerae interims). Задний край желобка несколько утолщен и образует склеральный валик, сформированный за счет круговых волокон склеры (заднее пограничное кольцо Швальбе). Склеральный валик служит местом прикрепления поддерживающей связки цилиарного тела и радужной оболочки — трабекулярного аппарата, заполняющего переднюю часть склерального желобка. В задней части он прикрывает шлеммов канал.
Трабекулярный аппарат, ранее ошибочно называвшийся гребенчатой связкой, состоит из 2 частей: склерокорнеальной (lig. sclerocorneale), занимающей большую часть трабекулярного аппарата, и второй, более нежной, - увеальной части, которая расположена с внутренней стороны и является собственно гребенчатой связкой (lig. pectinatum). Склерокорнеальный отдел трабекулярного аппарата прикрепляется к склеральной шпоре, частично сливается с цилиарной мышцей (мышца Брюкке). Склерокорнеальная часть трабекулярного аппарата состоит из сети переплетающихся трабекул, имеющих сложную структуру. В центре каждой трабекулы, представляющей плоский тонкий тяж, проходит коллагеновое волокно, обвитое, укрепленное эластическими волокнами и покрытое снаружи футляром из гомогенной стекловидной оболочки, являющейся продолжением десцеметовой оболочки. Между сложным переплетом корнеосклеральных волокон остаются многочисленные свободные щелевидные отверстия - фонтановы пространства, выстланные «эндотелием», переходящим с задней поверхности роговицы. Фонтановы пространства направлены к стенке венозного синуса склеры (sinus venosus sclerae) - шлеммова канала, расположенного в нижнем отделе склерального желобка шириной 0,25 см. В некоторых местах он разделяется на ряд канальцев, далее сливающихся в один ствол. Внутри шлеммов канал выстлан эндотелием. С его наружной стороны отходят широкие, иногда варикозно-расширенные сосуды, образующие сложную сеть анастомозов, от которых берут начало вены, отводящие камерную влагу в глубокое склеральное венозное сплетение.
Хрусталик (lens). Это прозрачная двояковыпуклая линза, форма которой меняется во время аккомодации глаза к видению близких или отдаленных объектов. Вместе с роговицей и стекловидным телом хрусталик составляет основную светопреломляющую среду. Радиус кривизны хрусталика варьирует от 6 до 10 мм, показатель преломления составляет 1,42. Хрусталик покрыт прозрачной капсулой толщиной 11—18 мкм. Его передняя стенка состоит из однослойного плоского эпителия хрусталика (epithelium lentis).
По направлению к экватору эпителиоциты становятся выше и образуют ростковую зону хрусталика. Эта зона «поставляет» в течение всей жизни новые клетки как на переднюю, так и на заднюю поверхность хрусталика. Новые эпителиоциты преобразуются в так называемые хрусталиковые волокна (fibrae lentis). Каждое волокно представляет собой прозрачную шестиугольную призму. В цитоплазме хрусталиковых волокон находится прозрачный белок - кристаллин. Волокна склеиваются друг с другом особым веществом, которое имеет такой же, как и они, коэффициент преломления. Центрально расположенные волокна теряют свои ядра, и, накладываясь друг на друга, образуют ядро хрусталика.
Хрусталик поддерживается в глазу с помощью волокон ресничного пояска (zonula ciliaris), образованного радиально расположенными пучками нерастяжимых волокон, прикрепленных с одной стороны к цилиарному телу, а с другой — к капсуле хрусталика, благодаря чему сокращение мышц цилиарного тела передается хрусталику. Знание закономерностей строения и гистофизиологии хрусталика позволило разработать методы создания искусственных хрусталиков и широко внедрить в клиническую практику их пересадку, что сделало возможным лечение больных с помутнением хрусталика (катаракта).
Стекловидное тело (corpus vitreum). Это прозрачная желеобразная масса, заполняющая полость между хрусталиком и сетчаткой. На фиксированных препаратах стекловидное тело имеет сетчатое строение. На периферии оно более плотное, чем в центре. Через стекловидное тело проходит канал — остаток эмбриональной сосудистой системы глаза — от сосочка сетчатки до задней поверхности хрусталика. Стекловидное тело содержит белок витреин и гиалуроновую кислоту. Показатель преломления стекловидного тела равен 1,33.
7.Морфофункциональная характеристика переднего отдела глаза ( склера,рого-вица,сосудистая оболочка,радужка, хрусталика , ресничное и стекловидное тело ).
Аккомодационный аппарат глаза (радужка, ресничное тело с ресничным пояском) обеспечивает изменение формы и преломляющей силы хрусталика, фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения.
Радужка (радужная оболочка, iris). Представляет собой дисковидное образование с отверстием изменчивой величины в центре – зрачком, "зеницей ока". Она является производным сосудистой (в основном) и сетчатой оболочек. Сзади радужка покрыта пигментным эпителием сетчатой оболочки. Расположена между роговицей и хрусталиком на границе между передней и задней камерами глаза. Край радужки, соединяющий ее с цилиарным телом, называется цилиарным краем. Строма радужки состоит из рыхлой волокнистой соединительной ткани, богатой пигментными клетками. Здесь располагаются гладкие миоциты, образующие мышцы, суживающие и расширяющие зрачок (m. sphincter pupillae, m. dilatator pupillae).
В радужке различают 5 слоев: передний эпителий, покрывающий переднюю поверхность радужки, наружный пограничный (бессосудистый) слой, сосудистый слой, внутренний пограничный слой и пигментный эпителий.
Передний эпителий (epithelium anterius iridis) представлен плоскими полигональными клетками. Он является продолжением эпителия, покрывающего заднюю поверхность роговицы.
Наружный пограничный слой (stratum externum limitans) состоит из основного вещества, в котором располагаются значительное количество фибробластов и пигментных клеток. Различное положение и количество меланинсодержащих клеток обусловливают цвет глаз. У альбиносов пигмент отсутствует и радужка имеет красный цвет в связи с тем, что через ее толщу просвечивают кровеносные сосуды. В пожилом возрасте наблюдается депигментация радужки и она делается более светлой.
Сосудистый слой (stratum vasculosum) радужки состоит из многочисленных сосудов, пространство между которыми заполнено рыхлой волокнистой соединительной тканью с пигментными клетками.
Внутренний пограничный слой (stratum unternum limitans) не отличается по строению от наружного слоя.
Задний пигментный эпителий (epithelium posterius pigmentosum) является продолжением двухслойного эпителия сетчатки, покрывающего цилиарное тело и отростки.
Радужка осуществляет свою функцию в качестве диафрагмы глаза с помощью двух мышц: суживающей (musculus sphincter pupillae) и расширяющей (musculus dilatator pupillae) зрачок.
Ресничное тело (corpus ciliare). Ресничное тело является производным сосудистой и сетчатой оболочек. Выполняет функцию фиксации хрусталика и изменения его кривизны, тем самым участвуя в акте аккомодации. На меридиональных срезах через глаз цилиарное тело имеет вид треугольника, который своим основанием обращен в переднюю камеру глаза. Цилиарное тело подразделяется на две части: внутреннюю — цилиарную корону (corona ciliaris) и наружную - цилиарное кольцо (orbiculus ciliaris). От поверхности цилиарной короны отходят по направлению к хрусталику цилиарные отростки (processus ciliares), к которым прикрепляются волокна ресничного пояска. Основная часть цилиарного тела, за исключением отростков, образована ресничной, или цилиарной, мышцей (m. ciliaris), играющей важную роль в аккомодации глаза. Она состоит из пучков гладких мышечных клеток, располагающихся в трех различных направлениях.
Различают наружные меридиональные мышечные пучки, лежащие непосредственно под склерой, средние радиальные и циркулярные мышечные пучки, образующие кольцевой мышечный слой. Между мышечными пучками расположена рыхлая волокнистая соединительная ткань с пигментными клетками. Сокращение цилиарной мышцы приводит к расслаблению волокон круговой связки — ресничного пояска хрусталика, вследствие чего хрусталик становится выпуклым и его преломляющая сила увеличивается.
Цилиарное тело и цилиарные отростки покрыты цилиарной частью сетчатки. Последняя представлена слоем кубического интенсивно пигментированного эпителия. Эпителиальные клетки, покрывающие цилиарное тело и отростки, принимают участие в образовании водянистой влаги, заполняющей обе камеры глаза.
Сосудистая оболочка (choroidea, уст.: uvea) осуществляет питание пигментного эпителия и фоторецепторов, регулирует давление и температуру глазного яблока. Эта сосудистая ткань очень пигментирована (богата меланоцитами), толщина ее в заднем поле 0,22—0,3 мкм, а на периферии 0,1—0,15 мкм. В ней различают 4 слоя: надсосудистую, сосудистую, сосудисто-капиллярную пластинки и базальный комплекс.
Надсосудистая пластинка (lamina suprachoroidea) толщиной 30 мкм представляет самый наружный слой сосудистой оболочки, прилежащий к склере. Она образована рыхлой волокнистой соединительной тканью, содержит большое количество пигментных клеток (меланоцитов), коллагеновых фибрилл, фибробластов, нервных сплетений и сосудов. Тонкие (диаметром 2—3 мкм) коллагеновые волокна этой ткани направлены от склеры к хороидее, параллельно склере, имеют косое направление в передней части, переходят в цилиарную мышцу.
Сосудистая пластинка (lamina vasculosa) состоит из переплетающихся артерий и вен, между которыми располагаются рыхлая волокнистая соединительная ткань, пигментные клетки, отдельные пучки гладких миоцитов. Сосуды хороидеи являются ветвями задних коротких цилиарных артерий (орбитальные ветви глазной артерии), которые проникают на уровне диска зрительного нерва в глазное яблоко, а также ветвями длинных цилиарных артерий (имеющих обратный ход от зубчатой линии к экватору) и от передних цилиарных артерий, дающих ветви в цилиарную мышцу и затем образующих капилляры. Между передней и задней цилиарными системами имеется множество анастомозов. В сосудистой пластинке выделяют слой крупных сосудов (венчик Галлера, сосудистое кольцо зрительного нерва) и слой средних сосудов, артериол, которые, анастомозируя между собой, образуют сплетение, и венул (слой Заттлера).
Сосудисто-капиллярная пластинка (lamina choroicapillaris) хороидеи содержит гемокапилляры висцерального или синусоидного типа, отличающиеся неравномерным калибром. Между капиллярами располагаются уплощенные фибробласты.
Базальный комплекс (complexus basalis) — мембрана Бруха (lamina vitrea, lamina elastica,membrana Brucha) — очень тонкая пластинка (1—4 мкм), располагается между сосудистой оболочкой и пигментным слоем (эпителием) сетчатки. В ней различают наружный коллагеновый слой с зоной тонких эластических волокон, являющихся продолжением волокон сосудисто-капиллярной пластинки; внутренний коллагеновый слой, волокнистый (фиброзный), более широкий; третий слой представлен базальной мембраной пигментного эпителия - кутикулярный.
Хрусталик (lens). Это прозрачная двояковыпуклая линза, форма которой меняется во время аккомодации глаза к видению близких или отдаленных объектов. Вместе с роговицей и стекловидным телом хрусталик составляет основную светопреломляющую среду. Радиус кривизны хрусталика варьирует от 6 до 10 мм, показатель преломления составляет 1,42. Хрусталик покрыт прозрачной капсулой толщиной 11—18 мкм. Его передняя стенка состоит из однослойного плоского эпителия хрусталика (epithelium lentis).
По направлению к экватору эпителиоциты становятся выше и образуют ростковую зону хрусталика. Эта зона «поставляет» в течение всей жизни новые клетки как на переднюю, так и на заднюю поверхность хрусталика. Новые эпителиоциты преобразуются в так называемые хрусталиковые волокна (fibrae lentis). Каждое волокно представляет собой прозрачную шестиугольную призму. В цитоплазме хрусталиковых волокон находится прозрачный белок - кристаллин. Волокна склеиваются друг с другом особым веществом, которое имеет такой же, как и они, коэффициент преломления. Центрально расположенные волокна теряют свои ядра, и, накладываясь друг на друга, образуют ядро хрусталика.
Хрусталик поддерживается в глазу с помощью волокон ресничного пояска (zonula ciliaris), образованного радиально расположенными пучками нерастяжимых волокон, прикрепленных с одной стороны к цилиарному телу, а с другой — к капсуле хрусталика, благодаря чему сокращение мышц цилиарного тела передается хрусталику. Знание закономерностей строения и гистофизиологии хрусталика позволило разработать методы создания искусственных хрусталиков и широко внедрить в клиническую практику их пересадку, что сделало возможным лечение больных с помутнением хрусталика (катаракта).
Стекловидное тело (corpus vitreum). Это прозрачная желеобразная масса, заполняющая полость между хрусталиком и сетчаткой. На фиксированных препаратах стекловидное тело имеет сетчатое строение. На периферии оно более плотное, чем в центре. Через стекловидное тело проходит канал — остаток эмбриональной сосудистой системы глаза — от сосочка сетчатки до задней поверхности хрусталика. Стекловидное тело содержит белок витреин и гиалуроновую кислоту. Показатель преломления стекловидного тела равен 1,33.
8. Строение сетчатой оболочки глаза. Нейронный состав сетчатки. Строение и цитофизиология палочко- и колбочконесущих нейронов сетчатки. Глиоциты сетчатки.
Писец вопрос, вот на этом моменте я бы задумалась о поступлении в мед, ребята, ещё не поздно документы забрать!!!!!!!!11
Рецепторный аппарат глаза представлен зрительной частью сетчатой оболочки (сетчатки).
Внутренняя чувствительная оболочка глазного яблока, сетчатка (tunica interna sensoria bulbi, retina) состоит из наружного пигментного слоя (pars pigmentosa, stratum pigmentosum) и внутреннего светочувствительного нервного (pars nervosa). Функционально выделяют заднюю большую зрительную часть сетчатки (pars optica retinae), меньшие части – цилиарную, покрывающую цилиарное тело (pars ciliares retinae) и радужковую, покрывающую заднюю поверхность радужки (pars iridica retinae). В заднем полюсе глаза находится желтоватого цвета пятно (macula) с небольшим углублением — центральной ямкой (fovea centralis).
Свет входит в глаз через роговицу, жидкость передней камеры, хрусталик, жидкость задней камеры, стекловидное тело и, пройдя через толщу всех слоев сетчатки, попадает на отростки фоточувствительных нервных клеток, называемых палочками и колбочками, в наружных сегментах которых начинаются физиологические процессы возбуждения,фототрансдукции. Таким образом, сетчатка глаза человека относится к типу так называемых инвертированных, т.е. таких, в которых фоторецепторы направлены от света и образуют самые глубокие слои сетчатки, обращенные к слою пигментного эпителия.
Сетчатка состоит из трех типов радиально расположенных нейронов и двух слоев синапсов. Первый тип нейронов, расположенных наружно, — это фоторецепторные нейроны (палочковые и колбочковые), второй тип — биполярные нейроны, осуществляющие контакты между первым и третьим типом, третий тип — ганглионарные нейроны. Кроме того, имеются нейроны, осуществляющие и горизонтальные связи, — это горизонтальные и амакриновые клетки.
Итого, в сетчатке глаза можно выделить 8 слоев (снаружи внутрь):
пигментный наружный эпителий;
фотосенсорный слой (палочек и колбочек);
наружный ядерный слой;
наружный сетчатый слой;
внутренний ядерный слой;
внутренний сетчатый слой;
ганглионарный слой;
слой нервных волокон.
Наружный ядерный слой содержит тела фоторецепторных нейронов, внутренний ядерный слой - тела биполярных, горизонтальных и амакриновых клеток, а ганглионарный слой — тела ганглиозных и перемещенных амакриновых клеток.
В наружном сетчатом слое контакты между колбочковыми нейронами и палочковыми нейронами осуществляются вертикально ориентированными биполярными клетками и горизонтально ориентированными горизонтальными клетками, во внутреннем сетчатом слое осуществляется переключение информации с вертикально ориентированных биполярных нейронов на ганглиозные клетки, а также на различные виды вертикально и горизонтально направленных амакриновых клеток, влияющих на интеграцию сигнала ганглиозных клеток. В этом слое происходят кульминация всех интегральных процессов, связанных со зрительным образом, и передача информации через зрительный нерв в мозг.
Через все слои сетчатки проходят радиальные глиальные клетки (клетки Мюллера). Их отростки формируют две пограничные глиальные мембраны – наружную и внутреннюю.
В сетчатке выделяют также наружную пограничную мембрану, которая состоит из множества описанных выше синаптических комплексов, расположенных между клетками Мюллера и фоторецепторами; слой нервных волокон, который состоит из аксонов ганглиозных клеток. Последние, достигнув внутренней части сетчатки, поворачивают под прямым углом и затем идут параллельно внутренней поверхности сетчатки к месту выхода зрительного нерва. Они не содержат миелина и не имеют шванновских оболочек, что обеспечивает их прозрачность. Внутренняя пограничная мембрана представлена окончаниями отростков мюллеровых клеток и их базальными мембранами.
Кнутри от центральной ямки (fovea centralis) имеется зона, в которой отсутствуют фоторецепторы сетчатки — т.н. слепое пятно, а аксоны ганглиозных нейронов формируют зрительный нерв. Последний при выходе из сетчатки через решетчатую пластинку склеры виден как диск зрительного нерва (discus nervi optici) с приподнятыми в виде валика краями и небольшим углублением в центре (excavatio disci).
Зрительный нерв является промежуточной частью зрительного анализатора. По нему информация о внешнем мире передается от сетчатки в центральные отделы зрительной системы. Впереди турецкого седла и воронки гипофиза волокна зрительного нерва образуют перекрест (хиазма), где волокна, идущие от носовой половины сетчатки, перекрещиваются, а идущие от вилочной части сетчатки не перекрещиваются. Далее в составе зрительного тракта перекрещенные и неперекрещенные нервные волокна направляются в латеральное коленчатое тело промежуточного мозга соответствующей гемисферы (подкорковые зрительные центры) и верхние холмики крыши среднего мозга. В латеральном коленчатом теле аксоны нейроцитов третьего нейрона заканчиваются и контактируют со следующим нейроном, аксоны которого, проходя под чечевицеобразную часть внутренней капсулы, формируют зрительную лучистость (radiatio optica), направляются в затылочную долю, зрительные центры, располагающиеся в области шпорной борозды и в экстрастриарные зоны.
Фоторецепторы сетчатки делятся на два типа: палочковые и колбочковые. Палочковые клетки являются рецепторами сумеречного (ночного зрения), колбочковые клетки - фоторецепторами дневного зрения. Морфологически фоторецепторные нейроны представляют собой длинные цилиндрической формы клетки, которые имеют несколько отделов. Дистальная часть фоторецепторов — наружный сегмент (палочка или колбочка) — содержит фоторецепторные мембраны, где и происходит поглощение света и начинается зрительное возбуждение. Наружный сегмент связан с внутренним соединительной ножкой — цилией. Во внутреннем сегменте находятся множество митохондрий и полирибосом, цистерны аппарата Гольджи и небольшое количество элементов гранулярного и гладкого эндоплазматического ретикулума. В сегменте происходит синтез белка. Тело клетки, расположенное проксимальнее внутреннего сегмента, переходит в отросток (аксон), который формирует синапс с врастающими внутренними окончаниями дендритов биполярных и горизонтальных нейронов. Однако палочковые клетки отличаются от колбочковых клеток. У палочковых нейронов наружный сегмент цилиндрической формы, а диаметр внутреннего сегмента равен диаметру наружного. Наружные сегменты колбочковых клеток обычно конические, а внутренний сегмент по диаметру значительно превосходит наружный.
Наружный сегмент представляет собой стопку плоских мембранных мешочков — дисков, число которых доходит до 1000. В процессе эмбрионального развития диски палочек и колбочек образуются как складки-впячивания плазматической мембраны реснички, растущей из апикального конца фоторецептора. В палочках новообразование складок продолжается у основания наружного сегмента в течение всей жизни. Вновь появившиеся складки оттесняют старые в дистальном направлении. При этом диски отрываются от поверхности мембран и превращаются в замкнутые структуры, полностью отделенные от оболочки наружного сегмента. Отработанные дистальные диски фагоцитируются клетками пигментного эпителия. Дистальные диски колбочек так же, как у палочек, фагоцитируются пигментными клетками. Механизм синтеза новых дисков в колбочках неясен.
Таким образом, фоторецепторный диск в наружном сегменте палочковых нейронов полностью отделен от плазматической мембраны. Он образован двумя фоторецепторными мембранами, соединенными по краям и внутри диска, на всем его протяжении имеется узкая щель. У края диска щель расширяется, образуется петля, внутренний диаметр которой составляет несколько десятков нанометров. Параметры диска: толщина -15 нм, ширина внутридискового пространства - 1 нм, расстояние между дисками — междискового цитоплазматического пространства — 15 нм.
У колбочек в наружном сегменте диски не замкнуты и внутридисковое пространство сообщается с внеклеточной средой. У них более крупное округлое и светлое ядро, чем у палочек. Во внутреннем сегменте колбочек имеется участок, называемый эллипсоидом, состоящий из липидной капли и скопления плотно прилегающих друг к другу митохондрий. Внутренний конец аксона каждой колбочки имеет пуговчатое расширение, которое иногда называют синаптическим тельцем или ножкой колбочки. Найдены также прямые контакты ножек смежных колбочек друг с другом, что создает основу для межрецепторной передачи. Другие ножки разделяются отростками мюллеровых клеток.
От ядросодержащей части фотосенсорных нейронов отходят центральные отростки - аксоны, которые образуют синаптические соединения с дендритами палочковых биполяров, горизонтальных клеток, а также с карликовыми и плоскими биполярами. Электронная микроскопия клеток, окрашенных по Гольджи, показала, что имеются два способа образования синаптических окончаний с колбочками: инвагинирующие синапсы для контактов дендритов с синаптической лентой (пластинкой) в области инвагинации и плоский базальный синоптический контакт на поверхности ножки вдали от синаптической пластинки. Длина колбочек в центре желтого пятна около 75 мкм, толщина — 1—1,5 мкм.
Структура фоторецепторной мембраны диска строго упорядочена и обеспечивает физиологические процессы возбуждения (фототрансдукции) и адаптации зрительной клетки.
Фоторецепторная мембрана диска наружного сегмента палочковых нейронов составляет около 7 нм (двойной слой фосфолипидных молекул -4 нм, гидрофильные интегральные фрагменты белковых молекул — 3 нм), полипептидные цепи фрагментов белковых молекул пронизывают мембрану насквозь, изгибаясь несколько раз, а на поверхности их располагаются более гидрофильные примембранные белки и олигосахариды. Основным белком фоторецепторной мембраны (до 95—98 % интегральных белков) является зрительный пигмент родопсин, который обеспечивает поглощение света в некоторой характерной области длин волн и тем самым определяет спектральный диапазон той или иной фоторецепторной клетки, запускает фоторецепторный процесс.
Зрительный пигмент представляет собой хромогликопротеид. Эта сложная молекула содержит одну хромофорную группу, две олигосахаридные цепочки и водонерастворимый мембранный белок опсин. Хромофорной группой зрительных пигментов служит ретиналь-1 (альдегид витамина А) или ретиналь-2 (альдегид витамина А2). Все зрительные пигменты, содержащие ретиналь-1, относятся к родопсинам, а содержащие ретиналь-2 — к порфиропсинам. Светочувствительная молекула зрительного пигмента при поглощении одного кванта света претерпевает ряд последовательных превращений, в результате которых обесцвечивается. Ретиналь на последних стадиях фотолиза отщепляется от белка — опсина и переносится в пигментный эпителий. Поглощение одного фотона вызывает изомеризацию хромофора фотопигментов и превращение его из 11 -цис-формы в полную трансконфигурацию. В результате изомеризации образуется конформационно активное промежуточное соединение фотопигмента, который запускает каскад электрических реакций. На первой ступени каскада происходит активация трансдуцина (G-белка), который в свою очередь активирует цГМФ-фосфодиэстеразу. В результате снижения уровня цГМФ в цитоплазме наружного сегмента фоторецепторов происходит закрытие цГМФ-зависимых ионных мембранных каналов и фоторецепторная клетка гиперполяризуется.
Колбочки содержат три типа зрительных пигментов (колбочковый опсин), различия которых определяются структурой олеиновой молекулы, с максимальной чувствительностью в длинноволновой (558нм, «красной»), средневолновой (531нм, «зеленой») и коротковолновой (420нм, «синей») части спектра. Один из пигментов —йодопсин — чувствителен к длинноволновой части спектра. Известно, что молекула опсина длинно- и средневолновых чувствительных колбочковых пигментов (идентичность по аминокислотному набору 96 %) состоит из 364 аминокислот.
Морфологические исследования последнего времени показали значительное отличие коротковолновых специфических колбочек (S-колбочки, голубые) от средне- и длинноволновых. Известно, что S-колбочки имеют более длинный внутренний сегмент, что позволяет им проникать дальше в субретинальное пространство; их внутренний сегмент утолщен в центральной области и более тонок в периферической части сетчатки; они имеют меньшую по величине и морфологически различимую ножку по сравнению с длинноволновыми колбочками.
При пониженной плотности в фовеальной области (3% от других колбочек) S-колбочки имеют еще и другое распределение в сетчатке и не складываются в регулярную гексагональную мозаику, типичную для других колбочек. Пигмент, чувствительный к коротковолновой части спектра, более сходен с родопсином. У человека гены, кодирующие пигмент коротковолновой части спектра и родопсина, находятся на длинном плече 3-й и 7-й хромосом и имеют сходство по структуре. Различные видимые нами цвета зависят от соотношения трех видов стимулируемых колбочек.
Отсутствие длинно- и средневолновых колбочковых пигментов обусловлено соответствующими изменениями гена на Х-хромосоме, которые определяют два типа дихромазии: протанопию и дейтеранопию. Протанопия — нарушение цветоощущения на красный цвет (ранее ошибочно называлось дальтонизмом). У Джона Дальтона благодаря последним достижениям молекулярной генетики выявлена дейтеранопия (нарушение цветоощущения на зеленый цвет) с простым длинноволновым геном опсина в ДНК.
Горизонтальные нервные клетки (neuronum horisontalis) располагаются в один или два ряда. Они отдают множество дендритов, которые контактируют с аксонами фоторецепторных клеток. Аксоны горизонтальных нейронов, имеющие горизонтальную ориентацию, могут тянуться на довольно значительном расстоянии и вступать в контакт с аксонами как палочковых, так и колбочковых нейронов. Передача возбуждения с горизонтальных клеток на синапсы фоторецепторного и биполярного нейронов вызывает временную блокаду в передаче импульсов от фоторецепторов (эффект латерального торможения), что увеличивает контраст в зрительном восприятии.
По последним данным, горизонтальные клетки образуют малые круги, влияющие на передачу информации внутри сетчатки, благодаря синаптическим связям, расположенным латерально от синаптических полосок фоторецепторов, вместе с центрально расположенными синапсами биполярных клеток. Считают, что существует обратная связь между горизонтальной клеткой и фоторецептором. Круг дает информацию биполярной клетке об окружении.
Биполярные нервные клетки (neuronum bipolaris) соединяют палочковые и колбочковые нейроны с ганглиозными клетками сетчатки. В центральной части сетчатки несколько палочковых нейронов соединяются с одной биполярной, а колбочковые нейроны контактируют в соотношении 1:1 или 1:2. Такое сочетание обеспечивает более высокую остроту цветового видения по сравнению с черно-белым. Биполярные клетки расположены радиально. Различают несколько разновидностей биполярных клеток по строению, содержанию синаптических пузырьков и связям с фоторецепторами. Биполярные нейроны, контактирующие с палочковыми нейронами, условно называют палочковыми биполярами, а контактирующие с колбочковыми нейронами — колбочковыми биполярами. Биполярные клетки играют существенную роль в концентрации импульсов, получаемых от фотосенсорных нейронов и затем передаваемых ганглиозным клеткам.
Взаимоотношения биполярных клеток с палочковыми и колбочковыми нейронами неидентичны. Несколько палочковых клеток (15—20) конвергируют на одной биполярной клетке в наружном сетчатом слое, а аксон биполяров во внутреннем сетчатом слое дивергирует на несколько типов амакриновых клеток, которые конвергируют на ганглионарной клетке. Значение дивергенции и конвергенции заключается в ослаблении или усилении палочкового сигнала, что обусловливает чувствительность зрительной системы к единичному кванту света.
Колбочковые пути конвергируют в меньшей степени, чем палочковые. Колбочковые пути у человека и обезьян состоят из двух параллельных информационных каналов: прямого (от фоторецептора на ганглионарную клетку) и непрямого (через биполярную клетку). В результате такой организации один канал проводит на ганглионарную клетку информацию о стимуле ярче фона, а другой о стимуле темнее фона. Это основа контраста в зрительном восприятии.
Во внутреннем сетчатом слое, где информация с колбочковых биполяров переходит на ганглионарные клетки, находятся только синапсы возбуждающих каналов.
Амакринные клетки относятся к интернейронам, которые осуществляют связь на втором синаптическом уровне вертикального пути: фоторецептор — биполяр — ганглионарная клетка. Их синаптическая активность во внутреннем сетчатом слое проявляется в интеграции, модуляции, включении сигналов, идущих к ганглионарным клеткам. Эти клетки, как правило, не имеют аксонов, однако некоторые амакриновые клетки содержат длинные аксоноподобные отростки. Иммуноцитохимические исследования, внутриклеточная регистрация электрической активности позволили выделить 40 различных морфологических подтипов амакриновых клеток. По диаметру поля их дендритов различают клетки с узкими, маленькими, средними и широкими полями. Амакриновые клетки А17 осуществляют обратную синап-тическую связь с палочковыми биполярами, так же как и горизонтальные клетки с фоторецепторами. Синапсы амакриновых клеток бывают химическими и электрическими. Например, дистальные дендриты амакриновой клетки А2 образуют синапсы с аксонами палочковых биполяров, а проксимальные дендриты — с ганглионарными клетками. Более крупные дендриты А2 формируют электрические синапсы с аксонами колбочковых биполяров. В палочковых путях играют большую роль допаминергические и ГАМКергические амакриновые клетки. Они ремоделируют палочковые сигналы и осуществляют с ними обратную связь.
Ганглионарные клетки — наиболее крупные клетки сетчатки, имеющие большой диаметр аксонов, способных проводить электрические сигналы. В их цитоплазме хорошо выражено базофильное вещество. Они собирают информацию от всех слоев сетчатки как по вертикальным путям (фоторецепторы - биполяры - ганглионарные клетки), так и по латеральным путям (фоторецепторы - горизонтальные клетки - биполяры - амакриновые клетки - ганглионарные клетки) и передают ее в мозг. Тела ганглионарных клеток образуют слой, который носит название ганглионарного (stratum ganglionare), а их аксоны (более миллиона волокон) формируют внутренний слой нервных волокон (stratum neurofibrarum), переходящий в зрительный нерв, где они уже окружены миелиновой оболочкой. Ганглионарные клетки подразделяются по морфологическим и функциональным свойствам. Выделяют в настоящее время 18 типов ганглионарных клеток. Ранее морфологически выделенные α-, β- и γ-типы соответствуют физиологическим Y, X, W.
Высокую остроту зрения и цветовое зрение в настоящее время связывают с наличием парво- и магноганглионарных клеток (соответственно). Парвоганглионарные клетки — карликовые клетки (а-клетки кошки), имеющие средний размер тела и маленькое дерево дендритов, входят в «карликовый» путь и связаны с парвоцеллюлярными (мелкоклеточными) слоями латеральных коленчатых тел. Магноклетки (ос-клетки кошки) очень разнообразны (малые и большие зонтичные клетки): с большими телами и многочисленными укороченными ветвями, маленькими телами и большим разветвлением дендритов, которые проецируются в крупноклеточные слои латеральных коленчатых тел. Выделяют ганглионарные клетки, связанные с палочковыми и колбочковыми нейронами, с on- и off-центрами, которые отвечают на световое раздражение деполяризацией или гиперполяризацией соответственно. Дендриты клеток с on-центром разветвляются в подуровне а, с off-центром в подуровне G внутреннего сетчатого слоя. Цветовой канал связан с красным, зеленым и синим типом on/off-ганглионарных клеток. Если красный и зеленый тип ган-глионарных on/off-клеток относится к карликовому пути, то синий тип не относится к последнему. On/off-ответы ганглионарных клеток определяются специальными контактами колбочковых биполяров и расположением ганглионарных клеток в соответствующем подуровне внутреннего сетчатого слоя.
Нейроглия. Три типа глиальных клеток найдено в сетчатке человека: клетки Мюллера, астроглия и микроглия, описанные 100 лет назад Кахалем. Через все слои сетчатки проходят радиально главные глиальные клетки, которые были впервые описаны Мюллером. Они длинные, узкие. Их удлиненное ядро лежит на уровне ядер биполярных нейроцитов. Многочисленные длинные микроворсинки, идущие от наружных концов мюллеровых клеток, спускаются ниже уровня синаптических комплексов и проходят между внутренними сегментами фоторецепторов, в наружном ядерном слое, а внутренние отростки образуют внутренний пограничный слой.
Пигментный слой, эпителий (stratum pigmentosum) — наружный слой сетчатки - состоит из призматических полигональных, пигментных клеток. Своими основаниями клетки располагаются на ба-зальной мембране, которая входит в состав мембраны Бруха сосудистой оболочки. Общее количество пигментных клеток, содержащих коричневые гранулы меланина, варьирует от 4 до 6 млн. В центре желтого пятна они более высокие, а на периферии уплощаются, становятся шире. Апикальные мембраны пигментных клеток контактируют непосредственно с дистальной частью наружных сегментов фоторецепторов сетчатки. Между ними имеется пространство. Апикальная поверхность пигментоцитов имеет два типа микроворсинок: длинные микроворсинки, которые располагаются между наружными сегментами фоторецепторов, и короткие микроворсинки, которые соединяются с концами наружных сегментов фоторецепторов. Один пигментоцит контактирует с 30—45 наружными сегментами фоторецепторов, а вокруг одного наружного сегмента палочек обнаруживается 3—7 отростков пигментоцитов, содержащих меланосомы, фагосомы и органеллы общего значения. В то же время вокруг наружного сегмента колбочки — 30— 40 отростков, которые длиннее и не содержат органелл, за исключением меланосом. Фагосомы образуются в процессе фагоцитоза дисков наружных сегментов фоторецепторов. Считают, что пигментоциты являются разновидностью специализированных макрофагов ЦНС. Наличие меланосом обусловливает поглощение 85—90% света, попадающего в глаз. Под воздействием света меланосомы перемещаются в апикальные отростки пигментоцитов, а в темноте меланосомы возвращаются в цитоплазму. Это перемещение происходит с помощью микрофиламентов при участии гормона меланотропина. Пигментный эпителий существенно влияет на электрическую реакцию глаза, являясь источником постоянного потенциала глаза. Располагаясь вне сетчатки, пигментный эпителий тесно взаимодействует с ней, выполняя ряд важных функций: оптическую защиту и экранирование от света; транспорт метаболитов, солей, кислорода и т.д. из сосудистой оболочки к фоторецепторам и обратно, фагоцитарную функцию, обеспечивающую уборку отработанных дисков наружных сегментов фоторецепторов и доставку материала для постоянного обновления фоторецепторной мембраны; а также участвует в регуляции ионного состава в субретинальном пространстве.
В пигментном эпителии велика опасность развития темновых и фотоокислительных деструктивных процессов. Все ферментативные и неферментативные звенья антиокислительной защиты присутствуют в клетках пигментного эпителия: пигментоциты участвуют в защитных реакциях, тормозящих перекисное окисление липидов с помощью ферментов микропероксисом и функциональных групп меланосом. Например, в них найдена высокая активность пероксидазы, как селензависимой, так и селеннезависимой, и высокое содержание α-токоферола. Меланосомы в клетках пигментного эпителия, обладающие выраженным антиоксидантным свойством, служат специфическими участниками системы антиоксидантной защиты. Они эффективно связывают прооксидантные зоны (ионы железа) и не менее эффективно взаимодействуют с активными формами кислорода.
На внутренней поверхности сетчатки у заднего конца оптической оси глаза имеется округлое или овальное желтое пятно диаметром около 2 мм. Слегка углубленный центр этого образования называется центральной ямкой (fovea centralis). Центральная ямка — место наилучшего восприятия зрительных раздражений. В этой области внутренний ядерный и ганглиозный слои резко истончаются, а несколько утолщенный наружный ядерный слой представлен главным образом телами колбочковых нейросенсорных клеток.
Регенерация сетчатки. Процессы физиологической регенерации палочковых и колбочковых нейронов происходят в течение всей жизни. Ежесуточно в каждой палочковой клетке ночью или в каждой колбочковой клетке днем формируется около 80 мембранных дисков. Процесс обновления каждой палочковой клетки длится 9—12 дней.
В одном пигментоците ежесуточно фагоцитируется около 2—4 тыс. «отработанных» дисков, образуется 60—120 фагосом, каждая из которых содержит 30—40 дисков.
Таким образом, пигментоциты обладают исключительно высокой фагоцитарной активностью, которая повышается при напряжении функции глаза в 10—20 раз и более.
Выявлены циркадные ритмы утилизации дисков: отделение и фагоцитоз сегментов палочковых клеток происходят обычно утром, а колбочковых — ночью.
В механизмах отделения отработанных дисков важная роль принадлежит ретинолу (витамин А), который в больших концентрациях накапливается в наружных сегментах палочковых клеток на свету и, обладая сильно выраженными мембранолитическими свойствами, стимулирует указанный выше процесс. Циклические нуклеотиды (цАМФ) тормозят скорость деструкции дисков и их фагоцитоз. В темноте, когда цАМФ много, скорость фагоцитоза невелика, а на свету, когда уровень цАМФ снижен, она возрастает.
Васкуляризация. Ветви глазничной артерии формируют две группы разветвлений: одна образует ретинальную сосудистую систему сетчатки, васкуляризующую сетчатку и часть зрительного нерва; вторая образует цилиарную систему, снабжающую кровью сосудистую оболочку, цилиарное тело, радужку и склеру. Лимфатические капилляры располагаются только в склеральной конъюнктиве, в других участках глаза они не найдены.
9. Орган равновесия. Строение и функция. Морфофункциональная характеристика сенсоэпителиальных клеток в составе слуховых пятен и ампулярных гребешков.
Вестибулярная часть перепончатого лабиринта. Это место расположения рецепторов органа равновесия. Она состоит из двух мешочков — эллиптического, или маточки (utriculus) и сферического, или круглого (sacculus), сообщающихся при помощи узкого канала и связанных с тремя полукружными каналами, локализующимися в костных каналах, расположенных в трех взаимно перпендикулярных направлениях. Эти каналы на месте соединения их с эллиптическим мешочком имеют расширения — ампулы. В стенке перепончатого лабиринта в области эллиптического и сферического мешочков и ампул есть участки, содержащие чувствительные (сенсорные) клетки. В мешочках эти участки называются пятнами, или макулами, соответственно: пятно эллиптического мешочка (macula utriculi) и пятно круглого мешочка (macula sacculi). В ампулах эти участки называются гребешками, или кристами (crista ampullaris).
Стенка вестибулярной части перепончатого лабиринта состоит из однослойного плоского эпителия, за исключением области крист полукружных каналов и макул, где он превращается в кубический и призматический.
Пятна мешочков (макулы). Эти пятна выстланы эпителием, расположенным на базальной мембране и состоящим из сенсорных и опорных клеток. Поверхность эпителия покрыта особой студенистой отолитовой мембраной (membrana statoconiorum), в которую включены состоящие из карбоната кальция кристаллы - отолиты, или статоконии (statoconia).
Макула эллиптического мешочка — место восприятия линейных ускорений и земного притяжения (рецептор гравитации, связанный с изменением тонуса мышц, определяющих установку тела). Макула сферического мешочка, являясь также рецептором гравитации, одновременно воспринимает и вибрационные колебания.
Волосковые сенсорные клетки (cellulae sensoriae pilosae) непосредственно обращены своими вершинами, усеянными волосками, в полость лабиринта. Основание клетки контактирует с афферентными и эфферентными нервными окончаниями. По строению волосковые клетки подразделяются на два типа. Клетки первого типа (грушевидные) отличаются округлым широким основанием, к которому примыкает нервное окончание, образующее вокруг него футляр в виде чаши. Клетки второго типа (столбчатые) имеют призматическую форму. К основанию клетки непосредственно примыкают точечные афферентные и эфферентные нервные окончания, образующие характерные синапсы. На наружной поверхности этих клеток имеется кутикула, от которой отходят 60—80 неподвижных волосков — стереоцилий длиной около 40 мкм и одна подвижная ресничка — киноцилия, имеющая строение сократительной реснички. Круглое пятно человека содержит около 18 000 рецепторных клеток, а овальное — около 33 000. Киноцилия всегда полярно располагается по отношению к пучку стереоцилий. При смещении стереоцилий в сторону киноцилии клетка возбуждается, а если движение направлено в противоположную сторону, происходит торможение клетки. В эпителии макул различно поляризованные клетки собираются в 4 группы, благодаря чему во время скольжения отолитовой мембраны стимулируется только определенная группа клеток, регулирующая тонус определенных мышц туловища; другая группа клеток в это время тормозится. Полученный через афферентные синапсы импульс передается через вестибулярный нерв в соответствующие части вестибулярного анализатора.
Поддерживающие эпителиоциты (epitheliocyti sustentans), располагаясь между сенсорными, отличаются темными овальными ядрами. Они имеют большое количество митохондрий. На их вершинах обнаруживается множество тонких цитоплазматических микроворсинок.
Ампулярные гребешки (кристы). Они в виде поперечных складок находятся в каждом ампулярном расширении полукружного канала. Ампулярный гребешок выстлан сенсорными волосковыми и поддерживающими эпителиоцитами. Апикальная часть этих клеток окружена желатинообразным прозрачным куполом (cupula gelatinosa), который имеет форму колокола, лишенного полости. Его длина достигает 1 мм. Тонкое строение волосковых клеток и их иннервация сходны с сенсорными клетками мешочков. В функциональном отношении желатинозный купол — рецептор угловых ускорений. При движении головы или ускоренном вращении всего тела купол легко меняет свое положение. Отклонение купола под влиянием движения эндолимфы в полукружных каналах стимулирует волосковые клетки. Их возбуждение вызывает рефлекторный ответ той части скелетной мускулатуры, которая корригирует положение тела и движение глазных мышц.
Иннервация. На сенсорных эпителиоцитах спирального и вестибулярного органов расположены афферентные нервные окончания биполярных нейронов, тела которых располагаются в основании спиральной костной пластинки, образуя спиральный ганглий. Большая часть нейронов (первый тип) представляет крупные биполярные клетки, которые содержат крупное ядро с ядрышком и мелкодиспергированным хроматином. В цитоплазме имеются многочисленные рибосомы, редко встречающиеся нейрофиламенты. Ко второму типу нейронов относятся более мелкие псевдоуниполярные нейроны, отличающиеся ацентричным расположением ядра с плотным хроматином, малым количеством рибосом и большой концентрацией нейрофиламентов в цитоплазме, слабой миелинизацией нервных волокон и резистентностью после перерезки кохлеарного нерва.
Нейроны первого типа получают афферентную информацию исключительно от внутренних сенсоэпителиальных клеток, а нейроны второго типа — от наружных сенсоэпителиальных клеток.
Часть волокон вестибулокохлеарного нерва проходит транзиторно через вестибулярные ядра и достигает мозжечка в составе лазящих волокон, где и заканчиваются на грушевидных клетках (клетки Пуркинье).
Промежуточная часть вестибулокохлеарной сенсорной системы начинается аксонами биполярных клеток вестибулярного ганглия, расположенного на дне внутреннего слухового прохода (вестибулярный ганглий). Тела нейронов второго типа располагаются в вестибулярных ядрах афферентного пути (верхнее, латеральное, медиальное и нижнее). От вестибулярных ядер информация передается к спинальным мотонейронам, мозжечку, ядрам глазодвигательных нервов, в ретикулярную формацию (сетчатое образование) и в кору головного мозга. Проводниковую часть слухового анализатора представляет кохлеарный нерв, идущий от спирального ганглия к кохлеарным ядрам продолговатого мозга. К промежуточным отделам относятся также кохлеарные ядра продолговатого мозга (своей и противоположной стороны), верхняя олива, нижнее двухолмие крыши среднего мозга, ядра трапециевидного тела, латеральной петли и ручек нижнего двухолмия. Конечным звеном промежуточного отдела слуховой сенсорной системы является медиальное коленчатое тело. В этих ядрах происходит не только последовательное центростремительное переключение промежуточных путей на корковые центры, но и переключение на эфферентные пути. Здесь же происходит центробежное торможение, исходящее из корковых или подкорковых центров.
Нейроны коркового центра слуховой сенсорной системы расположены в верхней височной извилине, где происходит интеграция качеств звука (интенсивность, тембр, ритм, тон) на клетках 3-го и 4-го слоев. Корковый центр слуховой сенсорной системы имеет многочисленные ассоциативные связи с корковыми центрами других сенсорных систем, а также с моторной зоной коры.
Иннервация внутренних и наружных сенсоэпителиальных клеток осуществляется двумя типами волокон. Внутренние сенсоэпителиальные клетки снабжены преимущественно афферентными волокнами, которые составляют около 95% всех волокон слухового нерва, а наружные сенсоэпителиальные клетки получают преимущественно эфферентную иннервацию (составляет 80% всех эфферентных волокон улитки). Эфферентные волокна обоих типов клеток происходят из перекрещенного и неперекрещенного оливо-кохлеарных пучков. Число волокон, пересекающих туннель, может быть около 8000.
На базальной поверхности одной внутренней сенсоэпителиальной клетки бывает до 20 синапсов, образуемых афферентными волокнами слухового нерва. Эфферентные терминали составляют не более одной на каждой внутренней клетке, в них находятся круглые прозрачные пузырьки диаметром до 35 нм. Под внутренними сенсоэпителиальными клетками видны многочисленные аксодендритические синапсы, образованные эфферентными волокнами на афферентных волокнах, которые содержат не только светлые, но и более крупные гранулированные пузырьки диаметром 100 нм и более.
На базальной поверхности наружных сенсоэпителиальных клеток афферентные синапсы немногочисленны (разветвления одного волокна иннервируют до 10 клеток). В этих синапсах видны немногочисленные круглые светлые пузырьки диаметром 35 нм и более мелкие (6—13 нм). Эфферентные синапсы более многочисленны — до 13 на 1 клетку, в них видны субсинаптические цистерны с рибосомами. В эфферентных терминалях находятся круглые светлые пузырьки диаметром около 35 нм и гранулированные -диаметром 100—300 нм. Кроме того, на боковых поверхностях наружных сенсоэпителиальных клеток имеются терминали в виде тонких веточек с синаптическими пузырьками диаметром до 35 нм. Под наружными сенсоэпителиальными клетками имеются контакты эфферентных волокон на афферентных волокнах.
Медиаторы синапсов. Тормозящие медиаторы. Ацетилхолин — основной медиатор в эфферентных терминалях на наружных и внутренних сенсоэпителиальных клетках, происходящих из оливокохлеарных пучков. Его роль заключается в подавлении ответов волокон слухового нерва на акустическую стимуляцию. Присутствие ацетилхолина доказано во всех эфферентных терминалях как на внутренних, так и на наружных сенсоэпителиальных клетках. Норадреналин не оказывает кардинального влияния на функцию органа слуха.
Опиоиды (энкефалины) обнаружены в эфферентных терминалях под внутренними и наружными сенсоэпителиальными клетками в виде крупных (>100 нм) гранулированных пузырьков. Их роль — модуляция активности других медиаторов — ацетилхолина, норадреналина, гамма-аминомасляной кислоты (ГАМК) путем непосредственного взаимодействия с рецепторами или изменения проницаемости мембраны для ионов и медиаторов.
Гамма-аминомасляная кислота (ГАМК) содержится в пузырьках диаметром 25— 35 нм в эфферентных терминалях и в области контакта эфферентных волокон на афферентных волокнах под внутренними сенсоэпителиальными клетками. ГАМК и глицин оказывают тормозящее действие.
Возбуждающие медиаторы (аминокислоты). Глутамат обнаружен в области основания внутренних сенсоэпителиальных клеток и в нейронах I типа спирального ганглия. Аспартат найден вокруг наружных сенсоэпителиальных клеток в афферентных терминалях, содержащих ГАМК, и в нейронах II типа спирального ганглия. Их роль: глутаматные рецепторы обеспечивают, возможно, выведение из мембраны связанного с ней Са2+ и регуляцию каналов К+ и Na+. Выявлены глутаматные рецепторы 3 типов. В волокнах слухового нерва содержание ферментов, обеспечивающих синтез глутамата и аспартата, в 2—5 раз выше, чем в других нервах.
Васкуляризация. Артерия перепончатого лабиринта берет свое начало от верхней мозговой артерии. Она делится на две ветви: вестибулярную и общую кохлеарную. Вестибулярная артерия снабжает нижние и боковые части эллиптического и сферического мешочков, а также верхние боковые части полукружных каналов, образуя капиллярные сплетения в области слуховых пятен. Кохлеарная артерия снабжает кровью спиральный ганглий и через надкостницу вестибулярной лестницы и спиральной костной пластинки проникает до внутренних частей базальной мембраны спирального органа. Венозная система лабиринта складывается из трех независимых друг от друга венозных сплетений, находящихся в улитке, преддверии и полукружных каналах. Лимфатические сосуды в лабиринте не обнаружены. Спиральный орган сосудов не имеет.
10.Орган слуха. Улитковый канал. Строение спирального органа. Гистофизиология восприятия звука.
Статоакустическая сенсорная система. Орган слуха и равновесия
Периферическая часть статоакустической системы, или преддверно-улитковый орган (organum vestibule-cochleare), включает — наружное, среднее и внутреннее ухо, осуществляющие восприятие звуковых, гравитационных и вибрационных стимулов, линейных и угловых ускорений. Рецепторные клетки (волосковые сенсорные эпителиоциты) представлены:
в органе слуха — в спиральном (кортиевом) органе улитки,
а в органе равновесия — в пятнах двух мешочков (эллиптического и сферического) и в трех ампулярных гребешках полукружных каналов.
Наружное ухо
Наружное ухо (auris externa) включает ушную раковину, наружный слуховой проход и барабанную перепонку.
Ушная раковина состоит из тонкой пластинки эластического хряща, покрытой кожей с немногочисленными тонкими волосами и сальными железами. Потовых желез в ее составе мало.
Наружный слуховой проход образован хрящом, являющимся продолжением эластического хряща раковины, и костной частью. Поверхность прохода покрыта тонкой кожей, содержащей волосы и связанные с ними сальные железы. Глубже сальных желез расположены трубчатые церуминозные железы (glandula ceruminosa), выделяющие ушную серу. Их протоки открываются самостоятельно на поверхности слухового прохода или в выводные протоки сальных желез. Церуминозные железы располагаются неравномерно по ходу слуховой трубы: во внутренних двух третях они имеются лишь в коже верхней части трубы.
Границей между наружным и средним ухом является барабанная перепонка.Барабанная перепонка овальной, слегка вогнутой формы. Одна из слуховых косточек среднего уха — молоточек — сращена с помощью своей ручки с внутренней поверхностью барабанной перепонки. От молоточка к барабанной перепонке проходят кровеносные сосуды и нервы. Барабанная перепонка в средней части состоит из двух слоев, образованных пучками коллагеновых и эластических волокон и залегающими между ними фибробластами. Волокна наружного слоя расположены радиально, а внутреннего — циркулярно. В верхней части барабанной перепонки количество коллагеновых волокон уменьшается. На наружной ее поверхности располагается очень тонким слоем (50—60 мкм) эпидермис, на внутренней поверхности, обращенной в среднее ухо, — слизистая оболочка толщиной около 20—40 мкм, покрытая однослойным плоским эпителием.
Среднее ухо
Среднее ухо состоит из барабанной полости, слуховых косточек и слуховой трубы.
Барабанная полость — уплощенное пространство, покрытое однослойным плоским эпителием, местами переходящим в кубический или цилиндрический эпителий. На медиальной стенке барабанной полости имеются два отверстия, или «окна». Первое — овальное окно. В нем располагается основание стремечка, которое удерживается с помощью тонкой связки по окружности окна. Овальное окно отделяет барабанную полость от вестибулярной «верхней» лестницы улитки. Второе окно круглое, находится несколько позади овального. Оно закрыто волокнистой мембраной. Круглое окно отделяет барабанную полость от барабанной «нижней» лестницы улитки.
Слуховые косточки — молоточек, наковальня, стремечко как система рычагов передают колебания барабанной перепонки наружного уха к овальному окну, от которого начинается вестибулярная лестница внутреннего уха.
Слуховая труба, соединяющая барабанную полость с носовой частью глотки, имеет хорошо выраженный просвет диаметром 1—2 мм. В области, прилежащей к барабанной полости, слуховая труба окружена костной стенкой, а ближе к глотке содержит островки гиалинового хряща. Просвет трубы выстлан многорядным призматическим реснитчатым эпителием. В нем имеются бокаловидные железистые клетки. На поверхности эпителия открываются протоки слизистых желез. Через слуховую трубу регулируется давление воздуха в барабанной полости среднего уха.
Внутреннее ухо
Внутреннее ухо состоит из костного лабиринта и расположенного в нем перепончатого лабиринта. В перепончатом лабиринте находятся рецепторные клетки — волосковые сенсорные эпителиоциты органа слуха и равновесия. Они расположены в определенных участках: слуховые рецепторные клетки — в спиральном органе улитки, а рецепторные клетки органа равновесия — в эллиптическом и сферическом мешочках и ампулярных гребешках полукружных каналов.
Развитие внутреннего уха. У эмбриона человека перепончатый лабиринт развивается путем впячивания в подлежащую эмбриональную соединительную ткань эктодермы, которая затем замыкается и образует так называемый слуховой пузырек. Он располагается вблизи первой жаберной щели по обеим сторонам закладки продолговатого мозга. Слуховой пузырек состоит из многорядного эпителия, который секретирует эндолимфу, заполняющую просвет пузырька. Одновременно слуховой пузырек контактирует с эмбриональным слуховым нервным ганглием, который вскоре делится на две части — ганглий преддверия и ганглий улитки. В процессе дальнейшего развития пузырек меняет свою форму, перетягиваясь на две части: первая — вестибулярная — превращается в эллиптический мешочек — утрикулюс (utriculus) с полукружными каналами и их ампулами, вторая образует сферический мешочек — саккулюс (sacculus) и закладку улиткового канала. Улитковый канал постепенно растет, завитки его увеличиваются, и он отделяется от эллиптического мешочка. На месте прилегания слухового ганглия к слуховому пузырьку стенка последнего утолщается. Волосковые сенсорные и поддерживающие эпителиоциты органа слуха и равновесия обнаруживаются уже у эмбрионов длиной 15—18,5 мм. Улитковый канал вместе со спиральным органом развивается в виде трубки, которая впячивается в завитки костной улитки. Из эпителия базальной стенки перепончатого канала развивается спиральной орган, содержащий рецепторные слуховые клетки. В это же время происходит образование синапсов между чувствительными клетками лабиринта и периферическими отростками клеток вестибулярного и улиткового ганглиев.
Одновременно развиваются и перилимфатические полости. В улитке эмбриона длиной 43 мм имеется перилимфатическая полость барабанной лестницы, а у эмбрионов длиной 50 мм — и вестибулярная перилимфатическая лестница. Несколько позднее происходят процессы окостенения и формирования костного лабиринта улитки и полукружных каналов.
Улитковый канал
Восприятие звуков осуществляется в спиральном органе (орган Корти), расположенном по всей длине улиткового канала перепончатого лабиринта. Улитковый канал представляет собой спиральный слепо заканчивающийся мешок длиной 3,5 см, заполненный эндолимфой и окруженный снаружи перилимфой. Улитковый канал и окружающие его (заполненные перилимфой) полости барабанной и вестибулярной лестницы в свою очередь заключены в костную улитку, образующую у человека 2 ½ завитка вокруг центрального костного стержня.
Улитковый канал на поперечном разрезе имеет форму треугольника, стороны которого образованы: тонкой вестибулярной мембраной (мембрана Рейсснера), сосудистой полоской, лежащей на наружной стенке костной улитки, и базилярной пластинкой. Вестибулярная мембрана (membrana vestibularis) образует верхнемедиальную стенку канала. Она представляет собой тонкофибриллярную соединительнотканную пластинку, покрытую однослойным плоским эпителием, обращенным к эндолимфе, и эндотелием, обращенным к перилимфе.
Наружная стенка образована эпителиальной сосудистой полоской (stria vascularis), расположенной на спиральной связке (ligamentum spirale). Эпителий многорядный состоит из плоских базальных светлых клеток и высоких отростчатых призматических темных клеток с множеством митохондрий. Митохондрии клеток отличаются очень высокой активностью окислительных ферментов. Между клетками проходят гемокапилляры. Предполагают, что клетки сосудистой полоски продуцируют эндолимфу, которая играет значительную роль в трофике спирального органа.
Нижняя, базилярная, пластинка (lamina basilaris), на которой располагается спиральный орган, построена наиболее сложно. С внутренней стороны она прикрепляется к спиральной костной пластинке в том месте, где ее надкостница — лимб делится на две части: верхнюю — вестибулярную губу и нижнюю — барабанную губу. Последняя переходит в базилярную пластинку, которая на противоположной стороне прикрепляется к спиральной связке.
Базилярная пластинка представляет собой соединительнотканную пластинку, которая в виде спирали тянется вдоль всего улиткового канала. На стороне, обращенной к спиральному органу, она покрыта базальной мембраной эпителия этого органа. В основе базилярной пластинки лежат тонкие коллагеновые волокна («струны»), которые тянутся в виде непрерывного радиального пучка от спиральной костной пластинки до спиральной связки, выступающих в полость костного канала улитки. Характерно, что длина волокон неодинакова по всей длине улиткового канала. Более длинные (около 505 мкм) волокна находятся на вершине улитки, короткие (около 105 мкм) — в ее основании. Располагаются волокна в гомогенном основном веществе. Волокна состоят из тонких фибрилл диаметром около 30 нм, анастомозирующих между собой с помощью еще более тонких пучков. Со стороны барабанной лестницы базилярная пластинка покрыта слоем плоских клеток мезенхимной природы (эндотелием).
Поверхность спирального лимба покрыта плоским эпителием. Его клетки обладают способностью к секреции. Выстилка спиральной бороздки (sulcus spiralis) представлена несколькими рядами крупных плоских полигональных клеток, которые непосредственно переходят в поддерживающие эпителиоциты, примыкающие к внутренним волосковым клеткам спирального органа.
Покровная, или текториальная, мембрана (membrana tectoria) имеет связь с эпителием вестибулярной губы. Она представляет собой лентовидную пластинку желеобразной консистенции, которая тянется в виде спирали по всей длине спирального органа, располагаясь над вершинами его волосковых клеток. Эта пластинка состоит из тонких радиально направленных коллагеновых волокон. Между волокнами находится прозрачное склеивающее вещество, содержащее гликозаминогликаны.
Спиральный орган
Спиральный, или кортиев, орган расположен на базилярной пластинке перепончатого лабиринта улитки. Это эпителиальное образование повторяет ход улитки. Его площадь расширяется от базального завитка улитки к апикальному. Состоит из двух групп клеток — сенсоэпителиалъных (волосковых) и поддерживающих. Каждая из этих групп клеток подразделяется на внутренние и наружные. Эти две группы разделяет туннель.
Внутренние сенсоэпителиальные клетки (epitheliocyti sensoria internae) имеют кувшинообразную форму с расширенной базальной и искривленной апикальной частями, лежат в один ряд на поддерживающих внутренних фаланговых эпителиоцитах (epitheliocyti phalangeae internae). Их общее количество у человека достигает 3500. На апикальной поверхности имеется кутикулярная пластинка, на которой расположены от 30 до 60 коротких микроворсинок — стереоцилий (длина их в базальном завитке улитки примерно 2 мкм, а в верхушечном больше в 2—2,5 раза). В базальной и апикальной частях клеток имеются скопления митохондрий, элементы гладкой и гранулярной эндоплазматической сети, актиновые и миозиновые миофиламенты. Наружная поверхность базальной половины клетки покрыта сетью афферентных и эфферентных нервных окончаний.
Наружные сенсоэпителиальные клетки (epitheliocyti sensoria externae) имеют цилиндрическую форму, лежат в 3—4 ряда на вдавлениях поддерживающих наружных фаланговых эпителиоцитов (epitheliocyti phalangeae externae). Общее количество наружных эпителиальных клеток у человека может достигать 12 000—20 000. Они, как и внутренние клетки, имеют на своей апикальной поверхности кутикулярную пластинку со стереоцилиями, которые образуют щеточку из нескольких рядов в виде буквы V. Стереоцилии наружных волосковых клеток своими вершинами прикасаются к внутренней поверхности текториальной мембраны. Стереоцилии содержат многочисленные плотно упакованные фибриллы, имеющие в своем составе сократительные белки (актин и миозин), благодаря чему после наклона они вновь принимают исходное вертикальное положение.
Цитоплазма сенсорных эпителиоцитов богата окислительными ферментами. Наружные сенсорные эпителиоциты содержат большой запас гликогена, а их стереоцилии богаты ферментами, в том числе ацетилхолинэстеразой. Активность ферментов и других химических веществ при непродолжительных звуковых воздействиях возрастает, а при длительных снижается.
Наружные сенсорные эпителиоциты значительно чувствительнее к звукам большей интенсивности, чем внутренние. Высокие звуки раздражают только волосковые клетки, расположенные в нижних завитках улитки, а низкие звуки — волосковые клетки вершины улитки.
Во время звукового воздействия на барабанную перепонку ее колебания передаются на молоточек, наковальню и стремечко, а далее через овальное окно на перилимфу, базилярную и текториальную мембраны. Это движение строго соответствует частоте и интенсивности звуков. При этом происходят отклонение стереоцилий и возбуждение рецепторных клеток. Все это приводит к возникновению рецепторного потенциала (микрофонный эффект). Афферентная информация по слуховому нерву передается в центральные части слухового анализатора.
Поддерживающие эпителиоциты спирального органа в отличие от сенсорных своими основаниями непосредственно располагаются на базальной мембране. В их цитоплазме обнаруживаются тонофибриллы. Внутренние фаланговые эпителиоциты, лежащие под внутренними сенсоэпителиальными клетками, связаны между собой плотными и щелевидными контактами. На апикальной поверхности имеются тонкие пальцевидные отростки (фаланги). Этими отростками вершины рецепторных клеток отделены друг от друга.
На базилярной мембране располагаются также наружные фаланговые клетки. Они залегают в 3—4 ряда в непосредственной близости от наружных столбовых клеток. Эти клетки имеют призматическую форму. В их базальной части располагается ядро, окруженное пучками тонофибрилл. В верхней трети, на месте соприкосновения с наружными волосковыми клетками, в наружных фаланговых эпителиоцитах есть чашевидное вдавление, в которое входит основание наружных сенсорных клеток. Только один узкий отросток наружных поддерживающих эпителиоцитов доходит своей тонкой вершиной — фалангой — до верхней поверхности спирального органа.
В спиральном органе расположены также так называемые внутренние и наружные столбовые эпителиоциты (epitheliocyti pilaris intemae et externae). На месте своего соприкосновения они сходятся под острым углом друг к другу и образуют правильный треугольный канал - туннель, заполненный эндолимфой. Туннель тянется по спирали вдоль всего спирального органа. Основания клеток-столбов прилежат друг к другу и располагаются на базальной мембране. Через туннель проходят безмиелиновые нервные волокна, идущие от нейронов спирального ганглия к сенсорным клеткам.
11. Орган вкуса. Локализация. Строение и клеточный состав вкусовых почек. Гистофизиология органа вкуса.
Вкусовая сенсорная система. Орган вкуса
Орган вкуса (organum gustus) — периферическая часть вкусового анализатора представлен рецепторными эпителиальными клетками во вкусовых почках (caliculi gustatoriae). Они воспринимают вкусовые раздражения (пищевые и непищевые), генерируют и передают рецепторный потенциал афферентным нервным окончаниям, в которых появляются нервные импульсы. Информация поступает в подкорковые и корковые центры. При участии этой сенсорной системы обеспечиваются также некоторые вегетативные реакции (отделение секрета слюнных желез, желудочного сока и др.), поведенческие реакции на поиск пищи и т.п. Вкусовые почки располагаются в многослойном плоском эпителии боковых стенок желобоватых, листовидных и грибовидных сосочков языка человека. У детей, а иногда и у взрослых вкусовые почки могут находиться на губах, задней стенке глотки, небных дужек, наружной и внутренней поверхностях надгортанника. Количество вкусовых почек у человека достигает 2000.
Развитие. Источником развития клеток вкусовых почек является эмбриональный многослойный эпителий сосочков. Он подвергается дифференцировке под индуцирующим воздействием окончаний нервных волокон язычного, языкоглоточного и блуждающего нервов. Таким образом, иннервация вкусовых почек появляется одновременно с возникновением их зачатков.
Строение. Каждая вкусовая почка имеет эллипсоидную форму и занимает всю толщу многослойного эпителиального пласта сосочка. Она состоит из плотно прилежащих друг к другу 40—60 клеток, среди которых различают 5 видов: сенсоэпителиальные («светлые» узкие и «светлые» цилиндрические), «темные» поддерживающие, базальные малодифференцированные и периферические (перигеммальные).
От подлежащей соединительной ткани вкусовая почка отделяется базальной мембраной. Вершина почки сообщается с поверхностью языка при помощи вкусовой поры (poms gustatorius). Вкусовая пора ведет в небольшое углубление между поверхностными эпителиальными клетками сосочков - вкусовую ямку.
Сенсоэпителиальные клетки. Светлые узкие сенсоэпителиальные клетки содержат в базальной части светлое ядро, вокруг которого располагаются митохондрии, органеллы синтеза, первичные и вторичные лизосомы. Вершина клеток снабжена «букетом» микроворсинок, являющихся адсорбентами вкусовых раздражителей. На цитолемме базальной части клеток берут начало дендриты чувствительных нейронов. Светлые цилиндрические сенсоэпителиальные клетки подобны светлым узким клеткам. Между микроворсинками во вкусовой ямке находится электронно-плотное вещество с высокой активностью фосфатаз и значительным содержанием рецепторного белка и гликопротеидов. Это вещество играет роль адсорбента для вкусовых веществ, попадающих на поверхность языка. Энергия внешнего воздействия трансформируется в рецепторный потенциал. Под его влиянием из рецептирующей клетки выделяется медиатор, который, действуя на нервное окончание сенсорного нейрона, вызывает в нем генерацию нервного импульса. Нервный импульс передается далее в промежуточную часть анализатора.
Во вкусовых почках передней части языка обнаружен сладкочувствительный рецепторный белок, задней части — горькочувствительный. Вкусовые вещества адсорбируются на примембранном слое цитолеммы микроворсинок, в которую вмонтированы специфические рецепторные белки. Одна и та же вкусовая клетка способна воспринимать несколько вкусовых раздражений. При адсорбции воздействующих молекул происходят конформационные изменения рецепторных белковых молекул, которые приводят к локальному изменению проницаемости мембран вкусового сенсорного эпителиоцита и генерации потенциала на его мембране. Этот процесс имеет сходство с процессом в холинергических синапсах, хотя допускается участие и других медиаторов.
В каждую вкусовую почку входит и разветвляется около 50 афферентных нервных волокон, формирующих синапсы с базальными отделами рецепторных клеток. На одной рецепторной клетке могут быть окончания нескольких нервных волокон, а одно волокно кабельного типа может иннервировать несколько вкусовых почек.
В формировании вкусовых ощущений принимают участие неспецифические афферентные окончания (тактильные, болевые, температурные), имеющиеся в слизистой оболочке ротовой полости, глотке, возбуждение которых добавляет окраску вкусовых ощущений («острый вкус перца» и др.).
Поддерживающие эпителиоциты (epitheliocytus sustentans) отличаются наличием овального ядра с большим количеством гетерохроматина, расположенного в базальной части клетки. В цитоплазме этих клеток много митохондрий, мембран гранулярной эндоплазматической сети и свободных рибосом. Около аппарата Гольджи встречаются гранулы, содержащие гликозаминогликаны. На вершине клеток имеются микроворсинки.
Базальные малодифференцированные клетки характеризуются небольшим объемом цитоплазмы вокруг ядра и слабым развитием органелл. В этих клетках выявляются фигуры митоза. Базальные клетки в отличие от сенсоэпителиальных и поддерживающих клеток никогда не достигают поверхности эпителиального слоя. Из этих клеток, видимо, развиваются поддерживающие и сенсоэпителиальные клетки.
Периферические (перигеммальные) клетки имеют серповидную форму, содержат мало органелл, но в них много микротрубочек и нервных окончаний.
Промежуточная часть вкусового анализатора. Центральные отростки ганглиев лицевого, языкоглоточного и блуждающего нервов вступают в ствол головного мозга к ядру одиночного пути, где находится второй нейрон вкусового пути. Здесь может происходить переключение импульсов на эфферентные пути к мимической мускулатуре, слюнным железам, к мышцам языка. Большая часть аксонов ядра одиночного пути достигает таламуса, где находится 3-й нейрон вкусового пути, аксоны которого заканчиваются на 4-м нейроне в коре большого мозга нижней части постцентральной извилины (центральная часть вкусового анализатора). Здесь формируются вкусовые ощущения.
Регенерация. Сенсорные и поддерживающие эпителиоциты вкусовой почки непрерывно обновляются. Продолжительность их жизни примерно 10 сут. При разрушении вкусовых сенсорных эпителиоцитов нейроэпителиальные синапсы прерываются и вновь образуются на новых клетках.
12. Артерии. Классификация. Особенности строения и функции артерий различного типа: мышечного, мышечно-эластического и эластического. Органные особенности артерий. Основные этапы постнатального развития.
Артерии
Артерии бывают трех типов: эластического, мышечного и смешанного (или мышечно-эластического). Классификация основывается на соотношении количества мышечных клеток и эластических волокон в средней оболочке артерий.
Артерии эластического типа
Артерии эластического типа характеризуются выраженным развитием в их средней оболочке эластических структур. К этим артериям относятся аорта илегочная артерия, в которых кровь протекает под высоким давлением и с большой скоростью. В эти сосуды кровь поступает непосредственно из сердца. Артерии крупного калибра выполняют главным образом транспортную функцию. Наличие большого количества эластических элементов (волокон, мембран) позволяет этим сосудам растягиваться при систоле сердца и возвращаться в исходное положение во время диастолы. В качестве примера сосуда эластического типа рассматривается аорта - самая крупная артерия организма.
Внутренняя оболочка аорты включает эндотелий, подэндотелиальный слой и сплетение эластических волокон (в качестве внутренней эластической мембраны). С возрастом толщина интимы увеличивается.
Эндотелий аорты человека состоит из плоских эндотелиоцитов, расположенных на базальной мембране.
Подэндотелиальный слой состоит из рыхлой тонкофибриллярной соединительной ткани, богатой клетками звездчатой формы. Эти клетки, как консоли, поддерживают эндотелий. В подэндотелиальном слое встречаются отдельные продольно направленные гладкие миоциты.
Густое сплетение эластических волокон соответствует внутренней эластической мембране.
Внутренняя оболочка аорты в месте отхождения от сердца образует три карманоподобные створки - т.н. "полулунные клапаны" - единственные клапаны в артериях. Эти образования чаще называют в единственном числе - аортальный клапан.
Средняя оболочка аорты образует основную часть ее стенки, состоит из нескольких десятков эластических окончатых мембран, которые имеют вид цилиндров, вставленных друг в друга. Они связаны между собой эластическими волокнами и образуют единый эластический каркас вместе с эластическими элементами других оболочек.
Между мембранами средней оболочки аорты залегают гладкие мышечные клетки, косо расположенные по отношению к мембранам, а также фибробласты.
Окончатые эластические мембраны, эластические и коллагеновые волокна и гладкие миоциты погружены в аморфное вещество, богатое гликозаминогликанами (ГАГ). Такое строение средней оболочки делает аорту высокоэластичной и смягчает толчки крови, выбрасываемой в сосуд во время сокращения сердца, а также обеспечивает поддержание тонуса сосудистой стенки во время диастолы.
Наружная оболочка аорты относительно тонкая, не содержит наружной эластической мембраны. Построена из рыхлой волокнистой соединительной ткани с большим количеством толстых эластических и коллагеновых волокон, имеющих главным образом продольное направление. Наружная оболочка предохраняет сосуд от перерастяжения и разрывов.
Артерии мышечного типа
К артериям мышечного типа относятся преимущественно сосуды среднего и мелкого калибра, т.е. большинство артерий организма. В стенках этих артерий имеется относительно большое количество гладких мышечных клеток, что обеспечивает дополнительную нагнетающую силу их и регулирует приток крови к органам.
В состав внутренней оболочки входят эндотелий с базальной мембраной, подэндотелиальный слой и внутренняя эластическая мембрана. Эндотелиальные клетки, расположенные на базальной мембране, вытянуты вдоль продольной оси сосуда. Подэндотелиальный слой состоит из тонких эластических и коллагеновых волокон, преимущественно продольно направленных, а также малоспециализированных соединительнотканных клеток. Кнаружи от подэндотелиального слоя расположена тесно связанная с ним внутренняя эластическая мембрана. В мелких артериях она очень тонкая, а в крупных артериях мышечного типа эластическая мембрана четко выражена.
Средняя оболочка артерий - наиболее толстая, содержит гладкие мышечные клетки, расположенные по пологой спирали (т.е. косоциркулярно). Между гладкими миоцитами находятся в соединительнотканные клетки и волокна. Коллагеновые волокна образуют опорный каркас для гладких миоцитов. В артериях обнаружен коллаген I, II, IV, V типов.
Эластические волокна стенки артерии на границе с наружной и внутренней оболочками сливаются с эластическими мембранами. Таким образом, создается единый эластический каркас, который, с одной стороны, придает сосуду эластичность при растяжении, а с другой - упругость при сдавлении. Эластический каркас препятствует спадению артерий, что обусловливает их постоянное зияние и непрерывность в них тока крови.
Наружная оболочка включает в себя наружную эластическую мембрану и прослойку рыхлой волокнистой соединительной ткани. Наружная эластическая мембрана состоит из продольных, густо переплетающихся эластических волокон, которые иногда приобретают вид эластической пластинки. Обычно наружная эластическая мембрана бывает тоньше внутренней эластической мембраны и не у всех артерий достаточно хорошо выражена.
По мере уменьшения диаметра артерий и их приближения к артериолам все оболочки артерий истончаются. Во внутренней оболочке резко уменьшается толщина подэндотелиального слоя и внутренней эластической мембраны. Количество мышечных клеток и эластических волокон в средней оболочке также постепенно убывает. В наружной оболочке уменьшается количество эластических волокон, исчезает наружная эластическая мембрана.
+
Артерии мышечного типа выполняют не только транспортную, но и распределительную функции, регулируя приток крови к органам в условиях разных физиологических нагрузок (это, так называемые, органные артерии). Артерии мышечного типа содержат в средней оболочке гладкие миоциты. Это позволяет артериям регулировать приток крови к органам и поддерживать нагнетание крови, что важно для кровоснабжения органов, расположенных на большом удалении от сердца.
Артерии мышечно-эластического типа
По строению и функциональным особенностям артерии смешанного типа занимают промежуточное положение между сосудами мышечного и эластического типов и обладают признаками и тех и других.
Развитие
Первые кровеносные сосуды появляются в мезенхиме стенки желточного мешка на 2-3-й неделе эмбриогенеза человека, а также в стенке хориона в составе так называемыхкровяных островков. Часть мезенхимных клеток по периферии островков уплощается и превращается в эндотелиальные клетки первичных сосудов. Клетки центральной части островка округляются и превращаются в клетки крови. Из мезенхимных клеток, окружающих сосуд, позднее дифференцируются гладкие мышечные клетки, адвентициальные клетки, а также фибробласты.
В теле зародыша из мезенхимы образуются первичные кровеносные сосуды, имеющие вид трубочек и щелевидных пространств. В конце 3-й недели внутриутробного развития сосуды тела зародыша начинают сообщаться с сосудами внезародышевых органов.
Дальнейшее развитие стенки сосудов происходит после начала циркуляции крови под влиянием тех гемодинамических условий (кровяное давление, скорость кровотока), которые создаются в различных частях тела, что обусловливает появление специфических особенностей строения стенки сосудов. В ходе перестроек первичных сосудов в эмбриогенезе часть из них редуцируется.
13. Микроциркуляторное русло. Капилляры. Классификация, строение, функция. Органные особенности капилляров.
Микроциркуляторное русло
К микроциркуляторному руслу относят сосуды диаметром менее 100 мкм, которые видны лишь под микроскопом. Эта система мелких сосудов включает:
артериолы,
гемокапилляры,
венулы,
артериоловенулярные анастомозы.
Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами, вместе с окружающей соединительной тканью обеспечивает: регуляцию кровенаполнения органов, транскапиллярный обмен (т.е. трофическую, дыхательную, экскреторную функции), а также дренажно-депонирующую функцию. Чаще всего элементы микроциркуляторного русла образуют густую систему анастомозов прекапиллярных, капиллярных и посткапиллярных сосудов.
Сосуды микроциркуляторного русла пластичны при изменении кровотока. Они могут депонировать форменные элементы или быть спазмированы и пропускать лишь плазму крови, изменять свою проницаемость для тканевой жидкости.
Артериальное звено микроциркуляторного русла
Артериальное звено микроциркуляторного русла включает артериолы и прекапилляры.
Артериолы
Это микрососуды диаметром 50-100 мкм. В артериолах сохраняются три оболочки, каждая из которых состоит из одного слоя клеток. Внутренняя оболочка артериол состоит из эндотелиальных клеток с базальной мембраной, тонкого подэндотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболочка образована одним (реже двумя) слоями гладких мышечных клеток, имеющих спиралевидное направление.
В артериолах обнаруживаются перфорации в базальной мембране эндотелия и внутренней эластической мембране, благодаря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток. Такие контакты создают условия для передачи информации от эндотелия к гладким мышечным клеткам. В частности, при выбросе в кровь адреналина эндотелий синтезирует фактор, который вызывает сокращение гладких мышечных клеток.
Между мышечными клетками артериол обнаруживается небольшое количество эластических волокон. Наружная эластическая мембрана отсутствует. Адвентиция очень тонкая и сливается с окружающей соединительной тканью.
Прекапилляры (прекапиллярные артериолы, или метартериолы)
Это микрососуды диаметром около 15 мкм, отходящие от артериол, в стенке которых эластические элементы полностью отсутствуют. Эндотелиоциты контактируют с гладкими мышечными клетками, которые располагаются поодиночке и образуютпрекапиллярные сфинктеры в участке отхождения прекапилляров от артериолы и в месте разделения прекапилляра на капилляры. Прекапиллярные сфинктеры регулируют кровенаполнение отдельных групп капилляров. В норме часть их тонически закрыта и открывается при нагрузке. Установлена ритмическая активность сфинктеров с периодом от 2 до 8 секунд. Между эндотелиальными и гладкомышечными клетками в прекапиллярах появляются особые клетки - перициты.
Капилляры
Кровеносные капилляры наиболее многочисленные и самые тонкие сосуды, общая протяженность которых в организме превышает 100 тыс. км. В большинстве случаев капилляры формируют сети, однако они могут образовывать петли, а также клубочки.
В обычных физиологических условиях около половины капилляров находится в полузакрытом состоянии. Просвет их сильно уменьшен, но полного закрытия его при этом не происходит. Для форменных элементов крови эти капилляры оказываются непроходимыми, в то же время плазма крови продолжает по ним циркулировать. Число капилляров в определенном органе связано с его общими морфофункциональными особенностями, а количество открытых капилляров зависит от интенсивности работы органа в данный момент.
Выстилка капилляров образована эндотелием, лежащим на базальной мембране. В расщеплениях базальной мембраны эндотелия выявляются особые отросчатые клетки - перициты, имеющие многочисленные щелевые соединения с эндотелиоцитами. Снаружи капилляры окружены сетью ретикулярных волокон и редкими адвентициальными клетками.
Эндотелиоциты, перициты и адвентициальные клетки
Характеристика эндотелия
Эндотелий выстилает сердце, кровеносные и лимфатические сосуды. Это однослойный плоский эпителий мезенхимного происхождения. Эндотелиоциты имеют полигональную форму, обычно удлиненную по ходу сосудов, и связаны друг с другом плотными и щелевыми соединениями. Общая масса всех эндотелиоцитов в организме человека - около 1 кг., а общая поверхность - более 1000 кв.м. Цитоплазма эндотелиоцитов истончена до 0.2 - 0.4 мкм. и содержит большое количество транспортных пузырьков, которые могут образовывать трансэндотелиальные каналы. Органеллы немногочисленны, локализуются вокруг ядра. Для цитоскелета характерны виментиновые промежуточные филаменты. В эндотелиоцитах обнаруживаются особые палочковидные структуры - тельца Вейбеля-Паладе, содержащие фактор VIII свертывающей системы крови.
В физиологических условиях эндотелий обновляется медленно.
Функции эндотелия:
транспортная функция - через эндотелий осуществляется избирательный двусторонний транспорт веществ между кровью и другими тканями;
гемостатическая функция - эндотелий играет ключевую роль в свертывании крови. В норме неповрежденный эндотелий образует атромбогенную поверхность. Эндотелий вырабатывает прокоагулянты и антикоагулянты;
вазомоторная функция - эндотелий участвует в регуляции сосудистого тонуса, выделяет сосудосуживающие и сосудорасширяющие вещества;
рецепторная функция - эндотелиоциты обладают рецепторами различных цитокинов и адгезивных белков; они экспрессируют на плазмолемме ряд соединений, обеспечивающих адгезию и последующую трансэндотелиальную миграцию лейкоцитов крови;
секреторная функция - эндотелиоциты вырабатывают митогены, факторы роста, цитокины, регулирующие кроветворение, опосредующие воспалительные реакции;
сосудообразовательная функция - эндотелий обеспечивает ангиогенез (как в эмбриональном развитии, так и при регенерации).
Второй вид клеток в стенке капилляров - перициты (клетки Руже). Эти соединительнотканные клетки имеют отростчатую форму и в виде корзинки окружают кровеносные капилляры, располагаясь в расщеплениях базальной мембраны эндотелия.
Третий вид клеток в стенке капилляров - адвентициальные клетки. Это малодифференцированные клетки, расположенные снаружи от перицитов. Они окружены аморфным веществом соединительной ткани, в котором находятся тонкие коллагеновые волокна. Адвентициальные клетки являются камбиальными полипотентными предшественниками фибробластов, остеобластов и жировых клеток.
right000Классификация капилляров
По структурно-функциональным особенностям различают три типа капилляров: соматический, фенестрированный и синусоидный, или перфорированный.
Наиболее распространенный тип капилляров -соматический. В таких капиллярах сплошная эндотелиальная выстилка и сплошная базальной мембраной. Капилляры соматического типа находятся в мышцах, органах нервной системы, в соединительной ткани, в экзокринных железах.
Второй тип - фенестрированные капилляры. Они характеризуются тонким эндотелием с порами в эндотелиоцитах. Поры затянуты диафрагмой, базальная мембрана непрерывна. Фенестрированные капилляры встречаются в эндокринных органах, в слизистой оболочке кишки, в бурой жировой ткани, в почечном тельце, сосудистом сплетении мозга.
Третий тип - капилляры перфорированного типа, или синусоиды. Это капилляры большого диаметра, с крупными межклеточными и трансцеллюлярными порами (перфорациями). Базальная мембрана прерывистая. Синусоидные капилляры характерны для органов кроветворения, в частности для костного мозга, селезенки, а также для печени.
14. Артериолы. Венулы. Их роль в кровообращении; строение, гистофизиология.
Артериолы
Это микрососуды диаметром 50-100 мкм. В артериолах сохраняются три оболочки, каждая из которых состоит из одного слоя клеток. Внутренняя оболочка артериол состоит из эндотелиальных клеток с базальной мембраной, тонкого подэндотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболочка образована одним (реже двумя) слоями гладких мышечных клеток, имеющих спиралевидное направление.
В артериолах обнаруживаются перфорации в базальной мембране эндотелия и внутренней эластической мембране, благодаря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток. Такие контакты создают условия для передачи информации от эндотелия к гладким мышечным клеткам. В частности, при выбросе в кровь адреналина эндотелий синтезирует фактор, который вызывает сокращение гладких мышечных клеток.
Между мышечными клетками артериол обнаруживается небольшое количество эластических волокон. Наружная эластическая мембрана отсутствует. Адвентиция очень тонкая и сливается с окружающей соединительной тканью.
Венозное звено микроциркуляторного русла: посткапилляры, собирательные венулы и мышечные венулы
Посткапилляры (или посткапиллярные венулы) образуются в результате слияния нескольких капилляров, по своему строению напоминают венозный отдел капилляра, но в стенке этих венул отмечается больше перицитов. В органах иммунной системы имеются посткапилляры с особым высоким эндотелием, которые служат местом выхода лимфоцитов из сосудистого русла. Вместе с капиллярами посткапилляры являются наиболее проницаемыми участками сосудистого русла, реагирующими на такие вещества, как гистамин, серотонин, простагландины и брадикинин, которые вызывают нарушение целостности межклеточных соединений в эндотелии.
Собирательные венулы образуются в результате слияния посткапиллярных венул. В них появляются отдельные гладкие мышечные клетки и более четко выражена наружная оболочка.
Мышечные венулы имеют один-два слоя гладких мышечных клеток в средней оболочке и сравнительно хорошо развитую наружную оболочку.
Венозный отдел микроциркуляторного русла вместе с лимфатическими капиллярами выполняет дренажную функцию, регулируя гематолимфатическое равновесие между кровью и внесосудистой жидкостью, удаляя продукты метаболизма тканей. Через стенки венул, так же как через капилляры, мигрируют лейкоциты. Медленный кровоток и низкое кровяное давление, а также растяжимость этих сосудов создают условия для депонирования крови.
Артериоло-венулярные анастомозы
Артериоловенулярные анастомозы (ABA) - это соединения сосудов, несущих артериальную кровь в вены в обход капиллярного русла. Они обнаружены почти во всех органах. Объем кровотока в анастомозах во много раз больше, чем в капиллярах, скорость кровотока значительно увеличена. ABA отличаются высокой реактивностью и способностью к ритмическим сокращениям.
Классификация. Различают две группы анастомозов: истинные ABA (или шунты), и атипичные ABA (или полушунты). В истинных анастомозах в венозное русло сбрасывается чисто артериальная кровь. В атипичных анастомозах течет смешанная кровь, т.к. в них осуществляется газообмен. Атипичные анастомозы (полушунты) представляют собой короткий, но широкий, капилляр. Поэтому сбрасываемая в венозное русло кровь является не полностью артериальной.
Первая группа - истинных анастомозов может иметь различную внешнюю форму — прямые короткие соустья, петли, ветвящиеся соединения. Истинные АВА подразделяются на две подгруппы: простые и сложные. Сложные АВА снабжены специальными сократительными структурами, регулирующими кровоток. Сюда относят анастомозы с мышечной регуляцией, а также анастомозы т.н. гломусного, или клубочкового, типа, - с особыми эпителиоидными клетками.
ABA, особенно гломусного типа, богато интернированы. ABA принимают участие в регуляции кровенаполнения органов, перераспределении артериальной крови, регуляции местного и общего давления крови, а также в мобилизации депонированной в венулах крови.
15. Вены. Классификация. Строение вен в связи с гемодинамическими условиями.
Вены
Сосуды, по которым кровь возвращается к сердцу, называются венами.
По общему плану строения своей стенки вены сходны с артериями. Давление в венах низкое, кровь движется медленно, поэтому вены характеризуются большим просветом, тонкой, легко спадающейся стенкой со слабым развитием эластических элементов. Во многих венах имеются клапаны, являющиеся производными внутренней оболочки. Не содержат клапанов вены головного мозга и его оболочек, вены внутренних органов, подчревные, подвздошные, полые и безымянные вены.
Особенности строения стенки вен:
слабое развитие внутренней эластической мембраны, которая часто распадается на сеть волокон;
слабое развитие циркулярного мышечного слоя; более частое продольное расположение гладких миоцитов;
меньшая толщина стенки по сравнению со стенкой соответствующей артерии, более высокое содержание коллагеновых волокон;
неотчетливое разграничение отдельных оболочек;
более сильное развитие адвентиции и более слабое - интимы и средней оболочки (по сравнению с артериями);
наличие клапанов.
Классификация вен
По степени развития мышечных элементов в стенках вен они могут быть разделены на две группы: вены безмышечного (волокнистого) типа и вены мышечного типа. Вены мышечного типа в свою очередь подразделяются на вены со слабым, средним и сильным развитием мышечных элементов.
Вены волокнистого типа (безмышечные) - располагаются в органах и их участках, имеющих плотные стенки, с которыми они прочно срастаются своей наружной оболочкой. К венам этого типа относят безмышечные вены мозговых оболочек, вены сетчатки глаза, вены костей, селезенки и плаценты. Вены мозговых оболочек и сетчатки глаза податливы при изменении кровяного давления, могут сильно растягиваться, но скопившаяся в них кровь сравнительно легко под действием собственной силы тяжести оттекает в более крупные венозные стволы. Вены костей, селезенки и плаценты также пассивны в продвижении по ним крови. Это объясняется тем, что все они плотно сращены с плотными элементами соответствующих органов и не спадаются, поэтому отток крови по ним совершается легко.
Стенка безмышечных вен представлена эндотелием, окруженным слоем рыхлой волокнистой соединительной ткани, срастающейся с окружающими тканями. Гладкомышечные клетки отсутствуют.
Вены мышечного типа характеризуются наличием в их оболочках гладких мышечных клеток, количество и расположение которых в стенке вены обусловлены гемодинамическими факторами.
Различают вены со слабым, средним и сильным развитием мышечных элементов.
Вены со слабым развитием мышечных элементов - это мелкие и средние вены верхней части тела, по которым кровь движется пассивно, под действием силы тяжести.
Вены мелкого и среднего калибра со слабым развитием мышечных элементов имеют плохо выраженный подэндотелиальный слой, а в средней оболочке содержится небольшое количество мышечных клеток. В некоторых мелких венах, например в венах пищеварительного тракта, гладкие мышечные клетки в средней оболочке образуют отдельные "пояски", располагающиеся далеко друг от друга. Благодаря такому строению вены могут сильно расширяться и выполнять депонирующую функцию. В наружной оболочке мелких вен встречаются единичные продольно направленные гладкие мышечные клетки.
Среди вен крупного калибра, в которых слабо развиты мышечные элементы, наиболее типична верхняя полая вена, в средней оболочке стенки которой отмечается небольшое количество гладких мышечных клеток. Это обусловлено отчасти прямохождением человека, в силу чего кровь по этой вене стекает к сердцу благодаря собственной тяжести, а также дыхательным движениям грудной клетки. В начале диастолы в предсердиях появляется даже небольшое отрицательное кровяное давление, которое как бы подсасывает кровь из полых вен.
Вены со средним развитием мышечных элементов характеризуются наличием единичных продольно ориентированных гладкомышечных клеток в интиме и адвентиции и пучков циркулярно расположенных гладких миоцитов, разделенных прослойками соединительной ткани - в средней оболочке. Внутренняя и наружная эластические мембраны отсутствуют. Коллагеновые и эластические волокна наружной оболочки направлены преимущественно продольно. Кроме того, в наружной оболочке встречаются отдельные гладкие мышечные клетки и небольшие пучки их, которые также расположены продольно.
К венам с сильным развитием мышечных элементов относятся крупные вены нижней половины туловища и ног. Для них характерно развитие пучков гладких мышечных клеток во всех трех их оболочках, причем во внутренней и наружной оболочках они имеют продольное направление, а в средней - циркулярное. Имеются многочисленные клапаны. Такое строение обусловлено током крови в венах против силы тяжести.
16. Сердце. Общая морфофункциональная характеристика. Строение стенки сердца и тканевый состав. Эндокард. Основные этапы постнатального развития.
Сердце - это мышечный орган, который приводит в движение кровь, благодаря своим ритмическим сокращениям. Мышечная ткань сердца представлена особыми клетками - кардиомицитами.
Как в любом трубчатом органе, в стенке сердца выделяют оболочки:
внутренняя оболочка, или эндокард,
средняя оболочка, или миокард,
наружная оболочка, или эпикард.
Развивается сердце из нескольких источников. Эндокард, соединительная ткань сердца, включая сосуды - мезенхимного происхождения. Миокард и эпикард развиваются из мезодермы, точнее - из висцерального листка спланхнотома, - т.н. миоэпикардиальных пластинок.
Строение сердца
Эндокард
Внутренняя оболочка сердца, эндокард (endocardium), выстилает изнутри камеры сердца, папиллярные мышцы, сухожильные нити, а также клапаны сердца. Толщина эндокарда в различных участках неодинакова. Он толще в левых камерах сердца, особенно на межжелудочковой перегородке и у устья крупных артериальных стволов - аорты и легочной артерии, а на сухожильных нитях значительно тоньше.
В эндокарде различают 4 слоя: эндотелий, субендотелиальный слой, мышечно-эластический слой и наружный соединительнотканный слой.
Поверхность эндокарда выстлана эндотелием, лежащим на толстой базальной мембране. За ним следует субэндотелиальный слой, образованный рыхлой волокнистой соединительной тканью. Глубже располагается мышечно-эластический слой, в котором эластические волокна переплетаются с гладкими мышечными клетками. Эластические волокна гораздо лучше выражены в эндокарде предсердий, чем в желудочках. Гладкие мышечные клетки сильнее всего развиты в эндокарде у места выхода аорты. Самый глубокий слой эндокарда - наружный соединительнотканный слой - лежит на границе с миокардом. Он состоит из соединительной ткани, содержащей толстые эластические, коллагеновые и ретикулярные волокна. Эти волокна непосредственно продолжаются в волокна соединительнотканных прослоек миокарда.
Питание эндокарда осуществляется главным образом диффузно за счет крови, находящейся в камерах сердца.
Миокард
Средняя, мышечная оболочка сердца (myocardium) состоит из поперечнополосатыхмышечных клеток - кардиомиоцитов. Кардиомиоциты тесно связаны между собой и образуют функциональные волокна, слои которых спиралевидно окружают камеры сердца. Между кардиомиоцитами располагаются прослойки рыхлой соединительной ткани, сосуды, нервы.
Различают кардиомиоциты трех типов:
сократительные, или рабочие, сердечные миоциты;
проводящие, или атипичные, сердечные миоциты, входящие в состав так называемой проводящей системы сердца;
секреторные, или эндокринные, кардиомиоциты.
Сократительные кардиомиоциты образуют основную часть миокарда. Они содержат 1-2 ядра в центральной части клетки, а миофибриллы расположены по периферии. Места соединения кардиомиоцитов называются вставочные диски, в них обнаруживаются щелевые соединения (нексусы) и десмосомы. Форма клеток в желудочках - цилиндрическая, в предсердиях - неправильная, часто отросчатая.
Кардиомиоциты покрыты сарколеммой, состоящей из плазмолеммы и базальной мембраны, в которую вплетаются тонкие коллагеновые и эластические волокна, образующие "наружный скелет" кардиомиоцитов, - эндомизий. Базальная мембрана кардиомиоцитов содержит большое количество гликопротеинов, способных связывать ионы Са2+. Она принимает участие в перераспределении ионов Са2+ в цикле сокращение - расслабление. Базальная мембрана латеральных сторон кардиомиоцитов инвагинирует в канальцы Т-системы (чего не наблюдается в соматических мышечных волокнах).
Кардиомиоциты желудочков значительно интенсивнее пронизаны канальцами Т-системы, чем соматические мышечные волокна. Канальцы L-системы (латеральные расширения саркоплазматического ретикулума) и Т-системы образуют диады (1 каналец L-системы и 1 каналец Т-системы), реже триады (2 канальца L-системы, 1 каналец Т-системы). В центральной части миоцита расположено 1-2 крупных ядра овальной или удлиненной формы. Между миофибриллами располагаются многочисленные митохондрии и трубочки саркоплазматического ретикулума.
В отличие от желудочковых кардиомиоцитов предсердные миоциты чаще имеют отростчатую форму и меньшие размеры. В миоцитах предсердий меньше митохондрий, миофибрилл, саркоплазматической сети, а также слабо развита Т-система канальцев. В тех предсердных миоцитах, где нет Т-системы, на периферии клеток, под сарколеммой, располагаются многочисленные пиноцитозные пузырьки и кавеолы. Полагают, что эти пузырьки и кавеолы являются функциональными аналогами Т-канальцев.
Между кардиомиоцитами находится интерстициальная соединительная ткань, содержащая большое количество кровеносных и лимфатических капилляров. Каждый миоцит контактирует с 2-3 капиллярами.
Секреторные кардиомиоциты встречаются преимущественно в правом предсердии и ушках сердца. В цитоплазме этих клеток располагаются гранулы, содержащие пептидный гормон - предсердный натрийуретический фактор (ПНФ). При растяжении предсердий секрет поступает в кровь и воздействует на собирательные трубочки почки, клетки клубочковой зоны коры надпочечников, участвующие в регуляции объема внеклеточной жидкости и уровня артериального давления. ПНФ вызывает стимуляцию диуреза и натриуреза (в почках), расширение сосудов, угнетение секреции альдостерона и кортизола (в надпочечниках), снижение артериального давление. Секреция ПНФ резко усилена у больных с гипертонической болезнью.
Проводящие сердечные миоциты (myocyti conducens cardiacus), или атипичные кардиомиоциты, обеспечивают ритмичное координированное сокращение различных отделов сердца благодаря своей способности к генерации и быстрому проведению электрических импульсов. Совокупность атипичных кардиомиоцитов формирует так называемую проводящую систему сердца.
В состав проводящей системы входят:
синусно-предсердный, или синусный, узел;
предсердно-желудочковый узел;
предсердно-желудочковый пучок (пучок Гиса) и
его разветвления (волокна Пуркинье), передающие импульсы на сократительные мышечные клетки.
Различают три типа мышечных клеток, которые в разных соотношениях находятся в различных отделах этой системы.
Первый тип проводящих миоцитов - это P-клетки, или пейсмейкерные миоциты, - водители ритма. Они светлые, мелкие, отросчатые. Эти клетки встречаются синусном и предсердно-желудочковом узле и в межузловых путях. Они служат главным источником электрических импульсов, обеспечивающих ритмическое сокращение сердца. Высокое содержание свободного кальция в цитоплазме этих клеток при слабом развитии саркоплазматической сети обусловливает способность клеток синусного узла генерировать импульсы к сокращению. Поступление необходимой энергии обеспечивается преимущественно процессами анаэробного гликолиза.
Второй тип проводящих миоцитов - это переходные клетки. Они составляют основную часть проводящей системы сердца. Это тонкие, вытянутые клетки, встречаются преимущественно в узлах (их периферической части), но проникают и в прилежащие участки предсердий. Функциональное значение переходных клеток состоит в передаче возбуждения от Р-клеток к клеткам пучка Гиса и рабочему миокарду.
Третий тип проводящих миоцитов - это клетки Пуркинье, часто лежат пучками. Они светлее и шире сократительных кардиомиоцитов, содержат мало миофибрилл. Эти клетки преобладают в пучке Гиса и его ветвях. От них возбуждение передается на сократительные кардиомиоциты миокарда желудочков.
Мышечные клетки проводящей системы в стволе и разветвлениях ножек ствола проводящей системы располагаются небольшими пучками, они окружены прослойками рыхлой волокнистой соединительной ткани. Ножки пучка разветвляются под эндокардом, а также в толще миокарда желудочков. Клетки проводящей системы разветвляются в миокарде и проникают в сосочковые мышцы. Это обусловливает натяжение сосочковыми мышцами створок клапанов (левого и правого) еще до того, как начнется сокращение миокарда желудочков.
Клетки Пуркинье - самые крупные не только в проводящей системе, но и во всем миокарде. В них много гликогена, редкая сеть миофибрилл, нет Т-трубочек. Клетки связаны между собой нексусами и десмосомами.
Эпикард и перикард
Наружная, или серозная, оболочка сердца называется эпикард (epicardium). Эпикард покрыт мезотелием, под которым располагается рыхлая волокнистая соединительная ткань, содержащая сосуды и нервы. В эпикарде может находиться значительное количество жировой ткани.
Эпикард представляет собой висцеральный листок перикарда (pericardium); париетальный листок перикарда также имеет строение серозной оболочки и обращен к висцеральному слоем мезотелия. Гладкие влажные поверхности висцерального и париетального листков перикарда легко скользят друг по другу при сокращении сердца. При повреждении мезотелия (например, вследствие воспалительного процесса - перикардита) деятельность сердца может существенно нарушаться за счет образующихся соединительнотканных спаек между листками перикарда.
Эпикард и париетальный листок перикарда имеют многочисленные нервные окончания, преимущественно свободного типа.
Фиброзный скелет сердца и клапаны сердца
Опорный скелет сердца образован фиброзными кольцами между предсердиями и желудочками и плотной соединительной тканью в устьях крупных сосудов. Кроме плотных пучков коллагеновых волокон, в составе "скелета" сердца имеются эластические волокна, а иногда бывают даже хрящевые пластинки.
Между предсердиями и желудочками сердца, а также желудочками и крупными сосудами располагаются клапаны. Поверхности клапанов выстланы эндотелием. Основу клапанов составляет плотная волокнистая соединительная ткань, содержащая коллагеновые и эластические волокна. Основания клапанов прикреплены к фиброзным кольцам.
17.Миокард. Типы кардиомиоцитов. Проводящая система сердца и ее морфо-функциональная характеристика, значение в работе сердца.
Миокард
Средняя, мышечная оболочка сердца (myocardium) состоит из поперечнополосатыхмышечных клеток - кардиомиоцитов. Кардиомиоциты тесно связаны между собой и образуют функциональные волокна, слои которых спиралевидно окружают камеры сердца. Между кардиомиоцитами располагаются прослойки рыхлой соединительной ткани, сосуды, нервы.
Различают кардиомиоциты трех типов:
сократительные, или рабочие, сердечные миоциты;
проводящие, или атипичные, сердечные миоциты, входящие в состав так называемой проводящей системы сердца;
секреторные, или эндокринные, кардиомиоциты.
Сократительные кардиомиоциты образуют основную часть миокарда. Они содержат 1-2 ядра в центральной части клетки, а миофибриллы расположены по периферии. Места соединения кардиомиоцитов называются вставочные диски, в них обнаруживаются щелевые соединения (нексусы) и десмосомы. Форма клеток в желудочках - цилиндрическая, в предсердиях - неправильная, часто отросчатая.
Кардиомиоциты покрыты сарколеммой, состоящей из плазмолеммы и базальной мембраны, в которую вплетаются тонкие коллагеновые и эластические волокна, образующие "наружный скелет" кардиомиоцитов, - эндомизий. Базальная мембрана кардиомиоцитов содержит большое количество гликопротеинов, способных связывать ионы Са2+. Она принимает участие в перераспределении ионов Са2+ в цикле сокращение - расслабление. Базальная мембрана латеральных сторон кардиомиоцитов инвагинирует в канальцы Т-системы (чего не наблюдается в соматических мышечных волокнах).
Кардиомиоциты желудочков значительно интенсивнее пронизаны канальцами Т-системы, чем соматические мышечные волокна. Канальцы L-системы (латеральные расширения саркоплазматического ретикулума) и Т-системы образуют диады (1 каналец L-системы и 1 каналец Т-системы), реже триады (2 канальца L-системы, 1 каналец Т-системы). В центральной части миоцита расположено 1-2 крупных ядра овальной или удлиненной формы. Между миофибриллами располагаются многочисленные митохондрии и трубочки саркоплазматического ретикулума.
В отличие от желудочковых кардиомиоцитов предсердные миоциты чаще имеют отростчатую форму и меньшие размеры. В миоцитах предсердий меньше митохондрий, миофибрилл, саркоплазматической сети, а также слабо развита Т-система канальцев. В тех предсердных миоцитах, где нет Т-системы, на периферии клеток, под сарколеммой, располагаются многочисленные пиноцитозные пузырьки и кавеолы. Полагают, что эти пузырьки и кавеолы являются функциональными аналогами Т-канальцев.
Между кардиомиоцитами находится интерстициальная соединительная ткань, содержащая большое количество кровеносных и лимфатических капилляров. Каждый миоцит контактирует с 2-3 капиллярами.
Секреторные кардиомиоциты встречаются преимущественно в правом предсердии и ушках сердца. В цитоплазме этих клеток располагаются гранулы, содержащие пептидный гормон - предсердный натрийуретический фактор (ПНФ). При растяжении предсердий секрет поступает в кровь и воздействует на собирательные трубочки почки, клетки клубочковой зоны коры надпочечников, участвующие в регуляции объема внеклеточной жидкости и уровня артериального давления. ПНФ вызывает стимуляцию диуреза и натриуреза (в почках), расширение сосудов, угнетение секреции альдостерона и кортизола (в надпочечниках), снижение артериального давление. Секреция ПНФ резко усилена у больных с гипертонической болезнью.
Проводящие сердечные миоциты (myocyti conducens cardiacus), или атипичные кардиомиоциты, обеспечивают ритмичное координированное сокращение различных отделов сердца благодаря своей способности к генерации и быстрому проведению электрических импульсов. Совокупность атипичных кардиомиоцитов формирует так называемую проводящую систему сердца.
В состав проводящей системы входят:
синусно-предсердный, или синусный, узел;
предсердно-желудочковый узел;
предсердно-желудочковый пучок (пучок Гиса) и
его разветвления (волокна Пуркинье), передающие импульсы на сократительные мышечные клетки.
Различают три типа мышечных клеток, которые в разных соотношениях находятся в различных отделах этой системы.
Первый тип проводящих миоцитов - это P-клетки, или пейсмейкерные миоциты, - водители ритма. Они светлые, мелкие, отросчатые. Эти клетки встречаются синусном и предсердно-желудочковом узле и в межузловых путях. Они служат главным источником электрических импульсов, обеспечивающих ритмическое сокращение сердца. Высокое содержание свободного кальция в цитоплазме этих клеток при слабом развитии саркоплазматической сети обусловливает способность клеток синусного узла генерировать импульсы к сокращению. Поступление необходимой энергии обеспечивается преимущественно процессами анаэробного гликолиза.
Второй тип проводящих миоцитов - это переходные клетки. Они составляют основную часть проводящей системы сердца. Это тонкие, вытянутые клетки, встречаются преимущественно в узлах (их периферической части), но проникают и в прилежащие участки предсердий. Функциональное значение переходных клеток состоит в передаче возбуждения от Р-клеток к клеткам пучка Гиса и рабочему миокарду.
Третий тип проводящих миоцитов - это клетки Пуркинье, часто лежат пучками. Они светлее и шире сократительных кардиомиоцитов, содержат мало миофибрилл. Эти клетки преобладают в пучке Гиса и его ветвях. От них возбуждение передается на сократительные кардиомиоциты миокарда желудочков.
Мышечные клетки проводящей системы в стволе и разветвлениях ножек ствола проводящей системы располагаются небольшими пучками, они окружены прослойками рыхлой волокнистой соединительной ткани. Ножки пучка разветвляются под эндокардом, а также в толще миокарда желудочков. Клетки проводящей системы разветвляются в миокарде и проникают в сосочковые мышцы. Это обусловливает натяжение сосочковыми мышцами створок клапанов (левого и правого) еще до того, как начнется сокращение миокарда желудочков.
Клетки Пуркинье - самые крупные не только в проводящей системе, но и во всем миокарде. В них много гликогена, редкая сеть миофибрилл, нет Т-трубочек. Клетки связаны между собой нексусами и десмосомами.
18. Тимус. Развитие. Строение и тканевый состав коркового и мозгового вещества дольки тимуса. Основные этапы постнатального развития.
Вилочковая железа (Тимус).
Вилочковая железа, или тимус (thymus - греч. thymos = 1. тимьян; 2. душа, настроение, чувство), — центральный орган лимфоцитопоэза и иммуногенеза. Изкостномозговых предшественников Т-лимфоцитов в нем происходит их антигенНЕзависимая дифференцировка в Т-лимфоциты, разновидности которых осуществляют реакции клеточного иммунитета и регулируют реакции гуморального иммунитета.
Удаление тимуса (тимэктомия) у новорожденных животных вызывает резкое угнетение пролиферации лимфоцитов во всех лимфатических узелках кроветворных органов, исчезновение малых лимфоцитов из крови, резкое уменьшение количества лейкоцитов и другие характерные признаки (атрофия органов, кровоизлияния и пр.). При этом организм оказывается весьма чувствительным ко многим инфекционным заболеваниям, не отторгает чужеродные трансплантаты органов.
Развитие. Тимус является эпителиальным органом, развивается из энтодермы.
Закладка тимуса у человека происходит в конце первого месяца внутриутробного развития из эпителия глоточной кишки, в области главным образом III и IV пар жаберных карманов в виде тяжей многослойного эпителия. Дистальная часть зачатков III пары, утолщаясь, образует тело тимуса, а проксимальная вытягивается, подобно выводному протоку экзокринной железы. В дальнейшем тимус обособляется от жаберного кармана. Правый и левый зачатки сближаются и срастаются. На 7-й неделе развития в эпителиальной строме тимуса человека появляются первые лимфоциты. На 8—11-й неделе врастающая в эпителиальную закладку органа мезенхима с кровеносными сосудами подразделяет закладку тимуса на дольки. На 11—12-й неделе развития эмбриона человека происходит дифференцировка лимфоцитов, а на поверхности клеток появляются специфические рецепторы и антигены. На 3-м месяце происходит дифференцировка органа на мозговую и корковую части, они инфильтрируются лимфоцитами и первоначальная типичная эпителиальная структура зачатка становится трудноразличимой. Эпителиальные клетки раздвигаются и остаются связанными друг с другом только межклеточными мостиками, приобретая вид рыхлой сети. В строме мозгового вещества появляются своеобразные структуры — так называемые слоистые эпителиальные тельца (по имени автора – тельца Гассаля).
Образующиеся в результате митотического деления Т-лимфоциты мигрируют затем в закладки лимфатических узлов (в их т.н. тимусзависимые зоны) и другие периферические лимфоидные органы.
В течение 3—5 мес наблюдаются дифференцировка стромальных клеток и появление разновидностей Т-лимфоцитов — киллеров, супрессоров и хелперов, способных продуцировать лимфокины. Формирование тимуса завершается к 6-му месяцу, когда эпителиоциты органа начинают секретировать гормоны, а вне тимуса появляются дифференцированные формы — Т-киллеры, Т-супрессоры, Т-хелперы.
В первые 2 недели после рождения наблюдаются массовое выселение Т-лимфоцитов из тимуса и резкое повышение активности внетимусных лимфоцитов. К моменту рождения масса тимуса равна 10—15 г. В период половой зрелости организма его масса максимальна — 30—40 г, а далее наступает обратное развитие - возрастная инволюция.
Строение
Снаружи вилочковая железа покрыта соединительнотканной капсулой. От нее внутрь органа отходят перегородки, разделяющие железу на дольки. В каждой дольке различают корковое и мозговое вещество. В основе органа лежит эпителиальная ткань, состоящая из отростчатых клеток - эпителиоретикулоцитов. Для всех эпителиоретикулоцитов характерно наличие десмосом, тонофиламентов и белков кератинов, продуктов главного комплекса гистосовместимости на своих мембранах.
Эпителиоретикулоциты в зависимости от локализации отличаются формой и размерами, тинкториальными признаками, плотностью гиалоплазмы, содержанием органелл и включений. Описаны секреторные клетки коры и мозгового вещества, несекреторные (или опорные) и клетки эпителиальных слоистых телец — телец Гассаля (гассалевы тельца).
Секреторные клетки вырабатывают регулирующие гормоноподобные факторы: тимозин, тимулин, тимопоэтины. Эти клетки содержат вакуоли или секреторные включения.
Эпителиальные клетки в субкапсулярной зоне и наружной коре имеют глубокие инвагинации, в которых расположены, как в колыбели, лимфоциты. Прослойки цитоплазмы этих эпителиоцитов — «кормилок» или «нянек» между лимфоцитами могут быть очень тонкими и протяженными. Обычно такие клетки содержат 10— 20 лимфоцитов и более.
Лимфоциты могут входить и выходить из инвагинаций и образовывать плотные контакты с этими клетками. Клетки-«няньки» способны продуцировать а-тимозин.
Кроме эпителиальных клеток, различают вспомогательные клетки. К ним относятся макрофаги и дендритные клетки. Они содержат продукты главного комплекса гистосовместимости, выделяют ростовые факторы (дендритные клетки), влияющие на дифференцировку Т-лимфоцитов.
Корковое вещество (cortex) — периферическая часть долек тимуса содержит Т-лимфоциты, которые густо заполняют просветы сетевидного эпителиального остова. В подкапсулярной зоне коркового вещества находятся крупные лимфоидные клетки — Т-лимфобласты, мигрировавшие сюда из красного костного мозга. Они под влиянием тимозина, выделяемого эпителиоретикулоцитами, пролиферируют. Новые генерации лимфоцитов появляются в тимусе каждые 6—9 ч. Полагают, что Т-лимфоциты коркового вещества мигрируют в кровоток, не входя в мозговое вещество. Эти лимфоциты отличаются по составу рецепторов от Т-лимфоцитов мозгового вещества. С током крови они попадают в периферические органы лимфоцитопоэза — лимфатические узлы иселезенку, где созревают в субклассы: антигенреактивные киллеры, хелперы, супрессоры. Однако не все образующиеся в тимусе лимфоциты выходят в циркуляторное русло, а лишь те, которые прошли «обучение» и приобрели специфические циторецепторы к чужеродным антигенам. Лимфоциты, имеющие циторецепторы к собственным антигенам, как правило, погибают в тимусе, что служит проявлением отбора иммунокомпетентных клеток. При попадании таких Т-лимфоцитов в кровоток развивается аутоиммунная реакция.
Клетки коркового вещества определенным образом отграничены от кровигематотимусным барьером, предохраняющим дифференцирующиеся лимфоциты коркового вещества от избытка антигенов. В его состав входят эндотелиальные клетки гемокапилляров с базальной мембраной, перикапиллярное пространство с единичными лимфоцитами, макрофагами и межклеточным веществом, а также эпителиоретикулоциты с их базальной мембраной. Барьер обладает избирательной проницаемостью по отношению к антигену. При нарушении барьера среди клеточных элементов коркового вещества обнаруживаются также единичные плазматические клетки, зернистые лейкоциты и тучные клетки. Иногда в корковом веществе появляются очаги экстрамедуллярного миелопоэза.
Мозговое вещество (medulla) дольки тимуса на гистологических препаратах имеет более светлую окраску, так как по сравнению с корковым веществом содержит меньшее количество лимфоцитов. Лимфоциты этой зоны представляют собой рециркулирующий пул Т-лимфоцитов и могут поступать в кровь и выходить из кровотока через посткапиллярные венулы.
Количество митотически делящихся клеток в мозговом веществе примерно в 15 раз меньше, чем в корковом. Особенностью ультрамикроскопического строения отростчатых эпителиоретикулоцитов является наличие в цитоплазме гроздевидных вакуолей и внутриклеточных канальцев, поверхность которых образует микровыросты.
В средней части мозгового вещества расположены слоистые эпителиальные тельца(corpusculum thymicum) – тельца Гассаля. Они образованы концентрически наслоенными эпителиоретикулоцитами, цитоплазма которых содержит крупные вакуоли, гранулы кератина и пучки фибрилл. Количество этих телец у человека увеличивается к периоду половой зрелости, затем уменьшается. Функция телец не установлена.
Васкуляризация. Внутри органа артерии ветвятся на междольковые и внутридольковые, которые образуют дуговые ветви. От них почти под прямым углом отходят кровеносные капилляры, образующие густую сеть, особенно в корковой зоне. Капилляры коркового вещества окружены непрерывной базальной мембраной и слоем эпителиальных клеток, отграничивающим перикапиллярное пространство. В перикапиллярном пространстве, заполненном тканевой жидкостью, встречаются лимфоциты и макрофаги. Большая часть корковых капилляров переходит непосредственно в подкапсулярные венулы. Меньшая часть идет в мозговое вещество и на границе с корковым веществом переходит в посткапиллярные венулы, отличающиеся от капсулярных венул высоким призматическим эндотелием. Через этот эндотелий могут рециркулировать (уходить из вилочковой железы и вновь возвращаться) лимфоциты. Барьера вокруг капилляров в мозговом веществе нет.
Таким образом, отток крови из коркового и мозгового вещества происходит самостоятельно.
Лимфатическая система представлена глубокой (паренхиматозной) и поверхностной (капсулярной и подкапсулярной) выносящей сетью капилляров. Паренхиматозная капиллярная сеть особенно богата в корковом веществе, а в мозговом капилляры обнаружены вокруг эпителиальных слоистых телец. Лимфатические капилляры собираются в сосуды междольковых перегородок, идущие вдоль кровеносных сосудов.
Возрастные изменения
Тимус достигает максимального развития в раннем детском возрасте. В период от 3 до 18 лет отмечается стабилизация его массы. В более позднее время происходит обратное развитие (возрастная инволюция) тимуса. Это сопровождается уменьшением количества лимфоцитов, особенно в корковом веществе, появлением липидных включений в соединительнотканных клетках и развитием жировой ткани. Слоистые эпителиальные тельца сохраняются гораздо дольше.
В редких случаях тимус не претерпевает возрастной инволюции (status thymicolymphaticus). Обычно это сопровождается дефицитом глюкокортикоидов коры надпочечников. Такие люди отличаются пониженной сопротивляемостью инфекциям и интоксикациям. Особенно увеличивается риск заболеваний опухолями.
Быстрая, или акцидентальная, инволюция может наступить в связи с воздействием на организм различных чрезвычайно сильных раздражителей (напрмер, - травма, интоксикация, инфекция, голодание и др.). При стресс-реакции происходят выброс Т-лимфоцитов в кровь и массовая гибель лимфоцитов в самом органе, особенно в корковом веществе. В связи с этим становится менее заметной граница коркового и мозгового вещества. Кроме лимфоцитолиза, наблюдается фагоцитоз макрофагами внешне не измененных лимфоцитов. Биологический смысл лимфоцитолиза окончательно не установлен. Вероятно, гибель лимфоцитов является выражением селекции Т-лимфоцитов.
Одновременно с гибелью лимфоцитов происходит разрастание эпителиоретикулоцитов органа. Эпителиоретикулоциты набухают, в цитоплазме появляются секретоподобные капли, дающие положительную реакцию на гликопротеиды. В некоторых случаях они скапливаются между клетками, образуя подобие фолликулов.
Тимус вовлекается в стресс-реакции вместе с надпочечниками. Увеличение в организме количества гормонов коры надпочечника, в первую очередь глюкокортикоидов, вызывает очень быструю и сильную акцидентальную инволюцию тимуса.
Таким образом, функциональное значение тимуса в процессах кроветворения заключается в образовании тимусзависимых лимфоцитов, или Т-лимфоцитов, а также в селекции лимфоцитов, регуляции пролиферации и дифференцировки в периферических кроветворных органах благодаря выделяемому органом гормону — тимозину. Помимо описанных функций, тимус оказывает влияние на организм, выделяя в кровь и ряд других биологически активных факторов: инсулиноподобный фактор, понижающий содержание сахара в крови, кальцитониноподобный фактор, снижающий концентрацию кальция в крови, и фактор роста.
19. Строение и значение гематотимического барьера. Корковое вещество дольки тимуса и антигеннезависимая дифференцировка Т-лимфоцитов.
Корковое вещество (cortex) — периферическая часть долек тимуса содержит Т-лимфоциты, которые густо заполняют просветы сетевидного эпителиального остова. В подкапсулярной зоне коркового вещества находятся крупные лимфоидные клетки — Т-лимфобласты, мигрировавшие сюда из красного костного мозга. Они под влиянием тимозина, выделяемого эпителиоретикулоцитами, пролиферируют. Новые генерации лимфоцитов появляются в тимусе каждые 6—9 ч. Полагают, что Т-лимфоциты коркового вещества мигрируют в кровоток, не входя в мозговое вещество. Эти лимфоциты отличаются по составу рецепторов от Т-лимфоцитов мозгового вещества. С током крови они попадают в периферические органы лимфоцитопоэза — лимфатические узлы иселезенку, где созревают в субклассы: антигенреактивные киллеры, хелперы, супрессоры. Однако не все образующиеся в тимусе лимфоциты выходят в циркуляторное русло, а лишь те, которые прошли «обучение» и приобрели специфические циторецепторы к чужеродным антигенам. Лимфоциты, имеющие циторецепторы к собственным антигенам, как правило, погибают в тимусе, что служит проявлением отбора иммунокомпетентных клеток. При попадании таких Т-лимфоцитов в кровоток развивается аутоиммунная реакция.
Гематотимический барьер
В корковом веществе тимуса происходит антигеннезависимая дифференцировка Т-лимфоцитов, и действие антигенов на этом этапе может нарушить нормальный лимфопоэз. Поэтому развивающиеся Т-лимфоциты коркового вещества отделены от крови и находящихся в ней антигенов гематотимическим барьером.
В его состав входят следующие структуры:
эндотелий капилляра непрерывного типа;
непрерывная базальная мембрана эндотелия;
перикапиллярное пространство, в соединительной ткани которого присутствуют макрофаги, расщепляющие антигены;
базальная мембрана периваскулярных ретикулоэпителиоцитов;
ретикулоэпителиоциты, которые имеют отростчатую форму и при помощи своих отростков охватывают гемокапилляры.
20. Лимфатические узлы. Развитие. Строение и тканевый состав. Т- и В - зоны. Функции. Основные этапы постнатального развития.
Лимфатические узлы
Лимфатические узлы (noduli limphatici) располагаются по ходу лимфатических сосудов, являются органами лимфоцитопоэза, иммунной защиты и депонирования протекающей лимфы. Имеют округлую или бобовидную форму. К выпуклой поверхности подходят приносящие лимфатические сосуды, в области ворот на вогнутой поверхности входят артерии и нервы, выходят выносящие лимфатические сосуды и вены.
Благодаря такому расположению узла по ходу лимфатических сосудов он является своеобразным фильтром для оттекающей от тканей жидкости (лимфы) на пути в кровяное русло. Протекая через лимфатические узлы, лимфа очищается от инородных частиц и антигенов на 95—99%, от избытка воды, белков, жиров, обогащается антителами и лимфоцитами.
Лимфатические узлы покрыты соединительнотканной капсулой, от которой вглубь органа отходят трабекулы. Строма узлов представлена ретикулярной соединительной тканью – сетью ретикулярных клеток, коллагеновых и ретикулярных волокон, а также макрофагами и антиген-представляющими клетками. Паренхима узлов представлена лимфоидными клетками.
В лимфатических узлах происходят антигензависимая пролиферация (клонирование) и дифференцировка Т- и В-лимфоцитов в эффекторные клетки, а также образование Т- и В- клеток памяти.
Развитие
Развиваются лимфоузлы из мезенхимы.
Лимфатические узлы впервые возникают в конце 2-го — начале 3-го месяца внутриутробного развития плода человека. Их образование связано с размножением и накоплением в определенной области вокруг кровеносных и лимфатических сосудов мезенхимных клеток. Разрастающиеся лимфатические щели в области закладки будущего узла сливаются и образуют так называемый подкапсулярный (краевой) синус. По периферии зачатка узла в то же время из мезенхимы формируются поверхностная капсула и отходящие от нее внутрь перегородки — трабекулы. От краевого синуса внутрь узла между трабекулами отходят многочисленные анастомозирующие между собой вокругузелковые и мозговые синусы. Эти синусы в свою очередь разделяют мезенхимную ткань, превращающуюся в ретикулярную, на овальные скопления и тяжи, которые заселяются кроветворными клетками, и на 16-й неделе образуют лимфатические узелки и мозговые тяжи. Одновременно появляются ретикулярные волокна. В-лимфоциты вселяются в лимфатические узлы раньше Т-лимфоцитов, главным образом в центральные участки лимфатического узла (будущее мозговое вещество), а затем в самый поверхностный слой (в дальнейшем — корковое вещество). Т-лимфоциты вселяются в промежуточную зону между корковым и мозговым веществом (т.н. Т-зона).
Начиная с 16-й недели развития в строме закладки лимфатического узла возрастает количество макрофагов.
Входящие в узел лимфатические сосуды становятся приносящими сосудами, а выходящие из ворот — выносящими.
В конце 5-го месяца эмбрионального развития лимфатические узлы приобретают черты дефинитивного кроветворного органа.
К концу эмбриогенеза в лимфатических узлах заканчивается формирование всех структур — коркового вещества с лимфоидными узелками, мозговых тяжей, синусов, Т- и В-зон.
Строение
Несмотря на многочисленность лимфатических узлов и вариации органного строения, они имеют общие принципы организации. Снаружи узел покрыт соединительнотканной капсулой, несколько утолщенной в области ворот. В капсуле много коллагеновых и мало эластических волокон. Кроме соединительнотканных элементов, в ней главным образом в области ворот располагаются отдельные пучки гладких мышечных клеток, особенно в узлах нижней половины туловища. Внутрь от капсулы через относительно правильные промежутки отходят тонкие соединительнотканные перегородки, или трабекулы, анастомозирующие между собой в глубоких частях узла. В совокупности они составляют примерно 1/4 площади среза органа.
На срезах узла, проведенных через ворота лимфоузла, можно различить периферическое, более плотное корковое вещество, состоящее из лимфатических узелков, паракортикальную (диффузную) зону, а также центральное светлое мозговое вещество, образованное мозговыми тяжами и синусами. Большая часть кортикального слоя и мозговые тяжи составляют область заселения В-лимфоцитов (В-зона), а паракортикальная, тимусзависимая зона содержит преимущественно Т-лимфоциты (Т-зона).
Корковое вещество
Характерным структурным компонентом коркового вещества являются лимфатические узелки (noduli lymphatici). Они представляют собой округлые образования диаметром до 1 мм.
В ретикулярном остове узелков проходят толстые, извилистые ретикулярные волокна, в основном циркулярно направленные. В петлях ретикулярной ткани залегают лимфоциты, лимфобласты, макрофаги и другие клетки. В периферической части узелков находятся малые лимфоциты в виде короны.
Лимфатические узелки покрыты уплощенными ретикулярными клетками, лежащими на ретикулярных волокнах. Среди этих ретикулоэндотелиальных клеток много фиксированных макрофагов (т.н. «береговые макрофаги»). Центральная часть узелков обычно выглядит светлой вследствие того, что она состоит из более крупных клеток с большими светлыми ядрами: из лимфобластов, типичных макрофагов, «дендритных клеток», лимфоцитов. Лимфобласты обычно находятся в различных стадиях деления, вследствие чего эту часть узелка называют герминативным центром (centrum germinale), или центром размножения. При интоксикации организма, особенно микробного происхождения, в центральной части узелка могут появляться скопления фагоцитирующих клеток, что указывает на высокую реактивность описываемых структур. Поэтому данную часть узелка часто называют еще реактивным центром.
Типичные свободные макрофаги преобразуют корпускулярный антиген в молекулярный и концентрируют его до определенного количества, способного побудить к пролиферации и дифференцировке расположенные рядом В-лимфоциты при участии Т-хелперов. В результате этого образуются клетки памяти Т- и В-типа и плазмобласты. Активированные антигеном В-лимфоциты по мере размножения и созревания образуют В-зону, откуда мигрируют в мозговые тяжи, где превращаются в плазмоциты и продуцируют антитела. Клетки памяти с током лимфы или через посткапиллярные вены вступают в циркуляцию и будут созревать в эффекторные клетки после вторичной встречи с антигеном. Макрофаги светлых центров могут фагоцитировать также погибающие клетки, в результате чего в их цитоплазме обнаруживаются хромофильные остаточные тельца.
Отростчатые «дендритные» клетки реактивных центров являются разновидностью макрофагов, способных фиксировать на своей поверхности иммуноглобулины, а через них и антигены, вызвавшихе иммунный ответ. Накопленные на их поверхности антигены активируют и вовлекают в иммунную реакцию контактирующие с ними В-лимфоциты. Морфологически «дендритные» клетки характеризуются отростчатой формой, электронно-прозрачной цитоплазмой, бедной рибосомами, лизо-сомами и канальцами цитоплазматической сети. Полагают, что эти клетки характерны для В-зон лимфатических узелков. Длительная задержка антигенов на поверхности дендритных клеток и наличие клеток памяти обеспечивают более быстрый иммунный ответ при повторной встрече с тем же антигеном.
Строение лимфатических узелков может меняться в зависимости от физиологического состояния организма. Различают 4 стадии, отражающие происходящие в них процессы. В I стадии — формирование центра размножения — в лимфатическом узелке имеется небольшой центр, состоящий преимущественно из малодифференцированных клеток лимфо-цитопоэтического ряда. Некоторые из этих клеток могут быть в состоянии митотического деления. Во II стадии у лимфатических узелков центры крупнее и содержат большое количество митотически делящихся клеток лимфо-цитопоэтического ряда (от 10 и более на срезе). Центральная часть узелка выглядит светлой. В III стадии вокруг светлых центров появляется корона из малых лимфоцитов. Уменьшаются число митотически делящихся клеток и количество молодых клеток лимфоцитопоэтического ряда. В IV стадии в центре узелка фигуры митозов и макрофаги единичны. Вокруг узелка корона из малых лимфоцитов состоит преимущественно из клеток В-памяти. Это стадия относительного покоя.
Возникновение и исчезновение центров происходит в течение 2—3 сут.
Лимфоидные узелки содержат преимущественно В-лимфоциты на разных стадиях антигензависимой дифференцировки. Антигены, попавшие в лимфатический узел с током лимфы, распространяются по синусам, достигают поверхностной зоны центров размножения, фагоцитируются макрофагами. Частично переработанные антигены фиксируются на их мембране и на мембране отростков дендритных клеток. В-лимфоциты также могут посредством своих рецепторов разносить антигенную информацию. Получив информацию об антигене, В-лимфоциты превращаются в иммунобласты, пролиферируют, часть клеток дифференцируется в плазматические клетки, другая становится клетками памяти (КП).
Паракортикальная зона
На границе между корковым и мозговым веществом располагается naракортикальная тимусзависимая зона (paracortex). Она содержит главным образом Т-лимфоциты. Микроокружением для лимфоцитов паракортикальной зоны является разновидность макрофагов, потерявших способность к фагоцитозу, — т.н. «интердигитирующие клетки», которые обладают многочисленными пальцевидными отростками, вдавливающимися из одной клетки в другую. Ядра интердигитирующих клеток неправильной формы, светлые, с краевым расположением хроматина. В слабобазофильной цитоплазме обнаруживаются везикулы, аппарат Гольджи, гладкая эндоплазматическая сеть. Фагосомы встречаются редко. Эти клетки вырабатывают гликопротеиды, которые играют роль гуморальных факторов лимфоцитогенеза. Гликопротеиды примембранных слоев способны сорбировать и сохранять антиген на цитоплазматических мембранах и индуцировать пролиферацию Т-лимфоцитов.
Полагают, что интердигитирующие клетки приносятся лимфой в лимфатический узел из кожи и являются потомками внутриэпидермальных макрофагов (клетки Лангерганса). На своей мембране они могут нести антигены, полученные в коже. Из лимфоцитов здесь преобладают Т-лимфоциты-хелперы. Эту зону называют тимусзависимой, поскольку после тимэктомии она запустевает из-за убыли Т-лимфоцитов.
В паракортикальной зоне происходят пролиферация Т-клеток и дифференцировка в эффекторные клетки (т.к. клетки-киллеры и др.). Посткапиллярные венулы паракортикальной зоны являются местом проникновения в лимфатический узел циркулирующих Т- и В-лимфоцитов. В некоторых случаях при разрастании паракортикальной зоны лимфатические узелки сливаются.
Мозговое вещество
От узелков и паракортикальной зоны внутрь узла, в его мозговое вещество, отходятмозговые тяжи (chordae medullaria), анастомозирующие между собой. В основе их лежит ретикулярная ткань, в петлях которой находятся В-лимфоциты, плазматические клеткии макрофаги. Здесь происходит созревание плазматических клеток. Большая часть иммуноглобулинов, образуемых здесь плазматическими клетками, относится к классу иммуноглобулинов G. Внутри мозговых тяжей проходят кровеносные сосуды и капилляры, содержащие поры в эндотелии. Снаружи тяжи, так же как и лимфатические узелки, покрыты эндотелиоподобными ретикулярными клетками, лежащими на пучках ретикулярных фибрилл и образующих стенку синусов.
Синусы. Пространства, ограниченные капсулой и трабекулами с одной стороны и узелками и мозговыми тяжами — с другой, называются синусами, являющимися как бы продолжением приносящих лимфатических сосудов. Различают подкапсульный, или краевой, синус (sinus subcapsularis), располагающийся между капсулой и узелками, вокругузелковые синусы (sinus corticalis perinodularis), проходящие между узелками и трабекулами, а также мозговые синусы (sinus medullaris), ограниченные трабекулами и мозговыми тяжами.
Наружные клетки подкапсулярного синуса, прилежащие к капсуле узла, расположены на базальной мембране. По строению и функции они близки к эндотелиальным клеткам, выстилающим приносящие лимфатические сосуды. Среди этих клеток встречаются фагоцитирующие макрофаги. Внутренние эндотелиоподобные ретикулярные клетки, покрывающие лимфатические узелки коркового вещества, не имеют базальной мембраны, а лежат на пластинке ретикулярных фибрилл. Между клетками обнаруживаются щели, через которые в просвет синуса проникают лимфоциты. Клетки, выстилающие все остальные синусы, имеют аналогичное строение.
По синусам коркового и мозгового вещества протекает лимфа. При этом она обогащается лимфоцитами, которые поступают в нее в большем или меньшем количестве из узелков, паракортикальной зоны и мозговых тяжей. Среди свободных клеточных элементов в синусах при различных состояниях организма можно обнаружить лимфоциты, плазмоциты, свободные макрофаги; встречаются единичные зернистые лейкоциты и эритроциты. Синусы выполняют роль защитных фильтров, в которых благодаря наличию фагоцитирующих клеток задерживается большая часть попадающих в лимфатические узлы антигенов.
Лимфатические узлы очень чувствительны к различным внешним и внутренним факторам. Например, под действием ионизирующей радиации быстро погибают лимфоциты в лимфатических узелках, в мозговых тяжах. При недостаточной функции гормонов коры надпочечников, наоборот, происходит разрастание лимфоидной ткани во всех органах (status thymicolymphaticus).
Васкуляризация. Кровеносные сосуды проникают в лимфатические узлы через их ворота. После вхождения в узел одна часть артерий распадается на капилляры в капсуле и трабекулах, другая заканчивается в узелках, паракортикальной зоне и мозговых тяжах. Некоторые артерии проходят сквозь узел не разветвляясь (транзитные артерии).
В узелках различают две гемокапиллярные сети — поверхностную и глубокую. От гемокапилляров начинается венозная система узла, которая совершает обратный ход, преимущественно отдельно от артерий. Эндотелий посткапиллярных венул более высокий, чем в обычных капиллярах, а между эндотелиальными клетками имеются поры. Особенности строения эндотелия играют определенную роль в процессах рециркуляции лимфоцитов из кровотока в узел и обратно. В обычных физиологических условиях кровь из сосудов не изливается в его синусы. Однако при воспалительных процессах в синусах регионарных лимфатических узлов часто обнаруживаются эритроциты.
Иннервация. Лимфатические узлы имеют афферентную и эфферентную адренергическую и холинергическую иннервацию. В подходящих к органу нервах, а также в капсуле обнаружены интрамуральные нервные узлы. Рецепторный аппарат хорошо выражен во всех макромикроскопических структурах: капсуле, трабекулах, сосудах, корковом и мозговом веществе. Имеются свободные и несвободные нервные окончания. Внутри узелков нервные окончания не обнаружены.
Возрастные изменения. В течение первых 3 лет после рождения у ребенка происходит окончательное формирование лимфатических узлов. На протяжении 1-го года жизни появляются центры размножения в лимфатических узелках, увеличивается число В-лимфоцитов и плазматических клеток. В возрасте от 4 до 6 лет продолжается новообразование узелков, мозговых тяжей, трабекул. Дифференцировка структур лимфатического узла в основном заканчивается к 12 годам.
С периода полового созревания начинается возрастная инволюция, которая выражается в утолщении соединительнотканных перегородок, увеличении количества жировых клеток, уменьшении коркового и увеличении мозгового вещества, уменьшении числа лимфоидных узелков с центрами размножения.
В старческом возрасте центры размножения исчезают, капсула узлов утолщается, количество трабекул возрастает. Фагоцитарная активность макрофагов постепенно ослабевает. Некоторые узлы могут подвергаться атрофии и замещаться жировой тканью.
Регенерация. Регенерация лимфатических узлов (частичная или полная) возможна лишь при сохранении приносящих и выносящих лимфатических сосудов и прилежащей к узлу соединительной ткани. В случае частичной резекции лимфатического узла репаративная регенерация его происходит через 2—3 нед после повреждения. Восстановление начинается с пролиферации клеток ретикулярной ткани, затем появляются очаги лимфоидного кроветворения и образуются узелки. При полном удалении лимфатического узла, но при сохранении лимфатических сосудов регенерация этого органа начинается с появления большого количества очагов лимфоидного кроветворения, которые возникают из стволовых кроветворных клеток. При этом приносящие и выносящие лимфатические сосуды анастомозируют между собой в области лимфоидного очага.
В результате дальнейших преобразований анастомозы сосудов оказываются погруженными внутрь лимфоидного очага и превращаются в синусы узла.
Гемолимфатические узлы
Кроме обычных лимфатических узлов, у некоторых млекопитающих встречаются гемолимфатические узлы (nodus lymphaticus haemalis), синусы которых содержат кровь. У человека такие узлы бывают редко. Обычно они располагаются в околопочечной клетчатке вдоль почечных артерий или по ходу брюшной аорты, реже — в заднем средостении.
Развитие. Развитие гемолимфатических узлов весьма сходно с развитием обычных лимфатических узлов, но гемолимфатические узлы относительно долго сохраняют способность к миелопоэзу (до рождения, а иногда и в течение нескольких лет в постнатальном периоде).
Строение. По величине гемолимфатические узлы, как правило, значительно меньше лимфатических. Снаружи они покрыты соединительнотканной капсулой, нередко содержащей пучки гладких мышечных клеток. Корковое вещество меньшего объема, лимфатических узелков немного; мозговые тяжи тоньше и малочисленнее. Синусы гемолимфатических узлов, особенно мозговые, бывают относительно широкими. Благодаря значительной примеси крови синусы не всегда легко отличаются от вен, проходящих в мозговых тяжах. Критерием служат ретикулярные клетки и ретикулярные волокна в просвете сосудов. Вопрос о наличии соустьев между лимфатическими сосудами и венами гемолимфатических узлов остается спорным.
Гемолимфатические узлы вырабатывают форменные элементы крови не только лимфоидного, но и миелоидного ряда.
Возрастные изменения. С возрастом гемолимфатические узлы подвергаются инволюции. Корковое и мозговое вещества замещаются жировой тканью или прорастают рыхлой волокнистой соединительной тканью.
У эмбрионов и в раннем постнатальном периоде в гемолимфатических узлах, кроме клеток лимфоидного ряда, составляющих большинство клеточных элементов, обнаруживаются промиелоциты, миелоциты и метамиелоциты, особенно эозинофильные, проэритробласты, нормоциты и даже мегакариоциты. Кровь, находящаяся в синусах, частично вымывается лимфой, частично подвергается разрушению: эритроциты и их фрагменты фагоцитируются макрофагами, в цитоплазме которых всегда обнаруживается железосодержащий пигмент — гемосидерин. Истинные гемолимфатические узлы важно отличать от ложных, которые могут образовываться в результате всасывания крови лимфатическими сосудами из различных очагов кровоизлияний, в связи с чем она обнаруживается в краевом синусе и приносящих лимфатических сосудах. В отличие от добавочных селезенок гемолимфатические узлы имеют приносящие лимфатические сосуды, а в просвете синусов встречаются ретикулярные клетки. Кроме того, в добавочных селезенках находятся специфические для селезенки структуры (центральные артерии фолликулов, артериальные гильзы, венозные синусы), чего нет в гемолимфатических узлах.
Единая иммунная система слизистых оболочек (MALT)
Эта система представлена скоплениями лимфоцитов в слизистых оболочках желудочно-кишечного тракта, бронхов, мочеполовых путей, выводных протоков молочных и слюнных желез. Лимфоциты могут формировать одиночные или групповые лимфоидные узелки (миндалины, червеобразный отросток, групповые лимфатические узелки или пейеровы бляшки кишки). Лимфатические узелки осуществляют локальную иммунную защиту названных органов.
Общими для всех этих участков являются расположение лимфоцитов в рыхлой волокнистой соединительной ткани оболочек, покрытых эпителием, образование антител, относящихся к IgA. В образовании IgA участвуют стимулированные антигенами В-лимфоциты и их потомки плазматические клетки. А также эпителиоциты оболочек, вырабатывающие секреторный компонент IgAs. Сборка молекулы иммуноглобулина происходит в слизи на поверхности эпителиоцитов, где они обеспечивают местную антибактериальную и противовирусную защиту. Располагающиеся в узелках Т-лимфоциты осуществляют реакции клеточного иммунитета и регулируют деятельность В-лимфоцитов.
Единую (диффузную) иммунную систему слизистых оболочек в англоязычной литературе обозначают аббревиатурой MALT – mucous associated lymphatic tissue.
21. Селезенка. Развитие. Строение и тканевый состав. Т- и В-зоны.
Селезнка
Селезенка (splen, lien) — периферический и самый крупный орган иммунной системы, располагающийся по ходу кровеносных сосудов. К функциям селезенки относятся:
- участие в формировании гуморального и клеточного иммунитета, задержка антигенов, циркулирующих в крови;
- элиминация из кровотока и, затем, разрушение старых и поврежденных эритроцитов и тромбоцитов, - «селезенка – кладбище эритроцитов»;
- депонирование крови и накопление тромбоцитов (до 1/3 общего их числа в организме);
- в эмбриональном периоде – кроветворная функция.
В селезенке происходят антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов и образование антител, а также выработка веществ, угнетающих эритропоэз в красном костном мозге.
Развитие. У человека селезенка закладывается на 5-й неделе эмбрионального периода развития в толще мезенхимы дорсальной брыжейки. В начале развития селезенка представляет собой плотное скопление мезенхимных клеток, пронизанное первичными кровеносными сосудами. В дальнейшем часть клеток дифференцируется в ретикулярную ткань, которая заселяется стволовыми клетками. На 7—8-й неделе развития в селезенке появляются макрофаги. На 12-й неделе развития селезенки впервые появляются В-лимфоциты с иммуноглобулиновыми рецепторами. Процессы миелопоэза в селезенке человека достигают максимального развития на 5-м месяце внутриутробного периода, после чего активность их снижается и к моменту рождения прекращается совсем. Основную функцию миелопоэза к этому времени выполняет красный костный мозг. Процессы лимфоцитопоэза в селезенке к моменту рождения, наоборот, усиливаются.
На 3-м месяце эмбрионального развития в сосудистом русле селезенки появляются широкие венозные синусы, разделяющие ее на островки. Вначале островки кроветворных клеток располагаются равномерно вокруг артерии (Т-зона), а на 5-м месяце начинается концентрация лимфоцитов и макрофагов сбоку от нее (В-зона). К этому времени популяция В-лимфоцитов, выявляемая при помощи иммунологических методов, примерно в 3 раза превышает популяцию Т-лимфоцитов. Одновременно с развитием узелков происходит формирование красной пульпы, которая становится морфологически различимой на 6-м месяце внутриутробного развития.
Строение
Селезенка покрыта соединительнотканной капсулой и брюшиной (мезотелием). Капсула состоит из плотной волокнистой соединительной ткани, содержащей фибробласты и многочисленные коллагеновые и эластические волокна. Между волокнами залегает небольшое количество гладких мышечных клеток.
Внутрь органа от капсулы отходят перекладины — трабекулы селезенки, которые в глубоких частях органа анастомозируют между собой. Капсула и трабекулы в селезенке человека занимают примерно 5—7 % от общего объема органа и составляют его опорно-сократительный аппарат. В трабекулах селезенки человека сравнительно немного гладких мышечных клеток. Эластические волокна в трабекулах более многочисленны, чем в капсуле.
Строма органа представлена ретикулярными клетками и ретикулярными волокнами, содержащими коллаген III и IV типов.
Паренхима (или пульпа) селезенки включает два отдела с разными функциями: белая пульпа (pulpa lienis alba) и красная пульпа (pulpa lienis rubra).
Строение селезенки и соотношение между белой и красной пульпой могут изменяться в зависимости от функционального состояния органа.
Белая пульпа селезенки
Белая пульпа селезенки представлена лимфоидной тканью, расположенной в адвентиции артерий в виде шаровидных скоплений, или узелков, и лимфатических периартериальных влагалищ. В целом они составляют примерно 1/5 органа.
Лимфатические узелки селезенки (фолликулы, или мальпигиевы тельца; lymphonoduli splenici) 0,3—0,5мм в диаметре представляют собой скопления Т- и В-лимфоцитов, плазмоцитов и макрофагов в петлях ретикулярной ткани (дендритных клеток), окруженные капсулой из уплощенных ретикулярных клеток. Через лимфатический узелок проходит, обычно эксцентрично, центральная артерия (a. centralis), от которой отходят радиально капилляры.
Лимфатические узелки селезенки (как и лимфоузлов) – являются B-зависимой зоной белой пульпы селезенки. В лимфатических узелках различают 4 нечетко разграниченные зоны: периартериальную, центр размножения, мантийную и краевую, или маргинальную, зону.
Периартериальная зона занимает небольшой участок узелка около центральной артерии и является продолжением периартериального влагалища (т.е. образована главным образом из Т-лимфоцитов, попадающих сюда через гемокапилляры, отходящие от артерии лимфатического узелка). Субмикроскопические отростки интердигитирующих клеток вытягиваются на значительное расстояние между окружающими их лимфоцитами и плотно с ними контактируют. Полагают, что эти клетки адсорбируют антигены, поступающие сюда с кровотоком, и передают Т-лимфоцитам информацию о состоянии микроокружения, стимулируя их бласт-трансформацию и пролиферацию. В течение 2—3 сут активированные Т-лимфоциты остаются в этой зоне и размножаются. В дальнейшем они мигрируют из периартериальной зоны в синусы краевой зоны через ге-мокапилляры. Тем же путем попадают в селезенку и В-лимфоциты. Причина заселения Т- и В-лимфоцитами «своих» зон недостаточно ясна. В функциональном отношении периартериальная зона является аналогом паракортикальной тимусзависимой зоны лимфатических узлов.
Центр размножения, или герминативный центр узелка, состоит из ретикулярных клеток и пролиферирующих В-лимфобластов, дифференцирующихся антитело-образующих плазматических клеток. Кроме того, здесь нередко можно обнаружить скопления макрофагов с фагоцитированными лимфоцитами или их фрагментами в виде хромофильных телец и дендритные клетки. В этих случаях центральная часть узелка выглядит светлой (т.н. «реактивный центр»).
Периферия лимфатического узелка - мантийная зона - окружает периартериальную зону и центр размножения, состоит главным образом из плотно расположенных малых В-лимфоцитов и небольшого количества Т-лимфоцитов, а также содержит плазмоциты и макрофаги. Прилегая плотно друг к другу, клетки образуют как бы корону, расслоенную циркулярно направленными толстыми ретикулярными волокнами.
Периартериальные лимфатические влагалища (ПАЛВ, vagina periarterialis lymphatica) представляют собою вытянутые по ходу пульпарной артерии скопления лимфоидной ткани. Периартериальные лимфатические влагалища являются Т-зависимой зоной селезенки.
Краевая, или маргинальная, зона узелков селезенки представляет собой переходную область между белой и красной пульпой шириной около 100 мкм. Она как бы окружает лимфатические узелки и периартериальные лимфатические влагалища, состоит из Т- и В-лимфоцитов и единичных макрофагов, окружена краевыми, или маргинальными, синусоидными сосудами с щелевидными порами в стенке.
Антигены, приносимые кровью, задерживаются в маргинальной зоне и красной пульпе. Далее они переносятся макрофагами на поверхность антигенпредставляющих клеток (дендритных и интердигитирующих) белой пульпы. Лимфоциты из кровотока оседают в основном в периартериальной зоне (Т-лимфоциты) и в лимфоидных узелках (В-лимфоциты). При первичном иммунном ответе продуцирующие антитела клетки появляются сначала в эллипсоидных муфтах, а затем в красной пульпе. При вторичном иммунном ответе формируются центры размножения, где образуются клоны В-лимфоцитов и клетки памяти. Дифференцировка В-лимфоцитов в плазмоциты завершается в красной пульпе. Независимо от вида антигена и способа его введения накопление лимфоцитов в селезенке происходит не столько за счет их пролиферации, сколько за счет притока уже стимулированных антигеном клеток.
Красная пульпа селезенки
Красная пульпа селезенки включает венозные синусы и пульпарные тяжи.
Пульпарные тяжи. Часть красной пульпы, расположенная между синусами, называется селезеночными, или пульпарными, тяжами (chordae splenicae) Бильрота. Это форменные элементы крови, макрофаги, плазматические клетки лежащие в петлях ретикулярной соединительной ткани. Здесь по аналогии с мозговыми тяжами лимфатических узлов заканчивают свою дифференцировку и секретируют антитела плазмоциты, предшественники которых перемещаются сюда из белой пульпы. В пульпарных тяжах встречаются скопления В- и Т-лимфоцитов, которые могут формировать новые узелки белой пульпы. В красной пульпе задерживаются моноциты, которые дифференцируются в макрофаги.
Селезенка считается «кладбищем эритроцитов» в связи с тем, что обладает способностью понижать осмотическую устойчивость старых или поврежденных эритроцитов. Такие эритроциты не способны выйти в венозные синусы и подвергаются разрушению и поглощаются макрофагами красной пульпы.
В результате расщепления гемоглобина поглощенных макрофагами эритроцитов образуются и выделяются в кровоток билирубин и содержащий железо трансферрин. Билирубин переносится в печень, где войдет в состав желчи. Трансферрин из кровотока захватывается макрофагами костного мозга, которые снабжают железом вновь развивающиеся эритроциты.
В селезенке депонируется кровь и скапливаются тромбоциты. Старые тромбоциты также подвергаются здесь разрушению.
Синусы красной пульпы, расположенные между селезеночными тяжами, представляют собой часть сложной сосудистой системы селезенки. Это широкие тонкостенные сосуды неправильной формы, выстланы эндотелиальными клетками необычной веретеновидной формы с узкими щелями между ними, через которые в просвет синусов из окружающих тяжей мигрируют форменные элементы. Базальная мембрана прерывиста, ее дополняют ретикулярные волокна и отростки ретикулярных клеток.
Васкуляризация. В ворота селезенки входит селезеночная артерия, которая разветвляется на трабекулярные артерии. Наружная оболочка артерий рыхло соединена с тканью трабекул. Средняя оболочка четко заметна на любом срезе трабекулярной артерии благодаря мышечным пучкам, идущим в составе ее стенки по спирали. От трабекулярных артерий отходят пульпарные артерии. В наружной оболочке этих артерий много спирально расположенных эластических волокон, которые обеспечивают продольное растяжение и сокращение сосудов. Недалеко от трабекул в адвентиции пульпарных артерий появляются периартериальные лимфатические влагалища и лимфатические узелки. Артерия получает название центральной.
Центральная артерия, проходящая через узелок, отдает несколько гемокапилляров и, выйдя из узелка, разветвляется в виде кисточки на несколько кисточковых артериол (arteriolae penicillaris). Дистальный конец этой артериолы продолжается в эллипсоидную (гильзовую) артериолу (arteriolaelipsoideae), снабженную муфтой (или «гильзой») из ретикулярных клеток и волокон. Это своеобразный сфинктер на артериоле. У человека эти гильзы развиты очень слабо. В эндотелии гильзовых или эллипсоидных артериол обнаружены сократительные фила-менты. Далее следуют короткие гемокапилляры. Большая часть капилляров красной пульпы впадает в венозные синусы (это т.н. закрытое кровообращение), однако некоторые могут непосредственно открываться в ретикулярную ткань красной пульпы (это т.н. открытое кровообращение). Закрытое кровообращение — путь быстрой циркуляции и оксигенации тканей. Открытое кровообращение — более медленное, обеспечивающее контакт форменных элементов крови с макрофагами.
Синусы являются началом венозной системы селезенки. Их диаметр колеблется от 12 до 40 мкм в зависимости от кровенаполнения. При расширении совокупность всех синусов занимает большую часть селезенки. Эндотелиоциты синусов расположены на прерывистой базальной мембране. По поверхности стенки синусов в виде колец залегают ретикулярные волокна. Синусы не имеют перицитов. Во входе в синусы и в месте их перехода в вены имеются подобия мышечных сфинктеров. При открытых артериальных и венозных сфинктерах кровь свободно проходит по синусам в вены. Сокращение венозного сфинктера приводит к накоплению крови в синусе. Плазма крови проникает сквозь стенку синуса, что способствует концентрации в нем клеточных элементов. В случае закрытия венозного и артериального сфинктеров кровь депонируется в селезенке. При растяжении синусов между эндотелиальными клетками образуются щели, через которые кровь может проходить в ретикулярную строму. Расслабление артериального и венозного сфинктеров, а также сокращение гладких мышечных клеток капсулы и трабекул ведет к опорожнению синусов и выходу крови в венозное русло.
Отток венозной крови из пульпы селезенки совершается по системе вен. Трабекулярные вены лишены собственного мышечного слоя; средняя оболочка в них выражена очень слабо. Наружная оболочка вен плотно сращена с соединительной тканью трабекул. Такое строение вен обусловливает их зияние и облегчает выброс крови при сокращении гладких мышечных клеток селезенки. Между артериями и венами в капсуле селезенки, а также между пульпарными артериями встречаются анастомозы.
Иннервация. В селезенке имеются чувствительные нервные волокна (дендриты нейронов спинномозговых узлов) и постганглионарные симпатические нервные волокна из узлов солнечного сплетения. Миелиновые и безмиелиновые (адренергические) нервные волокна обнаружены в капсуле, трабекулах и сплетениях вокруг трабекулярных сосудов и артерий белой пульпы, а также в синусах селезенки. Нервные окончания в виде свободных концевых веточек располагаются в соединительной ткани, на гладких мышечных клетках трабекул и сосудов, в ретикулярной строме селезенки.
Возрастные изменения. В старческом возрасте в селезенке происходит атрофия белой и красной пульпы, вследствие чего ее трабекулярный аппарат вырисовывается более четко. Количество лимфатических узелков в селезенке и размеры их центров постепенно уменьшаются. Ретикулярные волокна белой и красной пульпы грубеют и становятся более извилистыми. У лиц старческого возраста наблюдаются узловатые утолщения волокон. Количество макрофагов и лимфоцитов в пульпе уменьшается, а число зернистых лейкоцитов и тучных клеток возрастает. У детей и лиц старческого возраста в селезенке обнаруживаются гигантские многоядерные клетки — мегакариоциты. Количество железосодержащего пигмента, отражающее процесс гибели эритроцитов, с возрастом в пульпе увеличивается, но располагается он главным образом внеклеточно.
Регенерация. Физиологическое обновление лимфоидных и стромальных клеток происходит в пределах самостоятельных стволовых дифферонов. Экспериментальные исследования на животных показали возможность восстановления селезенки после удаления 80—90% ее объема (репаративная регенерация). Однако полного восстановления формы и размеров органа при этом, как правило, не наблюдается.
22.Щитовидная железа. Общая морфофункциональная характеристика, источники развития. Секреторный цикл фолликулярных эндокриноцитов, гормоны. Перестройка фолликулов в связи с их различной функциональной активностью. С-клетки, гормон кальцитонин, роль в регуляции минерального обмена.
Щитовидная железа
Это самая крупная из эндокринных желез, относится к железам фолликулярного типа. Она вырабатывает тиреоидные гормоны, которые регулируют активность (скорость) метаболических реакций и процессы развития. Кроме того, в щитовидной железе вырабатывается гормон кальцитонин, участвующий в регуляции кальциевого обмена.
Эмбриональное развитие. Зачаток щитовидной железы возникает у зародыша человека на 3-4-й неделе как выпячивание стенки глотки между I-ой и II-ой парами жаберных карманов, которое растет вдоль глоточной кишки в виде эпителиального тяжа. На уровне III-IV пар жаберных карманов этот тяж раздваивается, давая начало формирующимся правой и левой долям щитовидной железы. Начальный эпителиальный тяж атрофируется, и от него сохраняются только перешеек, связывающий обе доли щитовидной железы, а также проксимальная его часть в виде ямки (foramen coecum) в корне языка. Зачатки долей быстро разрастаются, образуя рыхлые сети ветвящихся эпителиальных трабекул; из них формируются тироциты, образующие фолликулы, в промежутки между которыми врастает мезенхима с кровеносными сосудами и нервами. Кроме того, у человека и млекопитающих имеются нейроэндокринные парафолликулярные С-клетки, берущие начало от нейробластов нервного гребня.
Строение щитовидной железы
Щитовидная железа окружена соединительнотканной капсулой, прослойки которой направляются вглубь и разделяют орган на дольки. В этих прослойках располагаются многочисленные сосуды микроциркуляторного русла и нервы.
Основными структурными компонентами паренхимы железы являются фолликулы - замкнутые шаровидные или слегка вытянутые образования с полостью внутри. Стенка фолликулов образована одним слоем эпителиальных клеток - фолликулярных тироцитов, среди которых встречаются одиночные клетки нейрального происхождения - парафолликулярные С-клетки.
В дольках щитовидной железы можно выделить фолликулярные комплексы, или микродольки, которые состоят из группы фолликулов, окруженных тонкой соединительнотканной капсулой.
В просвете фолликулов накапливается коллоид - секреторный продукт тироцитов, представляющий собой вязкую жидкость, состоящую в основном из тироглобулина. Размер фолликулов и образующих их тироцитов варьирует в нормальных физиологических условиях. В небольших формирующихся фолликулах, еще не заполненных коллоидом, эпителий однослойный призматический. По мере накопления коллоида размеры фолликулов увеличиваются, эпителий становится кубическим, а в сильно растянутых фолликулах, заполненных коллоидом эпителий становится плоским. Основная масса фолликулов в норме образована тироцитами кубической формы. Увеличение размеров фолликулов обусловлено пролиферацией, ростом и дифференцировкой тироцитов, сопровождаемой накоплением коллоида в полости фолликула.
Фолликулы разделяются тонкими прослойками рыхлой волокнистой соединительной ткани с многочисленными кровеносными и лимфатическими капиллярами, оплетающими фолликулы, а также тучными клетками и лимфоцитами.
Фолликулярные эндокриноциты, или тироциты, - это железистые клетки, составляющие большую часть стенки фолликулов. В фолликулах тироциты располагаются в один слой на базальной мембране.
Тироциты изменяют свою форму от плоской до циллиндрической в зависимости от функционального состояния железы. При умеренной функциональной активности щитовидной железы тироциты имеют кубическую форму и шаровидные ядра. Коллоид, секретируемый ими, заполняет в виде гомогенной массы просвет фолликула. На апикальной поверхности тироцитов, обращенной к просвету фолликула, имеются микроворсинки. По мере усиления тироидной активности количество и размеры микроворсинок возрастают. Базальная поверхность тироцитов, обращенная к поверхности фолликула, почти гладкая. Соседние тироциты тесно связаны между собой многочисленными десмосомами и хорошо развитыми терминальными пластинками. По мере возрастания тироидной активности на боковых поверхностях тироцитов возникают пальцевидные выступы (или интердигитации), входящие в соответствующие вдавления боковой поверхности соседних клеток.
Функция тироцитов заключается в синтезе и выделении йод-содержащих тиреоидных гормонов - Т3, или трийодтиронина, и Т4, или тироксина.
В тироцитах хорошо развиты органеллы, особенно участвующие в белковом синтезе. Белковые продукты, синтезируемые тироцитами, выделяются в полость фолликула, где завершается образование йодированных тирозинов и тиронинов (т.е. аминокислот, входящих в состав крупной и сложной молекулы тироглобулина). Тироидные гормоны могут попасть в циркуляцию лишь после высвобождения из этой молекулы (т.е. после расщепления тироглобулина).
Когда потребности организма в тироидном гормоне возрастают и функциональная активность щитовидной железы усиливается, тироциты фолликулов принимают призматическую форму. Интрафолликулярный коллоид при этом становится более жидким и пронизывается многочисленными ресорбционными вакуолями.
Ослабление функциональной активности (гипофункция) щитовидной железы проявляется, наоборот, уплотнением коллоида, его застоем внутри фолликулов, диаметр и объем которых значительно увеличиваются; высота тироцитов уменьшается, они принимают уплощенную форму, а их ядра вытягиваются параллельно поверхности фолликула.
В секреторном цикле фолликулярных эндокриноцитов различают две основные фазы: фазу продукции и фазу выведения гормонов.
Фаза продукции включает:
поступление предшественников тироглобулина (аминокислот, углеводов, ионов, воды, йодидов), приносимых из кровеносного русла в тироциты;
синтез фермента тиропероксидазы, окисляющей йодиды и обеспечивающей их соединение с тироглобулином на поверхности тироцитов и в полости фолликула и образование коллоида;
синтез полипептидных цепочек самого тироглобулина в гранулярной эндоплазматической сети и их гликозилирование (т.е. соединение с нейтральными сахарами и сиаловой кислотой) с помощью тиропероксидазы (в аппарате Гольджи).
Фаза выведения включает резорбцию тироглобулина из коллоида путем пиноцитоза и его гидролиз с помощью лизосомных протеаз с образованием гормонов тироксина и трийодтиронина, а также выведение этих гормонов через базальную мембрану в гемокапилляры и лимфокапилляры.
Гипофизарный тиротропный гормон (ТТГ) усиливает функцию щитовидной железы, стимулируя поглощение тироглобулина микроворсинками тироцитов, а также его расщепление в фаголизосомах с высвобождением активных гормонов.
Тиреоидные гормоны (Т3 и Т4) участвуют в регуляции метаболических реакций, влияют на рост и дифференцировку тканей, особенно на развитие нервной системы.
Второй вид эндокриноцитов щитовидной железы - парафолликулярные клетки, или C-клетки, или же кальцитониноциты. Это клетки нейрального происхождения. Их главная функция - выработка тиреокальцитонина, снижающего уровень кальция в крови.
Во взрослом организме парафолликулярные клетки локализуются в стенке фолликулов, залегая между основаниями соседних тироцитов, но не достигают своей верхушкой просвета фолликула. Кроме того, парафолликулярные клетки располагаются также в межфолликулярных прослойках соединительной ткани. По размерам парафолликулярные клетки крупнее тироцитов, имеют округлую, иногда угловатую форму. Парафолликулярные клетки осуществляют биосинтез пептидных гормонов -кальцитонина и соматостатина, а также участвуют в образовании нейроаминов (норадреналина и серотонина) путем декарбоксилирования соответствующих аминокислот-предшественников.
Секреторные гранулы, заполняющие цитоплазму парафолликулярных клеток, обнаруживают сильную осмиофилию и аргирофилию (т.е. эти клетки хорошо выявляются при импрегнации солями осмия и серебра).
Васкуляризация. Щитовидная железа обильно снабжается кровью. За единицу времени через щитовидную железу проходит приблизительно столько же крови, сколько через почки, причем интенсивность кровоснабжения значительно увеличивается при усилении функциональной активности органа.
Иннервация. В щитовидной железе много симпатических и парасимпатических нервных волокон. Стимуляция адренергических нервных волокон приводит к небольшому усилению, а парасимпатических - к угнетению функции фолликулярных эндокриноцитов. Основная же регулирующая роль принадлежит тиротропному гормону гипофиза. Парафолликулярные клетки невосприимчивы к тиротропному гормону, но отчетливо реагируют на активирующие симпатические и угнетающие парасимпатические нервные импульсы.
Регенерация щитовидной железы в физиологических условиях осуществляется очень медленно, однако способность паренхимы к пролиферации велика. Источником роста тироидной паренхимы является эпителий фолликулов. Нарушение механизмов регенерации может приводить к разрастанию железы с образованием зоба.
23. Паращитовидные железы. Общая морфофункциональная характеристика, источники развития, строение и клеточный состав. Паратирин, его роль в регуляции минерального обмена.
Околощитовидные (паращитовидные) железы
Околощитовидные железы (обычно в количестве четырех) расположены на задней поверхности щитовидной железы и отделены от нее капсулой.
Функциональное значение околощитовидных желез заключается в регуляцииметаболизма кальция. Они вырабатывают белковый гормон паратирин, или паратгормон, который стимулирует резорбцию кости остеокластами, повышая уровень кальция в крови. Сами остеокласты не имеют рецепторов к паратгормону, - его действие опосредовано другими клетками костной ткани - остеобластами.
Кроме этого паратгормон уменьшает выведение кальция почками, а также усиливает синтез метаболита витамина D, который, в свою очередь, повышает всасывание кальция в кишечнике.
Развитие. Околощитовидные железы закладываются у зародыша как выступы из эпителия III-ей и IV-ой пар жаберных карманов глоточной кишки. Эти выступы отшнуровываются, и каждый из них развивается в отдельную околощитовидную железу, причем из IV пары жаберных карманов развивается верхняя пара желез, а из III пары развивается нижняя пара околощитовидных желез, а также вилочковая железа - тимус.
Строение околощитовидной железы
Каждая околощитовидная железа окружена тонкой соединительнотканной капсулой. Ее паренхима представлена трабекулами - эпителиальными тяжами эндокринных клеток - паратироцитов. Трабекулы разделены тонкими прослойками рыхлой соединительной ткани с многочисленными капиллярами. Хотя между паратироцитами хорошо развиты межклеточные щели, соседние клетки связаны интердигитациями и десмосомами. Различают два типа клеток: главные паратироциты и оксифильные паратироциты.
Главные клетки секретируют паратирин, они преобладают в паренхиме железы, имеют небольшие размеры и полигональную форму. В периферических зонах цитоплазма базофильна, где рассеяны скопления свободных рибосом и секреторные гранулы. При усилении секреторной активности паращитовидных желез главные клетки увеличиваются в объеме. Среди главных паратироцитов также различают два типа: светлые и темные. В цитоплазме светлых клеток встречаются включения гликогена. Считают, что светлые клетки - это неактивные, а темные клетки - функционально активные паратироциты. Главные клетки осуществляют биосинтез и выделение паратгормона.
Второй тип клеток - оксифильные паратироциты. Они малочисленны, располагаются поодиночке или группами. Они значительно крупнее, чем главные паратироциты. В цитоплазме видны оксифильные гранулы, огромное количество митохондрий при слабом развитии других органелл. Их рассматривают как стареющие формы главных клеток. У детей эти клетки единичны, с возрастом их число возрастает.
На секреторную активность околощитовидных желез не оказывают влияния гипофизарные гормоны. Околощитовидная железа по принципу обратной связи быстро реагирует на малейшие колебания в уровне кальция в крови. Ее деятельность усиливается при гипокальциемии и ослабляется при гиперкальциемии. Паратироциты обладают рецепторами, способными непосредственно воспринимать прямые влияния ионов кальция на них.
Иннервация. Околощитовидные железы получают обильную симпатическую и парасимпатическую иннервацию. Безмиелиновые волокна заканчиваются терминалями в виде пуговок или колечек между паратироцитами. Вокруг оксифильных клеток нервные терминали принимают вид корзиночек. Встречаются также инкапсулированные рецепторы. Влияние поступающих нервных импульсов ограничивается сосудодвигательными эффектами.
Возрастные изменения. У новорожденных и детей младшего возраста в паренхиме околощитовидных желез обнаруживаются только главные клетки. Оксифильные клетки появляются не ранее 5-7 лет, к этому времени их количество быстро нарастает. После 20-25 лет постепенно прогрессирует накопление жировых клеток.
24. Поджелудочная железа. Эндокринная часть - островки Лангерганса, клеточный состав, гормоны. Фазы секреторного цикла инсулоцитов.
Поджелудочная железа представлена двумя разными в морфологическом и функциональном отношениях отделами: экзокринным и эндокринным. Экзокринный отдел секретирует ферменты, поступающие по выводным протокам в просвет двенадцатиперстной кишки и оказывающие воздействие на процесс расщепления белков, жиров и углеводов. Построен он из железистых концевых отделов и выводных протоков.
Рис. 273. Поджелудочная железа:
1 - долька; а - экзокринная часть; б - панкреатические островки (эндокринная часть железы); 2 - междольковая соединительная ткань; в - вена; а - междольковый выводной проток; д - концевые отделы; е - артерия; ж - венозные капилляры; з - центроацинозные клетки.
Эндокринный отдел вырабатывает гормоны, поступающие в кровь и регулирующие интенсивность углеводного, белкового и жирового обмена в тканях. Этот отдел состоит из совокупности островков (панкреатических островков), образованных тяжами гормонопродуцирующих клеток, окруженных капиллярной сетью и вкрапленных в экзокринную часть железы.
Развивается поджелудочная железа из энтодермальных, дорсального и вентрального выпячиваний стенки туловищной кишки, врастающих в мезенхиму брыжейки. Из мезенхимы развиваются "соединительнотканная часть (строма) и кровеносные сосуды. Следует обратить внимание на то, что эпителиальные выросты образуются из однослойного эпителия туловищной кишки, что обусловливает однослойное строение эпителиальных структур дифференцированной железы.
Поджелудочная железа является сложной трубчато-альвеолярной. Снаружи она покрыта соединительнотканной капсулой. Отходящие от капсулы перегородки делят железу на дольки (рис. 273). В междольковой соединительной ткани проходят междольковые выводные протоки, кровеносные сосуды, нервные стволы, а также инкапсулированные чувствительные нервные окончания.
Экзокринная часть дольки построена из ацинусов (альвеол), "состоящих из секретобразующих клеток и вставочного отдела - начальная зона выводного протока, вдвинутого в концевой отдел. В конусообразной клетке ацинуса отчетливо различают по окраске и строению базальный и апикальный полюсы. В первом из них локализованы плотно упакованные мембранные структуры гранулярной эндоплазматической сети (рис. 274), в связи с чем он окрашивается основными красителями, поэтому базофилен и именуется гомогенным. Второй полюс, направленный в просвет ацинуса, окрашивается кислыми красителями, он оксифилен, содержит гранулы секрета и называется зимогенным (рис. 275). В клетке хорошо развит комплекс Гольджи, много митохондрий.

Вставочный отдел ацинуса - это начало вставочного выводного протока, состоящего из плоских клеток и располагающегося в концевом отделе. На всем своем протяжении вставочный выводной проток покрыт однослойным эпителием. Его плоские клетки постоянно сменяются кубическими. Вставочные выводные протоки объединяются в междольковые, покрытые изнутри однослойным цилиндрическим эпителием. Междольковые выводные протоки, соединяясь, образуют главный выводной проток.
Совокупность панкреатических островков составляет эндокринную часть железы. Они имеют округлую или овальную форму и неравномерно локализуются в разных дольках. Островки построены из инсулярных клеток и обильно снабжены капиллярной сетью (рис. 276). Инсулярные клетки резко отличаются от ацинозных. Это небольшие, светлые с нежной цитоплазмой клетки, в которых хорошо развит комплекс Гольджи; содержатся мелкие митохондрии и секреторные гранулы. Гранулярная эндоплазматическая сеть представлена значительно хуже.
Среди инсулярных различают A-, B-, Д-, Д-1- и РР-клетки. Классификация их основана на морфофункциональной характеристике секреторных гранул. Самая многочисленная группа - В-клетки, занимающие, как правило, центральную часть островка. Они плохо окрашиваются, содержат зернистость, растворимую в спиртах и нерастворимую в воде. Клетки синтезируют инсулин, под влиянием которого гликоген задерживается в печеночных клетках, а следовательно, в крови уменьшается количество сахара.
А-клетки расположены чаще на периферии. Их секреторные гранулы обрабатывают кислыми красителями, растворимы в воде и фиксируются спиртом. Плотная часть гранулы отделена от мембраны светлой зоной. Эти клетки вырабатывают глюкагон - антагонист инсулина, повышающий содержание глюкозы в крови.
Д-клетки встречаются реже и находятся также на периферии островка. Средних размеров и умеренной плотности секреторные гранулы не имеют светлой зоны. Гормон этих клеток тормозит секрецию А-клеток, В-клеток и ацинозных клеток экзокринного отдела поджелудочной железы.
Д-1-клетки встречаются в островке в небольшом количестве, секреторные гранулы характеризуются аргирофилией, интенсивной плотностью, светлым ободком. Их гормон снижает кровяное давление и усиливает секрецию поджелудочной железы.
РР-клетки встречаются на периферии островков и в экзокринной части. Клетки содержат мелкую зернистость. Секретируемый ими гормон усиливает образование желудочного и поджелудочного сока.
Секреторный цикл состоит из фазы поглощения исходных веществ, синтеза секрета, накопление его и вывода за мерокриновых типу. Средняя продолжительность цикла 1,5-2 ч, но в зависимости от физиологических потребностей организма цикл может сократиться или продолжиться. Панкреатическая секреция контролируется гормонами секретином и холецистокинин (панкреозимином), продуцируемых И-клетками в ответ на пищевую стимуляцию. Под действием секретина клетки вставных проток выделяют панкреатический сок жидкой консистенции, с высоким содержанием воды и ионов бикарбоната, нейтрализующие кислые составляющие желудочного сока, которые вместе с химусом (частично переваренными пищевыми массами) попадают в двенадцатиперстную кишку. После этого под влиянием холецистокинина стимулируется секреция ациноцитам зимогенные гранул и выделение панкреатического сока, обогащенного профермента, которые в просвете двенадцатиперстной кишки превращаются в ферменты, способные расщеплять белки, жиры, углеводы и нуклеиновые кислоты.
25.Надпочечники. Общая морфофункциональная характеристика, источники эмбрионального развития . Корковое вещество надпочечников. Особенности строения корковых эндокриноцитов (СМ и ЭМ). Гормоны коркового вещества надпочечников, действие на организм. Основные этапы постнатального развития.
Надпочечники
Надпочечники - это эндокринные железы, которые состоят из двух частей - коркового и мозгового вещества, обладающих различным происхождением, структурой и функцией.
Снаружи надпочечники покрыты соединительнотканной капсулой, в которой различаются два слоя - наружный (плотный) и внутренний (более рыхлый). От капсулы в корковое вещество отходят тонкие трабекулы, несущие сосуды и нервы.
Корковое вещество надпочечников занимает большую часть железы и выделяеткортикостероиды - группу гормонов, влияющих на различные виды обмена, иммунную систему, течение воспалительных процессов. Функция коры надпочечников контролируется адренокортикотропным гормоном гипофиза (АКТГ), а также гормонами почек - ренин-ангиотензиновой системой.
В мозговом веществе продуцируются катехоламины (адреналин, или эпинефрин, и норадреналин, или норэпинефрин), которые влияют на быстроту сердечных сокращений, сокращение гладких мышц и метаболизм углеводов и липидов.
Развитие надпочечников проходит в несколько этапов.
Закладка корковой части появляется на 5-й неделе внутриутробного периода в виде утолщений целомического эпителия. Эти эпителиальные утолщения собираются в компактное интерреналовое тело, - зачаток первичной (фетальной) коры надпочечников. С 10-й недели внутриутробного периода клеточный состав первичной коры постепенно замещается и дает начало дефинитивной коре надпочечников, окончательное формирование которой происходит в течение первого года жизни.
В фетальной коре надпочечников синтезируются главным образом глюкокортикоиды - предшественники женских половых гормонов плаценты.
Из того же целомического эпителия, из которого возникает интерреналовое тело, закладываются также половые валики - зачатки гонад, что обусловливает их функциональную взаимосвязь и близость химической природы их стероидных гормонов.
Мозговая часть надпочечников закладывается у зародыша человека на 6-7-й неделе внутриутробного периода. Из общего зачатка симпатических ганглиев, располагающегося в аортальной области, выселяются нейробласты. Эти нейробласты внедряются в интерреналовое тело, пролиферируют и дают начало мозговой части надпочечников. Следовательно, железистые клетки мозговой части надпочечников должны рассматриваться как нейроэндокринные.
Корковое вещество надпочечников
Корковые эндокриноциты образуют эпителиальные тяжи, ориентированные перпендикулярно к поверхности надпочечника. Промежутки между эпителиальными тяжами заполнены рыхлой соединительной тканью, по которой проходят кровеносные капилляры и нервные волокна, оплетающие тяжи.
Под соединительнотканной капсулой имеется тонкая прослойка мелких эпителиальных клеток, размножением которых обеспечивается регенерация коры и создается возможность возникновения добавочных интерреналовых телец, иногда обнаруживаемых на поверхности надпочечников и нередко оказывающихся источниками опухолей (в том числе и злокачественных).
В коре надпочечника имеются три основные зоны: клубочковая, пучковая и сетчатая. В них синтезируются и выделяются различные группы кортикостероидов - соответственно: минералокортикоиды, глюкокортикоиды и половые стероиды. Исходным субстратом для синтеза всех этих гормонов служит холестерин, извлекаемый клетками из крови. Стероидные гормоны не запасаются в клетках, а образуются и выделяются непрерывно.
Поверхностная, клубочковая зона образована мелкими корковыми эндокриноцитами, которые формируют округлые арки - "клубочки".
В клубочковой зоне вырабатываются минералокортикоиды, главным из которых является альдостерон.
Основная функция минералокортикоидов - поддержание гомеостаза электролитов в организме. Минералокортикоиды влияют на реабсорбцию и экскрецию ионов в почечных канальцах. В частности, альдостерон увеличивает реабсорбцию ионов натрия, хлора, бикарбоната и усиливает экскрецию ионов калия и водорода.
На синтез и секрецию альдостерона влияет ряд факторов. Гормон эпифиза адреногломерулотропин стимулирует образование альдостерона. Стимулирующее влияние на синтез и секрецию альдостерона оказывают компоненты ренин-ангиотензиновой системы, а тормозящее - натри