gista_ekzamen_1


БИЛЕТ №1
1. Этапы развития гистологии, цитологии, эмбриологии. Современный этап развития гистологии. Методы качественного и количественного анализа.
2. Скелетные соединительные ткани, их структурно-функциональные особенности.
Хрящевые ткани: классификация, особенности строения, развития, топография.
3. Органы чувств: определение, понятие о сенсорных системах (анализаторах), их составные части. Строение периферического отдела. Классификация рецепторов. Орган вкуса.
Гистология - наука о микроскопическом и субмикроскопическом строении, развитии и жизнедеятельности тканей животных организмов. Гистология, как учебная дисциплина, включает в себя следующие разделы: цитологию, эмбриологию, общую гистологию (изучает строение и функции тканей), частную гистологию (изучает микроскопическое строение органов). Основным объектом изучения гистологии является организм здорового человека. Основная задача гистологии состоит в изучении строения клеток, тканей, органов, установления связей между различными явлениями, установление общих закономерностей. Современный этап развития гистологии - внедрение не только электронного микроскопа, но и других методов: цито - и гистохимии, гисторадиографии и других вышеперечисленных современных методов. Основным методом исследования биологических объектов, используемым в гистологии, является микроскопирование, т. е. изучение гистологических препаратов под микроскопом. Различают следующие виды микроскопии:
световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;
ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);
люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;
фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов;
поляризационная микроскопия для изучения, главным образом, волокнистых структур;
микроскопия в темном поле для изучения живых объектов;
микроскопия в падающем свете для изучения толстых объектов;
электронная микроскопия (разрешающая способность до 0,1—0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.
Гистохимические и цитохимические методы позволяет определять состав химических веществ, и даже их количество в изучаемых структурах. Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах. Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов. Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.
К скелетным соединительным тканям относятся хрящевые и костные ткани, выполняющие опорную, защитную и механическую функции, а также принимающие участие в обмене минеральных веществ в организме. Хрящевая ткань состоит из клеток — хондроцитов, хондробластов и плотного межклеточного вещества, состоящего из аморфного и волокнистого компонентов. Хондробласты располагаются одиночно по периферии хрящевой ткани. Эти клетки синтезируют компоненты межклеточного вещества, выделяют их в межклеточную среду и постепенно дифференцируются в дефинитивные клетки хрящевой ткани — хондроциты. Хондробласты обладают способностью митотического деления. Изогенная группа является общей структурно-функциональной единицей хрящевой ткани. Расположение хондроцитов в изогенных группах в разных хрящевых тканях неодинаково. Межклеточное вещество хрящевой ткани состоит из волокнистого компонента (коллагеновых или эластических волокон) и аморфного вещества, в котором содержатся главным образом сульфатированные гликозоаминогликаны (прежде всего хондроитинсерные кислоты), а также протеогликаны. Гиалиновая хрящевая ткань характеризуется наличием в межклеточном веществе только коллагеновых волокон. По физическим свойствам гиалиновая хрящевая ткань характеризуется прозрачностью, плотностью и малой эластичностью. В организме человека гиалиновая хрящевая ткань широко распространена и входит в состав крупных хрящей гортани, трахеи и крупных бронхов, составляет хрящевые части ребер, покрывает суставные поверхности костей. Эластическая хрящевая ткань характеризуется наличием в межклеточном веществе как коллагеновых, так и эластических волокон. По физическим свойствам эластическая хрящевая ткань непрозрачна, эластична, менее плотная и менее прозрачная, чем гиалиновая хрящевая ткань. Она входит в состав эластических хрящей: ушной раковины и хрящевой части наружного слухового прохода, хрящей наружного носа, мелких хрящей гортани и средних бронхов, а также составляет основу надгортанника. Волокнистая хрящевая ткань характеризуется содержанием в межклеточном веществе мощных пучков из параллельно расположенных коллагеновых волокон. По физическим свойствам характеризуется высокой прочностью. В организме встречается лишь в ограниченных местах: составляет часть межпозвоночных дисков.
В надхрящнице выделяют два слоя:
наружный — фиброзный;
внутренний — клеточный или камбиальный (ростковый).
Во внутреннем слое локализуются малодифференцированные клетки — прехондробласты и неактивные хондробласты, которые в процессе эмбрионального и регенерационного гистогенеза превращаются вначале в хондробласты, а затем в хондроциты. В фиброзном слое располагается сеть кровеносных сосудов. Развитие хрящевой ткани (хондрогистогенез) осуществляется из мезенхимы. В процессе развития хряща отмечается два вида роста хряща: интерстициальный рост — за счет размножения хондроцитов и выделения ими межклеточного вещества; оппозиционный рост — за счет деятельности хондробластов надхрящницы и наложения хрящевой ткани по периферии хряща.
Сенсорная система обеспечивает восприятие организмом информации о состоянии внешней и внутренней среды, а также ее обработку и трансформацию в ощущения. Все эти функции осуществляются анализаторами и их периферическими отделами — органами чувств. Анализаторы — это сложные структурно-функциональные системы, связывающие центральную нервную систему с внешней и внутренней средой. Они являются афферентной частью рефлекторных дуг. Каждый анализатор состоит из трех частей:
периферической, в которой происходит восприятие раздражения; промежуточной или кондуктивной, представленной проводящими путями и подкорковыми образованиями;центральной, образованной участком коры головного мозга, где идет анализ информации и синтез ощущения.
Органы чувств являются периферическими частями анализаторов. Выделяют три типа органов чувств:
I тип образован органами, развивающимися из нейроэктодермы. Рецепторные клетки в этих органах являются нервными клетками и называются первичночувствующими (первичночувствующие рецепторы). Такими органами являются органы зрения и обоняния;
II тип органов чувств представлен органами слуха, равновесия, вкуса. В этих органах раздражения воспринимают эпителиальные клетки, которые называются сенсоэпителиальными, развивающиеся из кожной эктодермы. Сенсоэпителиальные клетки называются вторичночувствующими (вторичночувствующие рецепторы). С ними контактируют дендриты чувствительных нервных клеток, которые передают воспринятое раздражение на свой нейрон;
III тип органов чувств представлен инкапсулированными и неинкапсулированными нервными окончаниями. Их строение как правило не имеет органного принципа (исключение инкапсулированные нервные окончания). Все они являются дендритами нейронов чувствительных ганглиев.
Значение вкусового анализатора заключается в апробации пищи при непосредственном соприкосновении ее со слизистой оболочкой полости рта. Вкусовые рецепторы (периферический отдел) заложены в эпителии слизистой оболочки ротовой полости. Нервные импульсы по проводниковому пути поступают в мозговой конец анализатора, располагающегося в ближайшем соседстве с корковым отделом обонятельного анализатора. Вкусовые почки (рецепторы) сосредоточены, в основном, на сосочках языка. Больше всего вкусовых рецепторов имеется на кончике, краях и в задней части языка. Рецепторы вкуса располагаются также на задней стенке глотки, мягком небе, миндалинах, надгортаннике. Раздражение одних сосочков вызывает ощущение только сладкого одного вкуса. Вместе с тем имеются сосочки, возбуждение которых сопровождается двумя или тремя вкусовыми ощущениями.
БИЛЕТ №2
1. Критические периоды онтогенеза: сущность, влияние экологических и социальных факторов.
2. Лейкоциты: содержание, классификация. Лейкоцитарная формула. Ее возрастные особенности.
3. Мужская половая система: органы, тканевой состав, источники и стадии развития, функции.
В процессе индивидуального развития имеются критические периоды, когда повышена чувствительность развивающегося организма к воздействию повреждающих факторов внешней и внутренней среды. Выделяют несколько критических периодов развития. Такими наиболее опасными периодами являются: 
1) время развития половых клеток - овогенез и сперматогенез; 
2) момент слияния половых клеток - оплодотворение; 
3) имплантация зародыша (4-8-е сутки эмбриогенеза); 
4) формирование зачатков осевых органов (головного и спинного мозга, позвоночного столба, первичной кишки) и формирование плаценты (3-8-я неделя развития); 
5) стадия усиленного роста головного мозга (15-20-я неделя); 
6) формирование функциональных систем организма и дифференцирование мочеполового аппарата (20-24-я неделя пренатального периода); 
7) момент рождения ребенка и период новорожденности - переход к внеутробной жизни; метаболическая и функциональная адаптация; 
8) период раннего и первого детства (2 года - 7 лет), когда заканчивается формирование взаимосвязей между органами, системами и аппаратами органов;
9) подростковый возраст (период полового созревания - у мальчиков с 13 до 16 лет, у девочек - с 12 до 15 лет).
К наиболее частым факторам, нарушающим нормальный эмбриогенез, принадлежат: перезревание женской половой клетки, нарушения обмена вещества у матери, гипоксия, содержание в крови матери токсических веществ, инфекция, особенно вирусная. Длительное перегревание организма матери приводит к аномалиям развития плода. Рентгеновское облучение опасно в связи с возможными мутациями, так как клетки эмбриональных зачатков особенно чувствительны к радиации. Это могут быть и закономерные действия среды, обеспечивающие обычное нормальное развитие, но в других концентрациях, с другой силой, в другое время.
Лейкоциты - ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровяное русло и проявляют свои функции в основном в тканях. Лейкоциты представляют собой неоднородную группу и подразделяются на несколько популяций. Классификация лейкоцитов:
содержании гранул в цитоплазме;
отношении к красителям по тинкториальным свойствам;
степени зрелости клеток данного типа;
морфологии и функции клеток;
размера клеток.
Классификация лейкоцитов:
зернистые (гранулоциты):
нейтрофилы (65—75 %): юные (0—0,5 %); палочкоядерные (3—5 %); сегментоядерные (60—65 %);
эозинофилы (1—5 %);
базофилы (0,5—1,0 %);
2. незернистые (агранулоциты):
лимфоциты (20—35 %): Т-лимфоциты; В-лимфоциты;
моноциты (6—8 %).
Лейкоцитарная формула — это процентное соотношение различных форм лейкоцитов (к общему числу лейкоцитов — 100 %). В таблице классификации лейкоцитов представлена лейкоцитарная формула здорового организма.
I. Нейтрофилы — самая большая популяция лейкоцитов (65—75 %). Морфологические особенности нейтрофилов:
сегментированное ядро;
в цитоплазме имеются мелкие гранулы, окрашивающиеся в слабо оксифильный (розовый) цвет, среди которых различают неспецифические азурофильные гранулы — разновидность лизосом, специфические гранулы, другие органеллы развиты слабо. Размеры в мазке 10—12 мкм.
По степени зрелости нейтрофилы подразделяются на:
юные (метамиелоциты)0—0,5 %;
палочкоядерные 3—5 %;
сегментоядерные (зрелые)60—65 %.
Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. Продолжительность жизни нейтрофилов 8 дней, из них 8—12 ч они находятся в крови, а затем выходят соединительную и эпителиальную ткани, где и выполняют основные функции. Функции нейтрофилов:
фагоцитоз бактерий;
фагоцитоз иммунных комплексов (антиген-антитело);
бактериостатическая и бактериолитическая;
выделение кейлонов и регуляция размножения лейкоцитов.
II.Эозинофилы. Содержание в норме 1—5 %, размеры в мазках 12—14 мкм. Морфологические особенности эозинофилов: двухсегментное ядро и в цитоплазме крупная оксифильная (красная) зернистость. Функции эозинофилов:
участвуют в иммунологических (аллергических и анафилактических) реакциях, угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина несколькими способами:
фагоцитируют гистамин и серотонин, выделяемые базофилами и тучными клетками, а также адсорбируют эти биологически активные вещества на цитолемме;
выделяют ферменты, расщепляющие гистамин и серотонин внеклеточно;
выделяют факторы, препятствующие выбросу гистамина и серотонина базофилами и тучными клетками;
способны фагоцитировать бактерии, но в незначительной степени.
Продолжительность жизни эозинофилов 6—8 дней, из них нахождение в кровеносном русле составляет 3—8 ч.
III. Базофилы. Это наименьшая популяция лейкоцитов (0,5—1 %), однако в общей массе в организме их огромное количество. Размеры в мазке 11—12 мкм. Морфологические особенности базофилов:
335343567310крупное слабо сегментированное ядро;
в цитоплазме содержатся крупные гранулы, окрашивающиеся основными красителями, метахроматично, за счет содержания в них гликозоаминогликанов — гепарина, а также гистамина, серотонина и других биологически активных веществ;
другие органеллы развиты слабо.
Функции базофилов заключают в участии в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции). Некоторые варианты изменения (сдвига) лейкоцитарной формулы:
Мужская половая система выполняет важные функции: обеспечивает полноценное развитие половых клеток, их кондиционирование (окончательное структурное и функциональное созревание) и выведение, копулятивную функцию, а также биосинтез мужских половых гормонов. В соответствии с этими функциями в состав мужской половой системы входят три группы органов:
гонады — яички;
органы депонирования семени и семя выведения (придаток, семявыносящий проток, семизвергательный канал);
добавочные половые органы — семенные пузырьки, предстательная железа, половой член (пенис).
Закладка гонад у человека начинается на 4-ой неделе внутриутробного периода с индифферентной стадии, в виде образования утолщений эпителиальной ткани корня брыжейки. При этом образуются половые валики, располагающиеся на верхней поверхности первичной почки. Дальнейшее развитие полового аппарата происходит в тесной взаимосвязи с почкой. Дифференцировка тканей начинается с 6-ой недели, в мужском организме в половые валики мигрируют гонобласты желточного мешка — первичные половые клетки. После этого от половых валиков в строму первичной почки врастают половые шнуры, в состав которых входят первичные половые клетки — сперматогонии.
БИЛЕТ № 3
1. Плазмолемма: слои, химический состав, функции. Межклеточные контакты, их типы, структурно-функциональная характеристика.
2. Гипофиз: части, отделы, источники развития. Строение адено - и нейрогипофиза, гормоны, кровоснабжение. Понятие о гипоталамо-аденогипофизарной и гипотала - монейрогипофизарной системах.
3. Ротовая полость: составные компоненты, особенности слизистой оболочки. Строение и функции языка.
Плазмолемма - оболочка животной клетки, ограничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой. Плазмолемма имеет толщину около 10 нм, и состоит на 40 % из липидов, на 5—10 % из углеводов (в составе гликокаликса), и на 50—55 % из белков. Функции плазмолеммы:
разграничивающая (барьерная);
рецепторная или антигенная;
транспортная;
образование межклеточных контактов.
Основу строения плазмолеммы составляет двойной слой липидных молекул, в который местами включены молекулы белков, также имеется надмембранный слой гликокаликс, структурно связанный с белками и липидами билипидной мембраны, и в некоторых клетках имеется подмембранный слой.
По локализации в мембране белки подразделяются на:
интегральные пронизывают всю толщу билипидного слоя;
полуинтегральные, включающиеся только в монослой липидов (наружный или внутренний);
прилежащие к мембране, но не встроенные в нее.
По выполняемой функции белки плазмолеммы подразделяются на:
структурные белки;
транспортные белки;
рецепторные белки;
ферментные.
Находящиеся на внешней поверхности плазмолеммы белки, а также гидрофильные головки липидов обычно связаны цепочками углеводов и образуют сложные полимерные молекулы гликопротеиды и гликолипиды. Различают следующие способы транспорта веществ:
пассивный транспорт способ диффузии веществ через плазмолемму (ионов, некоторых низкомолекулярных веществ) без затраты энергии;
активный транспорт веществ с помощью белков-переносчиков с затратой энергии (аминокислот, нуклеотидов и других);
везикулярный транспорт через посредство везикул (пузырьков), который подразделяется на эндоцитоз транспорт веществ в клетку, и экзоцитоз веществ из клетки.
В свою очередь эндоцитоз подразделяется на:
фагоцитоз захват и перемещение в клетку крупных частиц (клеток или фрагментов, бактерий, макромолекул и так далее);
пиноцитоз перенос воды и небольших молекул.
Процесс фагоцитоза подразделяется несколько фаз:
адгезия (прилипание) объекта к цитолемме фагоцитирующей клетки;
поглощение объекта путем образования вначале углубления (инвагинации), а затем и образования пузырьков — фагосомы и передвижения ее в гиалоплазму
Аденогипофиз развивается из эпителия крыши ротовой полости, имеющей эктодермальное происхождение Функции гипофиза:
регуляция деятельности аденогипофиззависимых эндокринных желез;
накопление для нейрогормонов гипоталамуса вазопрессина и окситоцина;
регуляция пигментного и жирового обмена;
синтез гормона, регулирующего рост организма;
выработка нейропептидов (эндорфинов).
Гипофиз представляет собой паренхиматозный орган со слабым развитием стромы. Он состоит из аденогипофиза и нейрогипофиза. Аденогипофиз включает три части: переднюю, промежуточную доли и туберальную часть. Передняя доля состоит из эпителиальных тяжей трабекул, между которыми проходят фенестрированные капилляры. Клетки аденогипофиза называются аденоцитами. Оксифильные аденоциты делятся на две группы:
соматотропоциты вырабатывают гормон роста (соматотропин), стимулирующий деление клеток в организме и его рост;
лактотропоциты вырабатывают лактотропный гормон (пролактин, маммотропин). Этот гормон усиливает рост молочных желез и секрецию ими молока во время беременности и после родов, а также способствует образованию в яичнике желтого тела и выработке им гормона прогестерона.
Базофильные аденоциты подразделяются также на два вида:
тиротропоциты — вырабатывают тиреотропный гормон, этот гормон стимулирует выработку щитовидной железой тиреоидных гормонов;
гонадотропоциты подразделяются на два вида — фоллитропоциты вырабатывают фолликулостимулирующий гормон, в женском организме он стимулирует процессы овогенеза и синтез женских половых гормонов эстрогенов. В мужском организме фолликулостимулирующий гормон активирует сперматогенез.
Еще одна группа хромофильных аденоцитов — адренокортикотропоциты. Они лежат в центре передней доли и вырабатывают адренокортикотропный гормон, стимулирующий секрецию гормонов пучковой и сетчатой зонами коры надпочечников. Благодаря этому адренокортикотропный гормон участвует в адаптации организма к голоданию, травмам, другим видам стресса.
Средняя доля состоит из прерывистых тяжей базофильных и хромофобных клеток. Аденоциты промежуточной доли вырабатывают два гормона:
меланоцитостимулирующий гормон, он регулирует пигментный обмен, стимулирует выработку меланина в коже, адаптирует сетчатку к видению в темноте, активирует кору надпочечников;
липотропин, который стимулирует жировой обмен.
Туберальная зона образована тонким тяжом эпителиальных клеток, окружающих эпифизарную ножку. В туберальной доле проходят гипофизарные портальные вены. Задняя доля или нейрогипофиз имеет нейроглиальное строение. В ней гормоны не вырабатываются, а лишь накапливаются. Аденогипофиз кровоснабжается из верхней гипофизарной артерии, которая вступает в медиальную эминенцию гипоталамуса и распадается на первичную капиллярную сеть. Задняя доля гипофиза кровоснабжается нижней гипофизарной артерией. Эта артерия распадается до капилляров, на которых образуются аксовазальные синапсы нейросекреторных нейронов — второй нейрогемальный орган гипофиза. Капилляры собираются в задние гипофизарные вены.
К органам ротовой полости относятся губы, щеки, десны, зубы, язык, твердое и мягкое небо, миндалины. В полость рта открываются выводные протоки больших слюнных желез. Функции переднего отдела: механическая и химическая (частично) обработка пищи, определение ее вкусовых качеств, глотание и продвижение пищи в пищевод. Особенности строения:
слизистая оболочка (слизистая кожного типа) состоит из многослойного плоского неороговевающего эпителия и собственной пластинки слизистой оболочки. Выполняет барьерно-защитную функцию, мышечная пластика отсутствует;
подслизистая оболочка может отсутствовать (в деснах, твердом небе, на верхней и боковых поверхностях языка);
мышечная оболочка образована поперечнополосатой мышечной тканью.
Слизистая оболочка ротовой полости постоянно увлажняется за счет слюны, вырабатываемой множественными слюнными железами ротовой полости. В губе различают кожную, переходную и слизистую части. Кожная часть губы имеет строение кожи: покрыта эпидермисом, содержит сальные и потовые железы, волосы. Под эпидермисом находится рыхлая волокнистая соединительная ткань, образующая длинные сосочки. Промежуточная или переходная зона характеризуется уменьшением толщины рогового слоя эпидермиса, отсутствием волос и потовых желез. Однако, здесь еще сохранены сальные железы. Эпителий резко утолщается, в него вдаются длинные соединительнотканные сосочки, содержащие много капилляров, которые просвечивают через эпителий. Поэтому переходная зона имеет красный цвет. Слизистая часть губы покрыта многослойным плоским неороговевающим эпителием, толщина которого резко возрастает. Собственная пластинка образует сосочки небольшой длины. В подслизистой оболочке находятся концевые отделы губных слюнных желез, которые являются сложными альвеолярно - трубчатыми железами слизисто-белкового типа. Функцией зубов является механическая обработка пищи (отрывание, разрывание, измельчение или пережевывание). Основу языка составляет поперечнополосатая мышечная ткань, волокна которой идут в трех взаимно перпендикулярных направлениях. Слизистая оболочка верхней и боковых поверхностей языка прочно сращена с мышцами. Образована она двумя слоями: многослойным плоским неороговевающим эпителием и собственной пластинкой из рыхлой волокнистой соединительной ткани, формирующей сосочки языка. Различают 4 основных вида сосочков: нитевидные сосочки, которые придают языку шероховатость. Эти сосочки не содержат органов вкуса. Остальные 3 вида сосочков имеют в составе эпителия, покрывающего их, органы вкуса вкусовые почки или луковицы. Листовидные сосочки находятся на боковых поверхностях языка и хорошо выражены только у детей. Грибовидные сосочки разбросаны единично по спинке языка. Желобоватые сосочки находятся на границе между телом и корнем языка. Вкусовые почки имеют форму эллипса и занимают всю толщину эпителия. Состоят из клеток 4 типов: поддерживающих, вкусовых (сенсорных), базальных и клеток, образующих синапсы с чувствительными нервными окончаниями.
БИЛЕТ №4
1.Развитие и строение бластоцисты. Имплантация: сущность, хронология, изменения в бластоцисте.
2.Синапсы: классификация, строение, механизмы передачи нервного импульса в синапсах.
3.Мужская половая система. Яичко (семенник): строение, функции. Сперматогенез: периоды, их сущность, регенерация. Возрастные изменения. Гематотестикулярный барьер.
Бластоциста — ранняя стадия развития зародыша. Стадия бластоцисты следует за стадией морулы и предшествует стадии зародышевого диска. Стадия бластоцисты относится к преимплантационному периоду развития, то есть самому раннему периоду эмбриогенеза (до прикрепления зародыша к стенке матки). Внешне бластоциста представляет собой шар, состоящий из нескольких сотен клеток. Бластоциста состоит из двух клеточных популяций: трофобласта (трофэктодермы) и эмбриобласта (внутренней клеточной массы). Трофобласт формирует внешний слой эмбриона — полый шар или пузырёк. Эмбриобласт формирует внутренний слой бластоцисты, располагается внутри трофобластатического пузырька в виде скопления клеток у одного из полюсов шара (внутренняя клеточная масса). Имплантация эмбриона — внедрение эмбриона в слизистую матки в процессе беременности у самок млекопитающих животных (в том числе у человека). Имплантация состоит из 2-х этапов:
адгезия (прилипание);
инвазия (погружение).
В течение 12-20 часов после оплодотворения яйцеклетки образовавшаяся клетка начнет деление на 2 части. Во время своего быстрого деления, клетка продолжает продвигаться к матке. Ей потребуется около семи дней, что бы достигнуть матки. Оплодотворенная яйцеклетка, которое уже начала свое деление называется зиготой. Делится зигота до тех пор, пока не образуется твердый шарик из множества клеток. Этот шарик имеет размер с булавочную головку и когда количество клеток достигает 16-32, он уже называется Морула.  Если зигота, имеющая уже несколько клеток, разделиться на две отдельные части, то сформируются близнецы. Морула продолжает деление и когда она достигает матки, то имеет уже примерно 64 клетки. Только некоторые из этик клеток разовьются в плод, остальные сформируются в плаценту и мембраны. Постепенно морула превращается из твердого шарика клеток в шарик, наполненный жидкостью. Поверхностный слой плоских клеток бластоцисты разовьется в плаценту. Клетки, которые находятся внутри шара, станут эмбрионом.  Попадая в матку, бластоциста несколько дней находится в свободном плаванье и продолжает развиваться. Ей предстоит имплантация. Через несколько дней она прикрепиться к стенке матки. При имплантации бластоциста проникает клетками в слизистую оболочку матки, что приводит к разрыву тканей. Начинает развиваться плацента и эмбрион вырабатывает гормон беременности. Эмбриону нужно около 13 дней, что бы прочно укрепиться в матке. На этом этапе начинают уже формироваться первые органы эмбриона, сначала нервная система, потом сердце.

Синапс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.
Классификация синапсов:
I. По способу передачи:
Химические — проводят нервный импульс в одну сторону;
Электрические — проводят нервный импульс в обе стороны;
II. По локализации:
аксодендритические синапсы;
аксоаксональные синапсы;
аксосоматические синапсы;
сомасоматические синапсы;
дендродендритические синапсы;
III. По составу медиатора:
адренергические синапсы — норадреналин;
холинергические синапсы — ацетилхолин;
пептидергические синапсы;
пуринергические синапсы;
дофаминергические синапсы;
IV. По выполняемым функциям:
возбуждающие;
тормозящие.
При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на металотропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала. Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой, когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.
Функции яичек:
генеративная функция: выработка мужских половых клеток — сперматозоидов;
эндокринная — выработка мужских и женских половых гормонов, а также ряда других гормонов и биологически активных веществ.
Яичко является паренхиматозным дольчатым органом, сочетающим в себе признаки строения сложной трубчатой экзокринной и эндокринной желез. При этом секретом экзокринной части яичка является семенная жидкость — сперма, а мужские половые гормоны и ряд других гормонов и биологически активных веществ продукт эндокринной части. Строма яичка представлена белочной оболочкой, которая с поверхности покрыта серозной оболочкой и отходящими от нее трабекулами, а также интерстициальной рыхлой волокнистой неоформленной соединительной тканью, заполняющей пространства между белочной оболочкой и трабекулами. От средостения яичка радиально отходят соединительнотканные трабекулы, которые делят яичко на дольки. Паренхима яичка образована совокупностью извитых, прямых семенных канальцев и канальцев сети. В каждой дольке находится 1—4 извитых семенных канальца длинной до 80 см. В вершине дольки, обращенной к средостению, извитые семенные канальцы переходят в прямые, которые сливаясь, образуют сеть яичка. Структурно-функциональной единицей яичка является извитой семенной каналец. Снаружи он покрыт собственной оболочкой, состоящий из трех слоев: базального или внутреннего волокнистого, миодного и наружного волокнистого. К внутреннему слою изнутри прилежит базальная мембрана эпителиоспермального слоя. В состав, которого входят сустентоциты, лежащие непосредственно на базальной мембране, и развивающиеся половые клетки, из которых с базальной мембраной соприкасаются только сперматогонии. Сустентоциты имеют треугольную форму, они лежат на базальной мембране.
Функции клеток Сертоли:
трофика развивающихся половых клеток;
опорная функция;
фагоцитоз частей сперматид при формировании сперматозоидов, а также погибших, аномально измененных клеток;
гормональная и секреторная;
участие в образовании гематотестикулярного барьера;
транспортная функция.
Функции гематотестикулярного барьера:
предотвращение аутоиммунных реакций, так как клетки половой системы на ранних стадиях эмбриогенеза отделяются от крови и иммунной системы барьером, и в результате их антигены недоступны для собственных иммунокомпетентных клеток организма, то есть являются антигенами;
предотвращение или уменьшение поступления к развивающимся половым клеткам повреждающих химических и биологических агентов;
обеспечение транспорта питательных и регуляторных веществ;
создание различного микроокружения для половых клеток разной степени зрелости.
В состав гематотестикулярного барьера входят следующие структуры:
эндотелий капилляров (непрерывный тип);
непрерывная базальная мембрана эндотелия;
находящиеся в расслоении базальной мембраны перициты, обладающие выраженной фагоцитарной активностью;
прослойки интерстициальной рыхлой волокнистой соединительной ткани с макрофагами, способными разрушать ксенобиотики и токсические вещества;
оболочка извитого семенного канальца;
базальная мембрана эпителиоспермального слоя;
плотные контакты между клетками Сертоли и сами клетки Сертоли, способные к фагоцитозу.

БИЛЕТ № 5
1. Прогенез: содержание, морфологическая и функциональная характеристика половых клеток, понятие о спермато - и овогенезе.
2. Иммуноцитопоэз: Т - и В-лимфоциты: этапы, области кроветворения, особенности каждого этапа, образование эффеторных иммунокомпетентных клеток.
З. Мозжечок: серое и белое вещество. Кора мозжечка: слои, нейроны, глиальный состав, межнейронные связи. Характеристика коры мозжечка как нервного центра экранного типа.
Зрелые половые клетки, в отличие от соматических содержат одиночный набор хромосом. В мужских половых клетках у млекопитающих содержатся половые хромосомы либо X, либо Y, в женских половых клетках — только хромосома Х, Дифференцированные гаметы обладают невысоким уровнем метаболизма и неспособны к размножению. Прогенез включает в себя сперматогенез и овогенез. Сперматогенез — это развитие и формирование мужских половых клеток. Сперматогенез протекает в извитых канальцах семенников, и его средняя продолжительность от 68 до 75 суток. Сперматогенез у человека начинается с момента полового созревания и продолжается в течение всего активного полового периода в больших количествах. Стадии сперматогенеза. Начальной фазой сперматогенеза является размножение сперматогоний путем митоза, большая часть клеток продолжает делиться, а меньшая часть вступает в стадию роста. В этот период клетки растут, накапливают питательные вещества, и потом превращаются в сперматоциты 1-го порядка. Следующая фаза созревание-деление, характеризуется двумя редукционными делениями, без интерфазы. В результате 1-го деления 1 сперматоцит 1-го порядка дает начало 2-м сперматоцитам 2-го порядка, а 2-ое деление-созревание приводит к появлению 4 сперматид. Фаза формирования происходит в присутствии тестостерона, происходит преобразование сперматид в сперматозоиды. Овогенез — это процесс образования и развития женских половых клеток. Он включает в себя 3 фазы:
размножения;
роста;
созревания.
Фаза размножения начинается в эмбриональном периоде и продолжается в течение 1-го года жизни девочки. К моменту рождения у девочки имеется около 2-х млн. клеток. Сущностью фазы размножения является митотическое деление овогоний. Фаза роста, в конце 1-го года жизни девочки размножение овогоний останавливается, и клетки яичника вступают в фазу малого роста, превращаясь в овоциты 1-го порядка. Наступает 1 блок роста, который снимается с наступлением полового созревания, то есть появлением женских половых гормонов. Далее овоциты 1-го порядка вступают в фазу большого роста. Фаза созревания, как и во время сперматогенеза, включает в себя два деления, причем второе следует за первым без интеркинеза, что приводит к уменьшению (редукции) числа хромосом вдвое. При первом делении созревания овоцит 1-го порядка делится, в результате чего образуются овоцит 2-го порядка и небольшое редукционное тельце.
Лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:
1 класс — стволовые клетки;
2 класс — полустволовые клетки-предшественницы лимфоцитопоэза;
3 класс — унипотентные Т-поэтинчувствительные клетки—предшественницы Т-лимфоцитопоэза.
Второй этап — этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов: киллеры, хелперы и супрессоры. В итоге третьего этапа Т-лимфоцитопоэза образуются эффекторные клетки клеточного иммунитета (Т-киллеры), регуляторные клетки гуморального иммунитета (Т-хелперы и Т-супрессоры), а также Т-памяти всех популяций Т-лимфоцитов. Первый этап В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток:
1 класс — стволовые клетки;
2 класс — полустволовые клетки-предшественницы лимфопоэза;
3 класс — унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза.
В процессе второго этапа В-лимфоциты приобретают разнообразные рецепторы к антигенам. Третий этап — антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт.

Мозжечок располагается над продолговатым мозгом и варолиевым мостом и представляет собой центр равновесия, поддержания мышечного тонуса, координации движений и контроля сложных и автоматически выполняемых двигательных актов. Он образован двумя полушариями с большим числом бороздок и извилин на поверхности и узкой средней частью (червем) и связан с другими частями мозга тремя парами ножек. Серое вещество образует кору мозжечка и ядра, которые залегают в глубине его белого вещества. Кора мозжечка является нервным центром экранного типа и характеризуется высокой упорядоченностью расположения нейронов, нервных волокон и глиальных клеток. В ней различают три слоя (снаружи внутрь):
1.молекулярный слой: корзинчатые клетки располагаются во внутренней части молекулярного слоя. Их короткие дендриты образуют связи с параллельными волокнами в наружной части молекулярного слоя, а длинный аксон идет поперек извилины, отдавая через определенные интервалы коллатерали, которые спускаются к телам клеток Пуркинье и, разветвляясь, охватывают их наподобие корзинок, образуя тормозные аксосоматические синапсы. Звездчатые клетки — мелкие нейроны, тела которых лежат выше тел корзинчатых клеток.
2.ганглионарный слой: клетки Пуркинье — крупные клетки с телом грушевидной формы, содержащим хорошо развитые органеллы. От него в молекулярный слой отходят 2—3 первичные дендрита, интенсивно ветвящиеся в плоскости, перпендикулярной направлению извилины, с образованием конечных дендритов, достигающих поверхности молекулярного слоя.
3. зернистый слой: клетки-зерна — это мелкие нейроны со слабо развитыми органеллами и короткими дендритами, имеющими вид "птичьей лапки", на которых в клубочках мозжечка розетки моховидных волокон образуют многочисленные синаптические контакты. Большие клетки-зерна (клетки Гольджи) крупнее клеток-зерен, содержат хорошо развитые органеллы. Их аксоны в пределах клубочков мозжечка образуют синапсы на дендритах клеток-зерен, а длинные дендриты поднимаются в молекулярный слой, где ветвятся и образуют связи с параллельными волокнами.
Афферентные волокна коры мозжечка Моховидные волокна мозжечка проходят в составе спинно - и мостомозжечковых путей и, разветвляясь, заканчиваются расширениями (розетками) в особых контактных зонах — клубочках мозжечка, образуя синаптические контакты с дендритами клеток-зерен, на которых оканчиваются также и аксоны больших клеток-зерен. Лазящие (лиановидные) волокна мозжечка идут в составе оливомозжечковых путей и проникают в кору из белого вещества, проходя через зернистый слой до ганглионарного и стелясь по телам и дендритам клеток Пуркинье, на которых они заканчиваются возбуждающими синапсами. Эфферентные волокна коры мозжечка представлены аксонами клеток Пуркинье, которые в виде миелиновых волокон направляются в белое вещество и достигает глубоких ядер мозжечка и вестибулярного ядра, на нейронах которых они образуют тормозные синапсы (клетки Пуркинье являются тормозными нейронами). Межнейронные связи в коре мозжечка благодаря своему богатству обеспечивают переработку поступающей в нее разнообразной сенсорной информации. Возбуждающие импульсы поступают в кору мозжечка по лазящим и моховидным волокнам. В первом случае возбуждение передается на дендриты клеток Пуркинье непосредственно, во втором — через клубочки мозжечка — на дендриты клеток-зерен и далее по их аксонам (параллельным волокнам). Последние образуют возбуждающие синапсы также на дендритах корзинчатых и звездчатых клеток и больших клеток-зерен.
БИЛЕТ№ 6
1.Провизорные органы зародыша человека: источники и хронология развития, строение, функциональная роль.
2.Эритроциты: количество, размеры, форма, строение, функции. Ретикулоциты: содержание, диагностическое и прогностическое значение.
З.Легкие. Воздухоносные пути (бронхиальное дерево): строение и классификация бронхов, типы клеток в эпителии.
Функции провизорных органов:
хорион выполняет защитную, трофическую, эндокринную, экскреторную функции;
желточный мешок участвует в образовании первичных кровеносных сосудов и первичных половых клеток;
амнион — выработка околоплодных вод, защита плода от механических повреждений, поддержание определенной концентрации солей в околоплодных водах;
по аллантоису прорастают первичные кровеносные сосуды из зародыша к хориону, формируя плацентарный круг кровообращения.
Хорион возникает из трофобласта, который уже разделился на цитотрофобласт и синцитиотрофобласт. Последний под влиянием контакта со слизистой матки разрастается и разрушает ее. К концу 2-й недели образуются первичные ворсинки хориона в виде скопления эпителиальных клеток цитотрофобласта. В начале 3-й недели в них врастает мезодермальная мезенхима и возникают вторичные ворсинки, а когда к концу 3-й недели внутри соединительнотканной сердцевины появляются кровеносные сосуды, их называют третичными ворсинками. Амнион возникает путем расхождения клеток эпибласта внутренней клеточной массы. Амниотическая полость некоторое время ограничена клетками эпибласта и частично участком трофобласта. Затем боковые стенки эпибласта образуют складки, направленные вверх, которые впоследствии срастаются. Полость оказывается полностью выстланной эпибластическими (эктодермальными) клетками. Желточный мешок, появляется, когда от внутренней клеточной массы отделяется тонкий слой гипобласта и его внезародышевые энтодермальные клетки, перемещаясь, выстилают изнутри поверхность трофобласта. Образовавшийся первичный желточный мешок на 12—13-е сутки спадается и преобразуется во вторичный желточный мешок, связанный с зародышем. Энтодермальные клетки обрастают снаружи внезародышевой мезодермой. Аллантоис возникает у зародыша человека, в виде кармана вентральной стенки задней кишки, но его энтодермальная полость остается рудиментарной структурой. Тем не менее, в его стенках развивается обильная сеть сосудов, соединяющаяся с главными кровеносными сосудами зародыша. Мезодерма аллантоиса соединяется с мезодермой хориона, отдавая в него кровеносные сосуды.
Эритроциты преобладающая популяция форменных элементов крови.
Морфологические особенности:
не содержит ядра;
не содержит большинства органелл;
цитоплазма заполнена пигментным включением — гемоглобином: гемм-железо, глобин—белок.
Размеры эритроцитов:
Нормоциты 7,1—7,9 мкм (75 %);
Макроциты больше 8 мкм (12,5 %);
Микроциты меньше 6 мкм (12,5 %).
Форма эритроцитов:
двояковогнутые диски — дискоциты (80 %);
остальные 20 % составляют сфероциты, планоциты, эхиноциты, седловидные, двуямочные, стоматоциты.
Функции эритроцитов:
Дыхательная — транспорт газов (О2 и СО2);
транспорт других веществ, абсорбированных на поверхности цитолеммы (гормонов, иммуноглобулинов, лекарственных веществ, токсинов и других).
Ретикулоциты — клетки — предшественники эритроцитов в процессе кроветворения, составляющие около 1 % от всех циркулирующих в крови эритроцитов. Так же, как и последние, не имеют ядра, но содержат остатки рибонуклеиновых кислот, митохондрий и других органелл, лишаясь которых трансформируются в зрелый эритроцитОни формируются и созревают в красном костном мозге за 1—2 дня, после чего покидают его и ещё 1—3 дня дозревают в кровотоке. Функция ретикулоцитов в целом аналогична функции эритроцитов, они также являются переносчиками кислорода, но их эффективность несколько ниже, чем у зрелых эритроцитов. Клинико-диагностическое значение. Повышение количества ретикулоцитов в периферической крови свидетельствует о наличии кровопотери, или другой причины активации эритропоеза, при которой большее чем обычно количество незрелых клеток вынужденно покинуть костный мозг.
Основные функции легких:
газообмен;
терморегуляторная функция;
участие в регуляции кислотно-щелочного равновесия;
регуляция свертывания крови — легкие образуют в больших количествах тромбопластин и гепарин, которые участвуют в деятельности коагулянтно-антигоагулянтной системы крови;
регуляция водно-солевого обмена;
регуляция эритропоэза путем секреции эритропоэтина;
иммунологическая функция;
участие в обмене липидов.
Легкие состоят из двух основных частей: внутрилегочных бронхов (бронхиальное дерево) и многочисленных ацинусов, формирующих паренхиму легких. Бронхиальное дерево начинается правым и левым главными бронхами, которые делятся на долевые бронхи — 3 справа и 2 слева. Долевые бронхи делятся на внелегочные зональные бронхи, образующие в свою очередь 10 внутрилегочных сегментарных бронхов. Последние последовательно разделяются на субсегментарные, междольковые, внутридольковые бронхи и терминальные бронхи. Существует классификация бронхов по их диаметру. По данному признаку выделяют бронхи крупного (15—20 мм), среднего (2—5 мм), малого (1—2 мм) калибра. Стенка бронха состоит из 4-х оболочек: слизистой, подслизистой, фиброзно-хрящевой и адвентициальной. Эти оболочки на протяжении бронхиального дерева претерпевают изменения. Внутренняя, слизистая оболочка состоит из трех слоев: многорядного мерцательного эпителия, собственной и мышечной пластинок. В состав эпителия входят следующие виды клеток:
секреторные клетки, клетки секретируют ферменты разрушающие сурфактант;
безреснитчатые клетки, возможно, выполняют рецепторную функцию;
каемчатые клетки, основной функцией этих клеток является хеморецепция;
реснитчатые;
бокаловидные;
эндокринные.
Собственная пластинка слизистой оболочки состоит из рыхлой волокнистой соединительной ткани, богатой эластическими волокнами. Мышечная пластинка слизистой оболочки образована гладкой мышечной тканью. Подслизистая оболочка представлена рыхлой волокнистой соединительной тканью. В ней лежат концевые отделы смешанных слизисто-белковых желез. Секрет желез увлажняет слизистую оболочку. Фиброзно-хрящевая оболочка образована хрящевой и плотной волокнистой соединительной тканями. Адвентициальная оболочка представлена рыхлой волокнистой соединительной тканью. В крупных бронхах он эпителий многорядный, затем постепенно становится двурядным, а в терминальных бронхиолах превращается в однорядный кубический. Воздухоносные пути заканчиваются терминальными бронхиолами, имеющими диаметр до 0,5 мм. Их стенка образована слизистой оболочкой. Эпителий — однослойный кубический реснитчатый. В его состав входят реснитчатые, щеточные, бескаемчатые клетки и секреторные клетки Клара. Собственная пластинка образована рыхлой волокнистой соединительной тканью, которая переходит в междольковую рыхлую волокнистую соединительную ткань легкого.
БИЛЕТ №7
1. Клетка: определение, составные части и их структурные элементы.
2. Мышечные ткани: классификация, источники развития, регенерация. Общие признаки и отличительные особенности разных видов мышечной ткани.
З. Орган слуха: анатомические части, структурные компоненты костного и перепончатого лабиринта, строение спирального органа. Проведение звуковой волны к рецепторным клеткам.
Клетка — элементарная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Плазматическая мембрана - биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. Плазматическая мембрана  состоит из фосфолипидов и липопротеидов с вкрапленными в неё молекулами белков, в частности, поверхностных антигенов и рецепторов. Цитоплазма. Жидкую составляющую цитоплазмы также называют цитозолем. В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом. Ту часть ЭПР, к мембранам которой прикреплены рибосомы, относят к гранулярному эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к агранулярному ЭПР, принимающему участие в синтезе липидов. Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Лизосомы - небольшое тельце, ограниченное от цитоплазмы одинарной мембраной. Основная функция — аутолиз — то есть расщепление отдельных органоидов, участков цитоплазмы клетки. Митохондрии - особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии.  Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы
Свойством сократимости обладают практически все виды клеток, благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5—7 нм), состоящих из сократительных белков - актина, миозина, тропомиозина и других. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы, и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго - и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов, а, следовательно, и сократительные процессы неодинаково выражены в разных типах клеток. Такие клетки или их производные образуют мышечные ткани, которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, по функциональным особенностям. Любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако, функционально ведущими элементами мышечных тканей являются мышечные клетки или мышечные волокна. Классификация мышечных тканей:
Гладкая (неисчерченная)— мезенхимная;
специальная — нейрального происхождения и эпидермального происхождения;
Поперечнополосатая (исчерченная)— скелетная;
сердечная.
Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы. К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения — миоэпителиальные клетки слюнных, слезных, потовых и молочных желез. Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная — из миотомов сомитов, сердечная — из висцерального листка спланхнотома. Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и радужной оболочки является гладкомышечная клетка — миоцит; специальной мышечной ткани эпидермального происхождения — корзинчатый миоэпителиоцит; сердечной мышечной ткани — кардиомиоцит; скелетной мышечной ткани - мышечное волокно.
Орган слуха располагается в улитковом канале перепончатого лабиринта по всей его длине. На поперечном срезе этот канал имеет форму треугольника, обращенного к центральному костному стержню улитки. Улитковый канал имеет длину около 3,5 см, делает по спирали 2,5 витка вокруг центрального костного стержня (модиолуса) и слепо заканчивается на вершине. Канал заполнен эндолимфой. Снаружи от улиткового канала находятся пространства, заполненные перилимфой. Эти пространства называются лестницами. Сверху лежит вестибулярная лестница, снизу барабанная. Обе лестницы и улитковый канал окружены костью костной улитки. Стенка улиткового канала, обращенная к вестибулярной лестнице, называется вестибулярной мембраной. На ней находится рецепторный аппарат — кортиев орган. Основу этой стенки составляет базилярная мембрана, покрытая со стороны барабанной лестницы плоским эпителием. Базилярная мембрана состоит из тонких коллагеновых волокон слуховых струн. Эти струны натянуты между спиральной костной пластинкой, отходящей от модиолуса улитки, и спиральной связки, лежащей на наружной стенке улитки. Рецепторные клетки делятся на внутренние и наружные волосковые клетки. Внутренние клетки имеют грушевидную форму. Их ядра лежат в расширенной нижней части. На поверхности суженной апикальной части есть кутикула и проходящие через нее 30—60 коротких стереоцилий, расположенных линейно в три ряда. Волоски неподвижны. Наружные волосковые клетки имеют цилиндрическую форму. На апикальной поверхности этих клеток также имеется кутикула, через которую проходят стереоцилии. Спиральный ганглий находится в основании спиральной костной пластинки, отходящей от модиолуса, которая разделяется на две губы, образуя полость для ганглия. Ганглий построен по общему принципу чувствительных ганглиев. В отличие от спинальных ганглиев его образуют биполярные чувствительные нейроциты. Их дендриты через тоннель подходят к волосковым клеткам, образуя на них нейроэпителиальные синапсы. Аксоны биполярных клеток образуют улитковый нерв. Гистофизиология слуха. Звуки воспринимаются наружным ухом и передаются через слуховые косточки в овальное окно в барабанной и вестибулярной лестницах. При этом приходят в колебательные движения вестибулярная и базилярная мембраны, а, следовательно, и эндолимфа. В результате движения эндолимфы смещаются волоски сенсорных клеток, так как они прикреплены к текториальной мембране. Это приводит к возбуждению волосковых клеток, а через них — биполярных нейронов спирального ганглия, которые передают возбуждение в слуховые ядра ствола мозга, а затем в слуховую зону коры больших полушарий.
БИЛЕТ №8
1. Репродукция клеток: способы, морфологическая характеристика.
2. Мышечные ткани: классификация, источники развития, регенерация. Общие признаки и отличительные особенности разных видов мышечной ткани.
З. Сердце: источники развития, оболочки, тканевой состав. Кардиомиоциты: типы, строение, функции, отличия кардиомиоцитов предсердий и желудочков.
Различают два основных способа размножения клеток:
митоз (кариокенез) — непрямое деление клеток, которое присуще в основном соматическим клеткам;
мейоз или редукционное деление — характерно только для половых клеток.
амитоз или прямое деление клеток, которое осуществляется посредством перетяжки ядра и цитоплазмы, с образованием двух дочерних клеток или одной двуядерной, характерен только для старых и дегенерирующих клеток и является отражением патологии клетки.
Митоз подразделяется на 4 фазы:
1. Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходит: конденсация хроматина и образование хромосом, состоящих из двух хроматид, исчезновение ядрышка, распад кариолеммы на отдельные пузырьки. В цитоплазме отмечается редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления, репродукция зернистой эндоплазматической сети, а также уменьшение числа свободных и прикрепленных рибосом.
2. В метафазе происходит образование метафазной пластинки, или материнской звезды, неполное обособление сестринских хроматид друг от друга.
3. Анафаза характеризуется полным обособлением (расхождением) хроматид и образованием двух равноценных диплоидных наборов хромосом, расхождением хромосомных наборов к полюсам митотического веретена и расхождением самих полюсов.
4. Телофаза характеризуется деконденсацией хромосом каждого хромосомного набора, формированием из пузырьков ядерной оболочки, цитотомией перетяжкой двуядерной клетки на две дочерние самостоятельные клетки, появлением ядрышка в ядрах дочерних клеток.
Интерфаза подразделяется на 3 периода:
В G1 (пресинтетическом) периоде происходит усиленное формирование синтетического аппарата клетки — увеличение числа рибосом, а также количества различных видов РНК (информационной, рибосомальной, транспортных);
Для S-периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.
G2-период (постсинтетический, или премитотический) характеризуется усиленным синтезом информационной РНК, а также усиленным синтезом всех клеточных белков, но особенно белков-тубулинов, необходимых для последующего (в профазе митоза) формирования митотического веретена деления.
Клетки некоторых тканей (например, клетки печеночной ткани — гепатоциты), по выходе из митоза, вступают в так называемый G0-период, во время которого они выполняют свои многочисленные функции в течении многих лет, не вступая в S-период. Клетки относятся к редко делящимся клеткам, и их жизненный цикл подразделяется на митоз, J0-период, S-период, J2-период. Кроме рассмотренных двух основных способов размножения (репродукции) клеток различают еще третий способ — эндорепродукцию, который, хотя и не приводит к увеличению числа клеток, однако приводит к увеличению числа работающих структур и увеличению функциональной способности клетки. Именно поэтому он и называется эндорепродукцией.
Свойством сократимости обладают практически все виды клеток, благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5—7 нм), состоящих из сократительных белков - актина, миозина, тропомиозина и других. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы, и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго - и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов, а, следовательно, и сократительные процессы неодинаково выражены в разных типах клеток. Такие клетки или их производные образуют мышечные ткани, которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, по функциональным особенностям. Любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако, функционально ведущими элементами мышечных тканей являются мышечные клетки или мышечные волокна. Классификация мышечных тканей:
Гладкая (неисчерченная)— мезенхимная;
специальная — нейрального происхождения и эпидермального происхождения;
Поперечнополосатая (исчерченная)— скелетная;
сердечная.
Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы. К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения — миоэпителиальные клетки слюнных, слезных, потовых и молочных желез. Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная — из миотомов сомитов, сердечная — из висцерального листка спланхнотома. Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и радужной оболочки является гладкомышечная клетка — миоцит; специальной мышечной ткани эпидермального происхождения — корзинчатый миоэпителиоцит; сердечной мышечной ткани — кардиомиоцит; скелетной мышечной ткани - мышечное волокно.
Сердце — это своеобразный насос ритмического действия. Сердце является центральным органом крово - и лимфообращения. В строении его имеются черты как слоистого органа (имеет три оболочки), так и паренхиматозного органа: в миокарде можно выделить строму и паренхиму.
Функции сердца:
насосная функция — постоянно сокращаясь, поддерживает постоянный уровень артериального давления;
эндокринная функция — выработка натрийуретического фактора;
информационная функция — сердце кодирует информацию в виде параметров артериального давления, скорости кровотока и передает ее в ткани, изменяя обмен веществ.
Эндокард состоит из четырех слоев: эндотелиального, субэндотелиального, мышечно-эластического, наружного соединительнотканного. Эндотелиальный слой лежит на базальной мембране и представлен однослойным плоским эпителием. Субэндотелиальный слой образован рыхлой волокнистой неоформленной соединительной тканью. Мышечно-эластический слой образован гладкими миоцитами и сетью эластических волокон. Наружный соединительнотканный слой образован рыхлой волокнистой неоформленной соединительной. Он связывает эндокард с миокардом и продолжается в его строму. Миокард является самой мощной оболочкой сердца, он образован сердечной мышечной тканью, элементами которой являются клетки кардиомиоциты. Строма представлена прослойками рыхлой волокнистой неоформленной соединительной тканью, которые в норме выражены слабо.
Кардиомиоциты делятся на три вида:
основную массу миокарда составляют рабочие кардиомиоциты, они имеют прямоугольную форму и соединяются друг с другими с помощью специальных контактов — вставочных дисков. За счет этого они образуют функциональный синтиций;
проводящие или атипичные кардиомиоциты формируют проводящую систему сердца, которая обеспечивает ритмическое координированное сокращение его различных отделов. Эти клетки, являются генетически и структурно мышечными, в функциональном отношении напоминают нервную ткань, так как способны к формированию и быстрому проведению электрических импульсов.
Различают три вида проводящих кардиомиоцитов:
Р-клетки (пейсмекерные клетки) образуют синоаурикулярный узел. Они отличаются от рабочих кардиомиоцитов тем, что способны к спонтанной деполяризации и образованию электрического импульса.
промежуточные (переходные) кардиомиоциты предсердно-желудочкового узла передают возбуждение на рабочие кардиомиоциты, а также на третий вид атипичных кардиомиоцитов — клетки-волокна Пуркинье.
клетки-волокна — третий тип атипичных кардиомиоцитов, из которых построены пучок Гиса и волокна Пуркинье. Основная функция клеток-волокон - передача возбуждения от промежуточных атипичных кардиомиоцитов рабочим кардиомиоцитам желудочка. секреторные кардиомиоциты располагаются в предсердиях, основной функцией этих клеток является синтез натрийуретического гормона.
Эпикард — наружная оболочка сердца, он является висцеральным листком перикарда — сердечной сумки. Эпикард состоит из двух листков: внутреннего слоя, представленного рыхлой волокнистой неоформленной соединительной тканью, и наружного — однослойного плоского эпителия (мезотелий).
БИЛЕТ № 9
1. Ядро: структурные компоненты и функциональная роль.
2. Общая характеристика, классификация, источники развития и функциональное значение опорно - трофических тканей.
3. Почки: строение, тканевой состав, этапы развития, особенности кровоснабжения.
Нефрон: составные части; гистофизиология, типы нефронов. ЮГА почки.
Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки одни структурные элементы исчезают, другие существенно преобразуются.
Классификация структурных элементов интерфазного ядра:
хроматин;
ядрышко;
кариоплазма;
кариолемма.
Хроматин представляет собой вещество, хорошо воспринимающее краситель, откуда и произошло его название. Различают два вида хроматина:
эухроматин — рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;
гетерохроматин — компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.
По химическому строению хроматин состоит из:
дезоксирибонуклеиновой кислоты (ДНК) 40 %;
белков около 60 %;
рибонуклеиновой кислоты (РНК) 1 %.
Ядерные белки представлены формами:
щелочными или гистоновыми белками 80—85 %;
кислыми белками15—20%.
Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. Ядрышко — сферическое образование (1—5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Микроскопически в ядрышке различают:
фибриллярный компонент — локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);
гранулярный компонент — локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.
Кариоплазма состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина. Кариолемма — ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина. Кариолемма состоит из двух билипидных мембран — внешней и внутренней ядерной мембраны. В кариолемме имеются поры, диаметром 80—90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга. Просвет поры закрыт особым структурным образованием — комплексом поры, который состоит из фибриллярного и гранулярного компонента.
Функции ядер соматических клеток:
хранение генетической информации, закодированной в молекулах ДНК;
репарация (восстановление) молекул ДНК после их повреждения с помощью специальных репаративных ферментов;
редупликация (удвоение) ДНК в синтетическом периоде интерфазы;
передача генетической информации дочерним клеткам во время митоза;
реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтеза информационной, рибосомальной и транспортной РНК.
Функции ядер половых клеток:
хранение генетической информации;
передача генетической информации при слиянии женских и мужских половых клеток.
Ткань — исторически (филогенетически) сложившаяся система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения, и специализированная на выполнение определенных функций. В онтогенезе различают следующие этапы развития тканей:
I этап топической дифференцировки — презумптивные (предположительные) зачатки тканей оказываются в определенных зонах цитоплазмы яйцеклетки, а затем и зиготы;
II этап бластомерной дифференцировки — в результате дробления зиготы презумптивные зачатки тканей оказываются локализованными в разных бластомерах зародыша;
III этап зачатковой дифференцировки — в результате гаструляции презумптивные зачатки тканей локализованы в различных участках зародышевых листков;
IV этап гистогенез — процесс преобразования зачатков тканей в ткани в результате пролиферации, роста, индукции, детерминации, миграции и дифференцировки клеток.
Общепринятой является морфофункциональная классификация, в соответствии с которой выделяют четыре тканевых группы:
эпителиальные ткани;
соединительные ткани (ткани внутренней среды, опорно-трофические ткани);
мышечные ткани;
нервные ткани.
Регенерация — восстановление клеток, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.
Функции почек:
мочеобразование и мочевыделение, заключается в образовании мочи путем фильтрации плазмы крови и реабсорбции обратно в кровь полезных для организма продуктов обмена. С образующейся в почках мочой выделяются конечные продукты азотистого обмена и ксенобиотики: токсические, лекарственные вещества и другие;
поддержание кислотно-щелочного гомеостаза;
регуляция водно-солевого обмена;
регуляция артериального давления;
эндокринная функция и синтез биологически активных веществ — выработка ренина, эритропоэтина, эритрогенина, простагландинов, биогенных аминов, витамина D3 (кальцитрола), калликреина, ряда интерлейкинов;
участие в обмене веществ, в первую очередь, в обмене белков и углеводов;
участие в работе свертывающей противосвертывающей системы заключающейся в выработке урокиназы (активатора плазминогена, фактора фибринолиза), фактора активации тромбоцитов.
Развитие почек начинается на первом месяце эмбриогенеза и продолжается после рождения. Источником развития является промежуточная мезодерма — нефротом. В развитии почек выделяют три стадии: 1. Пронефрос развивается из 8—10 передних сегментов нефротома. 2. На втором месяце эмбриогенеза из 25 пар сегментов нефротома начинает развиваться первичная почка — мезонефрос. 3.Метанефрос (окончательная почка) начинает формироваться на 2-м месяце эмбриогенеза, а к 5-му — уже функционирует. Почка является паренхиматозным зональным органом. Снаружи она покрыта капсулой из плотной волокнистой соединительной ткани и серозной оболочки. От капсулы отходят прослойки рыхлой волокнистой неоформленной соединительной ткани, по которым идут сосуды. Корковое вещество занимает наружную, поверхностную часть почки и мозговыми лучами Феррейна разделяется на отдельные участки. Участки коркового вещества своей нижней частью внедряются между основаниями мозговых пирамид в мозговое вещество в виде колонок Бертини, отделяя пирамиды друг от друга. Мозговое вещество образовано мозговыми пирамидами. Их широкие основания повернуты в сторону коркового вещества, вершины пирамид называются сосочками. Они обращены к малым чашечкам, которые далее продолжаются в большие чашечки и затем в почечную лоханку. Гистофизиология нефрона. Структурно-функциональной единицей почки является нефрон. Он состоит из капсулы и переходящих друг в друга канальцев проксимальных извитого и прямого, дистальных извитого и прямого. В каждой почке около 2 млн. нефронов.
По локализации различают:
суперфициальные или подкапсульные (около 1 %);
корковые (85 %);
юкстамедуллярные, или околомозговые (около 14 %).
В нефроне выделяют:
капсулу (вместе с сосудистым клубочком формирует почечное тельце Мальпиги);
проксимальный извитой отдел;
проксимальный прямой отдел;
тонкий отдел;
дистальный извитой отдел;
дистальный прямой отдел.
В состав коркового вещества входят следующие структуры:
почечные тельца Мальпиги;
проксимальные извитые канальцы;
дистальные извитые канальцы.
В корковом веществе залегают также компоненты юкстагломерулярного аппарата. В мозговом веществе находятся: проксимальные прямые канальцы, тонкие канальцы, дистальные прямые канальцы, а также в мозговом веществе находятся собирательные трубочки. Юкстагломерулярные нефроны имеют очень длинный тонкий сегмент, который состоит из нисходящей и восходящей частей (петля Генле). Они глубоко спускаются в мозговое вещество, в котором лежат также прямые проксимальные и прямые дистальные канальцы. Капсула нефрона, имеющая вид двустенной чаши, и входящие в нее капилляры первичной капиллярной сети образуют почечное тельце Мальпиги. Проксимальный каналец выполняет следующие функции:
облигатное (обязательное) обратное всасывание из первичной мочи в кровь белков и глюкозы;
факультативное всасывание воды и минеральных веществ;
секреция некоторых органических кислот и оснований;
экскреция некоторых экзогенных веществ;
биосинтез кальцитриола.
Тонкий отдел нефрона. В корковых нефронах этот отдел имеет нисходящую часть и залегает в основном в мозговых лучах и наружных отделах мозгового вещества, тогда как в юкстагломерулярных нефронах в нем имеются нисходящая и восходящая части. Тонкий отдел участвует в формировании петли Генле. Его стенка выстлана плоскими клетками, которые имеют глубокие складки цитолеммы. Функции:
пассивная реабсорбция воды из первичной мочи;
в восходящей части тонкого отдела юкстагломерулярных нефронов, напротив, непроницаемая для воды, помимо этого происходит диффузия солей.
Дистальный отдел делится на дистальный прямой и дистальный извитой канальцы. Дистальный прямой каналец образует восходящее колено петли и входит в состав мозгового вещества и мозговых лучей. Дистальный извитой каналец, многократно извиваясь в корковом веществе, подходит к почечному тельцу, образуя плотное пятно, а затем впадает в собирательную трубку. Дистальный отдел имеет хорошо выраженный просвет, образован кубическими или цилиндрическими клетками. Функции:
в дистальном отделе происходит дополнительная реабсорбция электролитов из мочи. Эти процессы идут активно, то есть против градиента концентрации, с затратой энергии;
в клетках дистального отдела синтезируется калликреин.
Кровоснабжение почки. Сосуды почки имеют характерную архитектонику в связи с наличием двух основных видов нефронов: корковых и юкстамедуллярных. Кровь поступает в почку через почечную артерию, которая делится на междолевые ветви, достигающие границы коркового и мозгового вещества. Здесь междолевые артерии разделяются на несколько стволов, идущих параллельно указанной границе. В составе юкстагломерулярного аппарата выделяют следующие виды клеток: 1. юкстагломерулярные клетки — это клетки средней оболочки приносящей и выносящей артериол, по происхождению мышечные, по функции секреторные. Они содержат белоксинтезирующий аппарат и гранулы ренина.. 2. Клетки плотного пятна — это клетки в количестве 20—40 находятся в участке стенки дистального канальца, лежащего между приносящей и выносящей артериолами. Базальная мембрана в этом месте очень тонкая или полностью отсутствует. 3.Юкставаскулярные клетки лежат в треугольном пространстве между приносящей, выносящей артериолами и клетками плотного пятна, формируя так называемую подушку.
БИЛЕТ № 10
1. Реакция клеток на внешние воздействия.
2. Кроветворение (гемоцитопоэз): сущность, этапы, виды. Эмбриональный этап кроветворения.
З. Матка, яйцеводы, влагалища: строение, источники развития, функции. Овариально-менструальный цикл: фазы, регуляция. Возрастные изменения женской половой системы.
Реакция клеток на внешние воздействия. При воздействии на организм различных неблагоприятных факторов в строении различных структур проявляются различные изменения. В зависимости от факторов воздействия изменения клеточных структур проявляются неодинаково в клетках разных органов и тканей. Изменения в ядре — набухание ядра и сдвиг его на периферию клетки, расширение перинуклеарного пространства, образование инвагинаций кариолеммы (впячивание внутрь ядра его оболочки), конденсация хроматина. К патологическим изменениям ядра относят:
пикноз — сморщивание ядра и коагуляция (уплотнение) хроматина;
кариорексис — распад ядра на фрагменты;
кариолизис — растворение ядра.
Изменения в цитоплазме — уплотнение, а затем набухание митохондрий, дегрануляция зернистой эндоплазматической сети (слущивание рибосом), а затем и фрагментация канальцев на отдельные вакуоли, расширение цистерн, а затем распад на вакуоли пластинчатого комплекса Гольджи, набухание лизосом и активация их гидролаз, увеличение числа аутофагосом, в процессе митоза — распад веретена деления и развитие патологических митозов. Изменения цитоплазмы могут быть обусловлены структурными изменениями плазмолеммы, что приводит к усилению ее проницаемости и гидратации гиалоплазмы, нарушением обмена веществ, что сопровождается снижением содержания АТФ, снижением расщепления или увеличением синтеза включений (гликогена, липидов) и их избыточном накоплении. После устранения неблагоприятных воздействий на организм реактивные (адаптивные) изменения структур исчезают и морфология клетки восстанавливается. При развитии патологических (дезадаптивных) изменений даже после устранения неблагоприятных воздействий структурные изменения нарастают и клетка погибает.
Кроветворение (гемоцитопоэз) процесс образования форменных элементов крови. Различают два вида кроветворения:
миелоидное кроветворение:
эритропоэз;
гранулоцитопоэз;
тромбоцитопоэз;
моноцитопоэз.
лимфоидное кроветворение:
Т-лимфоцитопоэз;
В-лимфоцитопоэз.
Кроме того, гемопоэз подразделяется на два периода:
эмбриональный;
постэмбриональный
.
Эмбриональный период гемопоэза приводит к образованию крови как ткани и потому представляет собой гистогенез крови. Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови как ткани. Эмбриональный период гемопоэза осуществляется поэтапно, сменяя разные органы кроветворения. В соответствии с этим эмбриональный гемопоэз подразделяется на три этапа:
желточный;
гепато-тимусо-лиенальный;
медулло-тимусо-лимфоидный.
Желточный этап осуществляется в мезенхиме желточного мешка, начиная со 2—3-ей недели эмбриогенеза, с 4-ой недели он снижается и к концу 3-го месяца полностью прекращается. Наиболее важными моментами желточного этапа являются:
образование стволовых клеток крови;
образование первичных кровеносных сосудов.
Гепато-тимусо-лиенальный этап гемопоэза осуществляется в начале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение, начиная с 5-ой недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Медулло-тимусо-лимфоидный этап кроветворения. Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, то есть является универсальным кроветворным органом. Постэмбриональный период кроветворения — осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфатических узлах, миндалинах, лимфоидных фолликулах). Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

Яйцеводы состоят из воронковой, ампулярной, истмической и маточной частей. Они являются органами слоистого типа, стенка образована тремя оболочками: слизистой, мышечной и серозной (в маточной части серозная оболочка отсутствует). В собственной пластинке встречаются децидуальные клетки — крупные полигональные клетки богатые гликогеном. Перистальтические сокращения мышечной оболочки обуславливают продвижение яйцеклетки по яйцеводу к матке. Наружная оболочка - серозная, состоит из мезотелия и слоя рыхлой волокнистой неоформленной соединительной ткани.
Функции яйцеводов:
захват яйцеклетки и обеспечение передвижения ее в полость матки;
секреторная функция, маточные трубы вырабатывают слизь, которая способствует передвижению яйцеклетки, эпителиоциты секретируют простагландины;
яйцеводы обеспечивают ранние этапы эмбриогенеза.
Функции матки:
обеспечение развития плода;
обеспечение процесса родов;
секреторная функция — выработка слизистого секрета;
участие в образовании плаценты (материнской части);
эндокринная функция — выработка простагландинов, релаксина, половых гормонов.
Матка — орган слоистого типа, состоящий из трех оболочек. Эти оболочки имеют специфические названия: слизистая называется эндометрием, мышечная — миометрием, серозная — периметрием. Так как миометрий имеет большую толщину, в нем можно выделить паренхиму (совокупность миоцитов) и строму — прослойки рыхлой волокнистой неоформленной соединительной ткани. Периметрий образован мезотелием и пластинкой рыхлой волокнистой соединительной ткани. Вокруг шейки матки имеется скопление жировой ткани, которое называется параметрием. Миометрий хорошо развит, имеет толщину до 1,5 см, которая еще больше возрастает при беременности. Эндометрий неподвижно соединяется с миометрием, так как подслизистой оболочки нет. Эндометрий состоит из двух слоев: эпителия и собственной пластинки слизистой оболочки. Эпителий — однослойный цилиндрический, содержит те же типы клеток, что и эпителий яйцеводов: секреторные и мерцательные. Менструальный цикл. В матке, как и в яичнике, происходят последовательные циклические изменения структуры и функции. В наибольшей степени они наблюдаются в эндометрии, однако затрагивают и миометрий. Эти циклические преобразования называются менструальным циклом. Усредненный менструальный цикл продолжается 28 дней. Он подразделяется на три фазы: менструальную (фаза десквамации), постменструальную (фаза регенерации) и предменструальную (фаза секреции). Иногда постменструальную фазу называют фолликулиновой, а предменструальную лютеиновой. Первая фаза — менструальная. Менструальная функция характеризуется разрушением и отторжением функционального слоя. Это происходит по следующим причинам. Перед менструацией происходит снижение секреции прогестерона желтым телом. К этому снижению уровня прогестерона очень чувствительны спиралевидные артерии функционального слоя, которые отвечают на него спастическими сокращениями. Наступает ишемия функционального слоя, и он подвергается некрозу (омертвлению). Менструальная фаза длится 3—5 дней. Вторая фаза — постменструальная или фаза регенерации, пролиферации. Характеризуется восстановлением функционального слоя. В начале этой фазы сохранившийся эпителий маточных желез начинается митотически делится и мигрирует на обнаженную соединительную ткань оставшейся собственной пластинки эндометрия. В соединительной ткани и сосудах также активируются пролиферативные процессы. В результате в течение 10 дней после менструации (до 14-го дня цикла) происходит восстановление функционального слоя. Начинается вырабатываться прогестерон, под влиянием которого начинается третья фаза — предменструальная или фаза секреции. В эту фазу эндометрий резко утолщается и готовится к восприятию зародыша. Его железы резко увеличиваются в размерах, приобретают извитую форму и начинают секретировать слизь (отсюда название фазы). В эндометрии в большом количество накапливаются децидуальные клетки. Если происходит оплодотворение, то секреторная фаза длится 6—8 недель. В это время эндометрий участвует в образовании материнской части плаценты. Если же оплодотворения не наступает, то секреторная фаза длится около 14 дней и заканчивается следующей менструацией. Цикличность функционирования женской половой системы, как уже отмечалось, обеспечивается периодически усиливающейся секрецией лютропина и фолллитропина гипофизом. В свою очередь, эта цикличность выделения гормонов гипофизом обусловлена циклическим функционированием гипоталамуса — цикличностью выделения им гормонов гонадолиберинов и гонадостатинов.
БИЛЕТ № 11
1. Гаструляция: способы, фазы, хронология, зародышевые листки.
2.Поперечнополосатая скелетная мышечная ткань: развитие, структур но-
функциональная единица, ее строение, типы, иннервация, структурные основы сокращения. Мышца как орган.
40379653289303. Печень: источники развития, тканевой состав, структурно-функциональные единицы, особенности кровоснабжения. Строение классической дольки. Регенерация. Возрастные особенности. Строение и функциональная роль желчного пузыря.
Гаструляция — сложный процесс морфогенетических изменений, сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате чего образуются зародышевые листки (эктодерма, мезодерма и энтодерма) — источники зачатков тканей и органов. В эмбриобласте на 6—7 сутки после оплодотворения протекает I фаза гаструляции. У человека гаструляция осуществляется 2-я процессами: деляминацией и иммиграцией. Эмбриобласт расслаивается на эпибласт — слой цилиндрических клеток, ограничивающий вместе с трофобластом полость амниона, и гипобласт — слой кубических клеток, обращенных к бластоцелю. Эпибласт и гипобласт вместе образуют двухслойный зародышевый диск или щиток. Из зародышевого щитка в полость бластоцисты выселяются клетки внезародышевой паренхимы, часть из этих клеток оттесняется к цитотрофобласту, при этом образуется хорион. В дальнейшем на месте двухслойного зародышевого диска путем его инвагинации, миграции и пролиферации клеток развиваются первичные зародышевые листки: эктодерма, мезодерма и энтодерма. Из эктодермы образуются:
кожный эпителий,
нервная система,
органы чувств,
передний и задний отделы кишечной трубки.
У позвоночных из энтодермы развивается слизистая оболочка всего кишечника и связанные с ним железы (печень, поджелудочная железа и др.).
Структурно-функциональной единицей поперечно полосатой мышечной ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 мм до 40 мм (а по некоторым данным до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой — сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний — является типичной плазмолеммой, а наружный представляет собой тонкую соединительнотканную пластинку — базальную пластинку. В узкой щели между плазмолеммой и базальной пластинкой располагаются мелкие клетки — миосателлиты. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:
миосимпласта;
клеток миосателиттов;
базальной пластинки.
Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительнотканные элементы мышцы. Миосимпласт является основным структурным компонентом мышечного волокна, как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток — миобластов. В саркоплазме содержатся включения гликогена и миоглобина, аналога гемоглобина эритроцитов. Отличительной особенностью миосимпласта является также наличие в нем специализированных органелл, к которым относятся:
миофибриллы;
саркоплазматическая сеть;
канальцы Т-системы.
Миофибриллы — сократительные элементы миосимпласта — в большом количестве (до 1000—2000) локализуются в центральной части саркоплазмы миосимпласта. Они объединяются в пучки, между которыми содержатся прослойки саркоплазмы. По своему строению миофибриллы неоднородны по протяжению и подразделяются на темные (анизотропные) или А-диски, и светлые (изотропные) или I-диски. Темные и светлые диски всех миофибрилл располагаются на одном уровне и обуславливают поперечную исчерченность всего мышечного волокна. Процесс сокращения осуществляется посредством взаимодействия актиновых и миозиновых филаментов и образования между ними актин-миозиновых мостиков. Для развития этого процесса необходимы три условия:
наличие энергии в виде АТФ;
наличие ионов кальция;
наличие биопотенциала.
В мышечной ткани различают два основных типа мышечных волокон, между которыми имеются промежуточные, отличающиеся между собой, прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени — структурными особенностями. Волокна I типа — красные мышечные волокна — характеризуются, прежде всего, высоким содержанием в саркоплазме миоглобина (что и придает им красный цвет), большим числом саркосом, высокой активностью в них сукцинатдегидрогеназы (СДГ), высокой активностью АТФ-азы медленного типа. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью. Волокна II типа — белые мышечные волокна — характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-азы быстрого типа. Функционально характеризуются способностью быстрого, сильного, но непродолжительного сокращения. Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов и нервов. Мышца — это анатомическое образование, основным и функционально ведущим структурным компонентом, которого является мышечная ткань. Волокнистая соединительная ткань образует прослойки в мышце: эндомизий, перимизий и эпимизий, а также сухожилия. Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна. Коллагеновые и ретикулярные волокна эндомизия проникают в базальную пластинку мышечного волокна, тесно с ним связаны и передают силы сокращения волокна на точки скелета. Перимизий окружает несколько мышечных волокон, собранных в пучки. В нем содержатся более крупные сосуды (артерии и вены, а также артериоло-венулярные анастомозы). Эпимизий окружает всю мышцу, способствует функционированию мышцы, как органа. Любая мышца содержит все типы мышечных волокон в различном количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные волокна, в мышцах, обеспечивающих движение пальцев и кистей, преобладают белые или переходные волокна.
Функции печени:
депонирование, в печени депонируется гликоген, жирорастворимые витамины (А, D, Е, К). Сосудистая система печени способна в довольно больших количествах депонировать кровь;
участие во всех видах обмена веществ: белковом, липидном (в том числе в обмене холестерина), углеводном, пигментном, минеральном и др.
дезинтоксикационная функция;
барьерно-защитная функция;
синтез белков крови: фибриногена, протромбина, альбуминов;
участие в регуляции свертывания крови путем образования белков — фибриногена и протромбина;
секреторная функция — образование желчи;
гомеостатическая функция, печень участвует в регуляции метаболического, антигенного и температурного гомеостаза организма;
кроветворная функция;
эндокринная функция.
Печень — паренхиматозный дольчатый орган. Ее строма представлена:
капсулой из плотной волокнистой соединительной ткани (капсула Глиссона), которая срастается с висцеральным листком брюшины;
прослойками рыхлой волокнистой соединительной ткани, которые делят орган на дольки.
Паренхима печени представлена совокупностью гепатоцитов, формирующих классическую дольку. Классическая долька — структурно-функциональная единица печени. Она имеет форму шестигранной призмы. По периферии дольки находятся триады или портальные тракты, в состав которых входят междольковые артерия, вена и желчный проток, а также лимфососуды и нервные стволы (в силу этого некоторые исследователи предлагают называть эти структуры не триадами, а пентодами). В центре дольки лежит центральная вена безмышечного типа. Печень получает кровь из двух сосудистых систем: печеночной артерии и воротной вены. По печеночной артерии в печень поступает около 20 % всей крови. Она доставляет органу кислород. Из системы воротной вены печень получает до 80 % крови. Это кровь от непарных органов брюшной полости (кишечника, селезенки, поджелудочной железы), богатая питательными веществами, гормонами, биологически активными веществами, антителами и веществами, подлежащими детоксикации.
Функции желчного пузыря:
депонирование желчи;
концентрирование желчи путем всасывания ее жидкого компонента;
секреция слизи.
Желчный пузырь слоистый орган, состоящий из слизистой, мышечной и серозной (адвентициальной) оболочек. Слизистая оболочка образована однослойным призматическим эпителием и собственной пластинкой из рыхлой волокнистой соединительной ткани. Эпителиоциты, являясь секреторными клетками, образуют и выделяют на поверхность эпителия слизь, защищающую его от агрессивных компонентов желчи. В связи с этим в клетках обнаруживаются секреторные гранулы. Апикальная цитолемма формирует многочисленные микроворсинки. Цитолемма латеральной поверхности эпителиоцитов содержит большое количество натриевых насосов, благодаря деятельности которых создается градиент натрия и калия между межклеточными пространствами и просветом пузыря. Это обеспечивает пассивный транспорт воды из пузырной желчи в межклеточные пространства и далее в гемокапилляры, что ведет к концентрированию желчи. Слизистая оболочка образует множество складок. В области шейки пузыря в собственной пластинке лежат альвеолярно-трубчатые железы, вырабатывающие слизь. Подслизистая оболочка отсутствует. Мышечная оболочка представлена пучками гладких миоцитов, формирующими два нерезких слоя (внутренний циркулярный и наружный продольный). Циркулярные пучки миоцитов преобладают. Наружная оболочка со стороны печени адвентициальная, со стороны брюшной полости серозная.
БИЛЕТ № 12
1. Репродукция клеток: способы, морфологическая характеристика.
2. Нервная ткань: тканевые компоненты, функциональная роль, источники развития. Структурная и структурно-функциональная единицы. Строение и классификация нейроцитов.
З. Поджелудочная железа: источники развития, строение экзокринного и эндокринного отделов. Типы инсулярных клеток и их гормоны. Возрастные изменения.
Различают два основных способа размножения клеток:
митоз (кариокенез) — непрямое деление клеток, которое присуще в основном соматическим клеткам;
мейоз или редукционное деление — характерно только для половых клеток.
амитоз или прямое деление клеток, которое осуществляется посредством перетяжки ядра и цитоплазмы, с образованием двух дочерних клеток или одной двуядерной, характерен только для старых и дегенерирующих клеток и является отражением патологии клетки.
Митоз подразделяется на 4 фазы:
1. Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходит: конденсация хроматина и образование хромосом, состоящих из двух хроматид, исчезновение ядрышка, распад кариолеммы на отдельные пузырьки. В цитоплазме отмечается редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления, репродукция зернистой эндоплазматической сети, а также уменьшение числа свободных и прикрепленных рибосом.
2. В метафазе происходит образование метафазной пластинки, или материнской звезды, неполное обособление сестринских хроматид друг от друга.
3. Анафаза характеризуется полным обособлением (расхождением) хроматид и образованием двух равноценных диплоидных наборов хромосом, расхождением хромосомных наборов к полюсам митотического веретена и расхождением самих полюсов.
4. Телофаза характеризуется деконденсацией хромосом каждого хромосомного набора, формированием из пузырьков ядерной оболочки, цитотомией перетяжкой двуядерной клетки на две дочерние самостоятельные клетки, появлением ядрышка в ядрах дочерних клеток.
Интерфаза подразделяется на 3 периода:
В G1 (пресинтетическом) периоде происходит усиленное формирование синтетического аппарата клетки — увеличение числа рибосом, а также количества различных видов РНК (информационной, рибосомальной, транспортных);Для S-периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.
G2-период (постсинтетический, или премитотический) характеризуется усиленным синтезом информационной РНК, а также усиленным синтезом всех клеточных белков, но особенно белков-тубулинов, необходимых для последующего (в профазе митоза) формирования митотического веретена деления.
Клетки некоторых тканей (например, клетки печеночной ткани — гепатоциты), по выходе из митоза, вступают в так называемый G0-период, во время которого они выполняют свои многочисленные функции в течении многих лет, не вступая в S-период. Клетки относятся к редко делящимся клеткам, и их жизненный цикл подразделяется на митоз, J0-период, S-период, J2-период. Кроме рассмотренных двух основных способов размножения (репродукции) клеток различают еще третий способ — эндорепродукцию, который, хотя и не приводит к увеличению числа клеток, однако приводит к увеличению числа работающих структур и увеличению функциональной способности клетки. Именно поэтому он и называется эндорепродукцией.
Значение нервной ткани в организме определяется основными свойствами нервных клеток (нейронов) воспринимать раздражение, приходить в состояние возбуждения, вырабатывать импульс и передавать его. Нервная ткань осуществляет регуляцию деятельности тканей и органов, их взаимосвязь и связь с окружающей средой. Нервная ткань состоит из нейроцитов, выполняющих специфическую функцию, и нейроглии, обеспечивающей существование и специфическую функцию нервных клеток. Нервная ткань развивается из дорсального утолщения эктодермы — нервной пластинки.
В зависимости от функции нейроны делятся на:
рецепторные (чувствительные, афферентные) генерируют нервный импульс под влиянием различных воздействий внешней или внутренней среды организма;вставочные (ассоциативные) осуществляют различные связи между нейронами;
эффекторные (эфферентные, двигательные) передают возбуждение на ткани рабочих органов, побуждая их к действию.
По количеству отростков нейроны делятся на три группы:
униполярные — клетки с одним отростком;
биполярные — клетки с двумя отростками;
мультиполярные — клетки, имеющие три и больше отростков.
Мультиполярные клетки наиболее распространены у млекопитающих животных и человека. Из многих отростков такого нейрона один представлен нейритом, тогда как все остальные являются дендритами. Биполярные клетки имеют два отростка — нейрит и дендрит. Истинные биполярные клетки в теле человека встречаются редко. К ним относится часть клеток сетчатки глаза, спирального ганглия внутреннего уха и некоторые другие. Псевдоуниполярные нейроны - нейрит и дендрит этих клеток начинается с общего выроста тела, создающего впечатление одного отростка, с последующим Т-образным делением его. Истинных униполярных клеток, то есть клеток с одним отростком — нейритом, в теле человека нет. Секреторные нейроны. Способность синтезировать и секретировать биологически активные вещества, в частности медиаторы, свойственная всем нейроцитам. Секреторные нейроны имеют ряд специфических морфологических признаков:
секреторные нейроны — это крупные нейроны;
в цитоплазме нейронов и в аксонах находятся различной величины гранулы секрета — нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды;
многие секреторные нейроны имеют ядра неправильной формы, что свидетельствует об их высокой функциональной активности.
Функции поджелудочной железы:
экзокринная функция заключается в секреции панкреатического сока — смеси пищеварительных ферментов, поступающих в двенадцатиперстную кишку и расщепляющих все компоненты химуса;
эндокринная функция состоит в выработке ряда гормонов.
Поджелудочная железа — паренхиматозный дольчатый орган. Строма представлена:
капсулой, которая сливается с висцеральной брюшиной;
отходящими от капсулы трабекулами.
И тонкая капсула, и трабекулы образованы рыхлой волокнистой соединительной тканью. Трабекулы делят железу на дольки. В прослойках рыхлой волокнистой соединительной ткани находятся выводные протоки экзокринной части железы, сосуды, нервы, интрамуральные ганглии, пластинчатые тельца Фатер-Пачини. Паренхима образована совокупностью ацинусов, выводных протоков и островков Лангерганса. Каждая долька состоит из экзокринной и эндокринной частей Экзокринная часть поджелудочной железы представляет собой сложную альвеолярно-трубчатую белковую железу. Структурно-функциональной единицей экзокринной части является ацинус. Он образован 8—12 ацинозными клетками (ациноцитами) и центроацинозными клетками (центроациноцитами). Функция ациноцитов — выработка пищеварительных ферментов. Активация ферментов, секретируемых ациноцитами, в норме происходит только в двенадцатиперстной кишке под влиянием активаторов. Эндокринная часть железы. Структурно-функциональной единицей эндокринной части поджелудочной железы является островок Лангерганса. Он отделен от ацинусов рыхлой волокнистой неоформленной соединительной тканью. Островок состоит из клеток инсулоцитов, между которыми лежит рыхлая волокнистая соединительная ткань с гемокапиллярами фенестрироваиного типа. Инсулоциты различаются по способности окрашиваться красителями: Функцией В-инсулоцитов является выработка инсулина, снижающего в крови уровень глюкозы и стимулирующего ее поглощение клетками организма. В печени инсулин стимулирует образование из глюкозы гликогена. При недостатке выработки инсулина формируется сахарный диабет. А-клетки или ацидофильные (20—25 % всех клеток островка) секретируют гормон глюкагон. D-клетки составляют около 5 % эндокринных клеток островка. Содержат умеренно плотные гранулы без светлого ободка. В гранулах содержится гормон соматостатин, угнетающий функцию А, В-клеток островков и ациноцитов. Он же обладает митозингибирующим действием на различные клетки. D1-клетки содержат гранулы с узким ободком. Вырабатывают вазоинтестинальный полипептид, понижающий артериальное давление и стимулирующий выработку панкреатического сока. Количество этих клеток невелико. РР-клетки (2—5 %) располагаются по периферии островков, иногда могут встречаться и в составе экзокринной части железы. Содержат гранулы различной формы, плотности и величины. Клетки вырабатывают панкреатический полипептид, угнетающий внешнесекреторную активность поджелудочной железы.
БИЛЕТ №13
1. Включения: определение, классификация, значение. Физико-химические свойства гиалоплазмы и ее значение в жизнедеятельности клетки.
2. Миелоидное кроветворение, его разновидности. Эритроцитарный дифферон.
3. Надпочечники: части, источники развития, строение, гормоны, регуляция, возрастные особенности строения.
Включения — непостоянные структурные компоненты цитоплазмы. В процессе жизнедеятельности в некоторых клетках накапливаются случайные включения:
медикаментозные,
частички угля,
кремния и так далее.
Трофические включения — лецитин в яйцеклетках, гликоген, липиды, имеются почти во всех клетках. Секреторные включения — секреторные гранулы в секретирующих клетках (зимогенные гранулы в ацинозных клетках поджелудочной железы, секреторные гранулы в эндокринных железах и другие). Экскреторные включения — вещества, подлежащие удалению из организма (например, гранулы мочевой кислоты в эпителии почечных канальцев). Пигментные включения — меланин, гемоглобин, липофусцин, билирубин и другие. Эти включения имеют определенный цвет и придают окраску всей клетке (меланин — черный или коричневый, гемоглобин — желто-красный и так далее). Необходимо отметить, что пигментные включения характерны только для определенных типов клеток (меланин содержится в меланоцитах, гемоглобин — в эритроцитах). Однако, липофусцин может накапливаться во многих типах клеток обычно при их старении. Его наличие в клетках свидетельствует о их старении и функциональной неполноценности.
Кроветворение (гемоцитопоэз) процесс образования форменных элементов крови. Миелоидное кроветворение:
эритропоэз;
гранулоцитопоэз;
тромбоцитопоэз;
моноцитопоэз.
В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают 6 классов клеток:
1 класс — стволовые клетки;
2 класс — полустволовые клетки;
3 класс — унипотентные клетки;
4 класс — бластные клетки;
5 класс — созревающие клетки;
6 класс — зрелые форменные элементы.
Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образуют его дифферон или гистологический ряд. Например, эритроцитарный дифферон составляет: стволовая клетка, полустволовая клетка предшественница миелопоэза, унипотентная эритропоэтинчувствительная клетка, эритробласт, созревающие клеткипронормоцит, базофильный нормоцит, полихроматофильный нормоцит, оксифильный нормоцит, ретикулоцит, эритроцит. В процессе созревания эритроцитов в 5 классе происходит: синтез и накопление гемоглобина, редукция органелл, редукция ядра. В норме пополнение эритроцитов осуществляется в основном за счет деления и дифференцировки созревающих клеток пронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения носит название гомопластического кроветворения. При выраженной кровопотери пополнение эритроцитов обеспечивается не только усиленным делением созревающих клеток, но и клеток 4, 3, 2 и даже 1 классов гетеропластический тип кроветворения, предшествующий собой уже репаративную регенерацию крови.
Функции надпочечников:
выработка минералокортикоидов (альдостерона, дезоксикортикостерона ацетата и других), регулирующих водно-солевой обмен, а также активирующих воспалительные и иммунные реакции. Минералокортикоиды стимулируют реабсорбцию натрия почками, что ведет к задержке в организме воды и повышению артериального давления;
выработка глюкокортикоидов (кортизола, гидрокортизона и других). Эти гормоны повышают уровень глюкозы в крови за счет синтеза ее из продуктов распада жиров и белков. Гормоны подавляют воспалительные и иммунные реакции, что используется в медицине для лечения аутоиммунных, аллергических реакций и так далее;
выработка половых гормонов, в основном андрогенов (дегидроэпиандростерона и андростендиона), которые имеют слабо выраженный андрогенный эффект, но выделяясь при стрессе, стимулируют рост мускулатуры. Выработку и секрецию андрогенов стимулирует адренокортикотропный гормон;
мозговое вещество продуцирует катехоламины — гормон адреналин и нейромедиатор норадреналин, которые вырабатываются при стрессе.
Надпочечники являются парными паренхиматозными органами зонального типа. Снаружи покрыты капсулой из плотной волокнистой неоформленной ткани, от которой отходят прослойки вглубь органа — трабекулы. В капсуле находятся гладкие миоциты, вегетативные ганглии, скопления жировых клеток, нервы, сосуды. Капсула и прослойки рыхлой волокнистой неоформленной соединительной ткани образуют строму органа. Паренхима представлена совокупностью клеток: кортикоцитов в корковом веществе и хромаффиноцитов в мозговом. Корковое вещество состоит из нескольких зон:
субкапсулярная зона образована мелкими малодифференцированными кортикоцитами, играющими роль камбия для коры;
клубочковая зона составляет 10 % коры надпочечников. Образована небольшими кортикоцитами, формирующими клубочки. В них умеренно развита гладкая эндоплазматическая сеть место синтеза кортикостероидных гормонов. Функции клубочковой зоны выработка минералокортикоидов, а если говорить точнее, то в этой зоне происходит только завершающий этап биосинтеза минералокортикоидов из их предшественника кортикостерона, который поступает сюда из пучковой зоны;
пучковая зона — это наиболее выраженная зона коры надпочечников. Образована оксифильными кортикоцитами крупных размеров, формирующими тяжи и пучки. Между пучками в тонких прослойках рыхлой волокнистой соединительной ткани лежат синусоидные капилляры. Различают два вида пучковых кортикоцитов: темные и светлые. Это один тип клеток, находящихся в разных функциональных состояниях. Функция пучковой зоны — выработка глюкортикоидов (преимущественно кортизола и кортизона).
сетчатая зона занимает около 10—15 % всей коры. Состоит из мелких клеток, которые лежат в виде сети. В сетчатой зоне образуются глюкортикоиды и мужские половые гормоны, в частности, андростендион и дегидроэпиандростерон, а также в небольшом количестве женские половые гормоны (эстрогены и прогестерон). Андрогены коры надпочечников, в отличие от андрогенов половых желез, обладают слабо выраженным андрогенным эффектом, однако их анаболический эффект на скелетную мускулатуру сохранен, что имеет важное адаптивное значение.
Мозговое вещество отделяется от коркового тонкой капсулой из рыхлой волокнистой соединительной ткани. Оно образовано скоплением клеток хромаффиноцитов, которые хорошо окрашиваются солями хрома. Эти клетки делятся на два вида:
крупные светлые клетки-продуценты гормона адреналина (А-клетки), содержащие в цитоплазме умеренно электронноплотные гранулы;
темные мелкие хроматоффиноциты (НА-клетки), содержащие большое число плотных гранул, они секретируют норадреналин.
БИЛЕТ № 14
1. Органеллы: определение, классификация. Строение и функциональная роль эндоплазматической сети и пластинчатого комплекса.
2. Гладкая мышечная ткань: топография, генез, морфофункциональные особенности, регенерация.
3. Головной мозг: отделы, серое и белое вещество, тканевой состав, развитие. Кора полушарий мозга: цито- и миелоархитектоника, понятие о модуле (вертикальные колонки). Возрастные особенности строения коры.
Классификация органелл: общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки.
Они в свою очередь делятся на:
мембранные органеллы: митохондрии, эндоплазматическая сеть, пластинчатый комплекс, лизосомы, пероксисомы;
немембранные органеллы: рибосомы, клеточный центр, микротрубочки, микрофибриллы, микрофиламенты.
Специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток. Специальные органеллы делятся на:
цитоплазматические — миофибриллы, нейрофибриллы, тонофибриллы;
органеллы клеточной поверхности — реснички, жгутики.
Общая характеристика мембранных органелл
Все разновидности мембранных органелл имеют общий принцип строения:
они представляют собой замкнутые и изолированные участки в гиалоплазме (компарменты), имеющие свою внутреннюю среду;
стенка их состоит из билипидной мембраны и белков, подобно плазмолемме.
Однако билипидные мембраны органелл имеют и некоторые особенности:
толщина билипидных мембран органелл меньше (7 нм), чем в плазмолемме (10 нм);
мембраны отличаются по количеству и качеству белков, встроенных в мембраны.
Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы. Различают две разновидности эндоплазматической сети:
зернистая (гранулярная или шероховатая);
незернистая или гладкая.
На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы. Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы — диктиосомы. Функции пластинчатого комплекса:
транспортная — выводит из клетки, синтезированные в ней продукты;
конденсация и модификация веществ, синтезированных в зернистой эндоплазматической сети;
образование лизосом (совместно с зернистой эндоплазматической сетью);
участие в обмене углеводов;
синтез молекул, образующих гликокаликс цитолеммы;
синтез, накопление и выведение муцина (слизи);
модификация мембран, синтезированных в эндоплазматической сети и превращение их в мембраны плазмолеммы.
Подавляющая часть гладкой мышечной ткани организма (внутренних органов и сосудов) имеет мезенхимальное происхождение. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит. Представляет собой чаще всего веретенообразную клетку (длиной 20—500 мкм, диаметром 5—8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр. Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофиламентов вдоль миозиновых. Миоциты окружены снаружи рыхлой волокнистой соединительной тканью — эндомизием и связаны друг с другом боковыми поверхностями. При этом, в области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения. Регенерация гладкой мышечной ткани осуществляется несколькими способами:
посредством внутриклеточной регенерации гипертрофии при усилении функциональной нагрузки;
посредством митотического деления миоцитов при их повреждении (репаративная регенерация);
посредством дифференцировки из камбиальных элементов — из адвентициальных клеток и миофибробластов.
Головной мозг состоит из ствола мозга, который является продолжением спинного мозга (включает продолговатый, задний, средний и промежуточный мозг) и плащевой части, образованной полушариями большого мозга и мозжечком. От ствола отходят десять пар (с 3 по 12) черепных нервов, ядра которых располагаются в пределах продолговатого и среднего мозга. Ядра ствола мозга подразделяются на чувствительные, двигательные и ассоциативные.
Чувствительные ядра являются гомологами ядер задних рогов спинного мозга — в них сосредоточены тела и дендриты мультиполярных вставочных нейронов, на которых оканчиваются аксоны псевдоуниполярных или биполярных клеток, несущие сенсорную информацию.
Двигательные ядра содержат мотонейроны, аксоны которых оканчиваются на волокнах соматической мускулатуры. К двигательным ядрам часто относят и вегетативные ядра продолговатого и среднего мозга, содержащие тела нейронов, аксоны которых образуют преганглинарные волокна, направляющиеся в парасимпатические нервные узлы в составе 3, 7, 9, 10 пар черепно-мозговых нервов.
Ассоциативные (переключательные, релейные) ядра содержат скопления ассоциативных мультиполярных клеток, которые обеспечивают формирование многонейронных рефлекторных дуг путем переключения нервных импульсов, идущих к коре полушарий или мозжечка, или в обратном направлении от коры к стволу мозга и центрам спинного мозга. Белое вещество ствола мозга имеет то же гистологическое строение, что и в спинном мозге и состоит из пучков нервных волокон, образующих восходящие и нисходящие тракты, которые связывают разные отделы центральной нервной системы. Наряду с особенностями топографии и строения, отдельные ядра ствола мозга и его проводящие пути различаются химической спецификой нейромедиаторов. Кора больших полушарий мозга представляет собой высший и наиболее сложно организованный нервный центр экранного типа, деятельность которого обеспечивает регуляцию разнообразных функций организма и сложные формы поведения. Кора образована слоем серого вещества толщиной 3—5 мм на поверхности извилин (30 %) и в глубине борозд (70 %) общей площадью 1500—2500 см2 при объеме около 300 см3. Серое вещество содержит нервные клетки (около 10—15 млрд.), нервные волокна и клетки нейроглии (более 100 млрд.). Цитоархитектоника коры полушарий большого мозга. I. Молекулярный слой располагается под мягкой мозговой оболочкой; содержит сравнительно небольшое число мелких нейронов — горизонтальных клеток Кахаля с длинными ветвящимися дендритами, отходящими в горизонтальной плоскости от веретеновидного тела. II. Наружный зернистый слой образован многочисленными мелкими пирамидными и звездчатыми клетками, дендриты которых ветвятся и поднимаются в молекулярный слой, а аксоны либо уходят в белое вещество, либо образуют дуги и также направляются в молекулярный слой. III. Пирамидный слой значительно варьирует по ширине и максимально выражен в ассоциативных и сенсомоторных областях коры. В нем преобладают пирамидные клетки, размеры которых увеличиваются вглубь слоя от мелких до крупных. IV. Внутренний зернистый слой широкий в зрительной и слуховой областях коры, а в сенсомоторной области практически отсутствует. V. Ганглионарный слой образован крупными, а в области моторной коры (прецентральной извилины) — гигантскими пирамидными клетками. VI. Слой полиморфных клеток образован разнообразными по форме нейронами (веретеновидными, звездчатыми, клетками Мартинотти). Наружные участки слоя содержат более крупные клетки, внутренние — более мелкие и редко расположенные. Миелоархитектоника и организация коры. Нервные волокна коры полушарий большого мозга включают три группы:
афферентные;
ассоциативные и комиссуральные;
эфферентные волокна.
Афферентные волокна в виде пучков в составе радиальных лучей приходят в кору от ниже расположенных отделов головного мозга, в частности, от зрительных бугров и коленчатых тел. Большая часть этих волокон заканчивается на уровне IV слоя. Ассоциативные и комиссуральные волокна — внутрикорковые волокна, которые соединяют между собой различные области коры в том же или в другом полушариях, соответственно. Эфферентные волокна связывают кору с подкорковыми образованиями. Эти волокна идут в нисходящем направлении в составе радиальных лучей (например, пирамидные пути. Модульный принцип организации коры полушарий большого мозга. В коре полушарий большого мозга описаны повторяющиеся блоки (модули) нейронов, которые рассматриваются как ее морфофункциональные единицы, способные к относительно автономной деятельности. Они имеют форму цилиндров, или колонок, диаметром 200—300 мкм (по некоторым данным, до 500 мкм и более), проходящих вертикально через всю толщу коры. В коре большого мозга человека имеется около 2—3 млн. таких колонок, каждая содержит примерно 5000 нейронов. Внутри колонки выделяют также более мелкие мини-колонки, включающие структуры, непосредственно окружающие апикальные дендриты пирамидных клеток. Колонка включает в себя следующие структуры:
афферентные пути;
систему локальных связей;
эфферентные пути.
БИЛЕТ № 15
1. Репродукция клеток: способы, морфологическая характеристика.
2. Диффузная эндокринная система: составные компоненты, локализация, классификация. Примеры эндокринных клеток и их гормонов.
3. Пищевод: строение, тканевой состав, источники развития. Особенности органогенеза пищевода и их значение для клиники. Глотка: отделы, их строение, функциональная роль.
Различают два основных способа размножения клеток:
митоз (кариокенез) — непрямое деление клеток, которое присуще в основном соматическим клеткам;
мейоз или редукционное деление — характерно только для половых клеток.
амитоз или прямое деление клеток, которое осуществляется посредством перетяжки ядра и цитоплазмы, с образованием двух дочерних клеток или одной двуядерной, характерен только для старых и дегенерирующих клеток и является отражением патологии клетки.
Митоз подразделяется на 4 фазы:
1. Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходит: конденсация хроматина и образование хромосом, состоящих из двух хроматид, исчезновение ядрышка, распад кариолеммы на отдельные пузырьки. В цитоплазме отмечается редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления, репродукция зернистой эндоплазматической сети, а также уменьшение числа свободных и прикрепленных рибосом.
2. В метафазе происходит образование метафазной пластинки, или материнской звезды, неполное обособление сестринских хроматид друг от друга.
3. Анафаза характеризуется полным обособлением (расхождением) хроматид и образованием двух равноценных диплоидных наборов хромосом, расхождением хромосомных наборов к полюсам митотического веретена и расхождением самих полюсов.
4. Телофаза характеризуется деконденсацией хромосом каждого хромосомного набора, формированием из пузырьков ядерной оболочки, цитотомией перетяжкой двуядерной клетки на две дочерние самостоятельные клетки, появлением ядрышка в ядрах дочерних клеток.
Интерфаза подразделяется на 3 периода:
В G1 (пресинтетическом) периоде происходит усиленное формирование синтетического аппарата клетки — увеличение числа рибосом, а также количества различных видов РНК (информационной, рибосомальной, транспортных);Для S-периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.
G2-период (постсинтетический, или премитотический) характеризуется усиленным синтезом информационной РНК, а также усиленным синтезом всех клеточных белков, но особенно белков-тубулинов, необходимых для последующего (в профазе митоза) формирования митотического веретена деления.
Клетки некоторых тканей (например, клетки печеночной ткани — гепатоциты), по выходе из митоза, вступают в так называемый G0-период, во время которого они выполняют свои многочисленные функции в течении многих лет, не вступая в S-период. Клетки относятся к редко делящимся клеткам, и их жизненный цикл подразделяется на митоз, J0-период, S-период, J2-период. Кроме рассмотренных двух основных способов размножения (репродукции) клеток различают еще третий способ — эндорепродукцию, который, хотя и не приводит к увеличению числа клеток, однако приводит к увеличению числа работающих структур и увеличению функциональной способности клетки. Именно поэтому он и называется эндорепродукцией.
Диффузная эндокринная система (ДЭС) — отдел эндокринной системы (нейроэндокринной системы), представленный рассеянными в различных органах эндокринными клетками, продуцирующими агландулярные гормоны (пептиды, за исключением кальцитриола). Ключевые признаки ДЭС: 1) диффузное (разбросанное) расположение её клеток в отличие от секретирующих клеток эндокринных желёз, собранных в одном месте в составе железы; 2) производство управляющих веществ в виде биогенных аминов и/или пептидных гормонов. Биологически активные соединения, образующиеся в клетках ДЭС, выполняют эндокринную, нейрокринную, нейроэндокринную, а также паракринную функции. Целый ряд свойственных им соединений (вазоактивный интестинальный пептид, нейротензин и другие) высвобождаются не только из клеток ДЭС, но также и из нервных окончаний. ДЭС образована апудоцитами (APUD-клетками) - это секретирующие клетки, способные поглощать аминокислоты-предшественницы и производить из них активные амины и/или низкомолекулярные пептиды с помощью реакции декарбоксилирования (удаления карбоксильной группы у аминокислоты-предшественницы). Деление сигнальных веществ по месту синтеза следует считать лишь попыткой их систематизации: например, почти все представленные ниже пептидные гормоны могут синтезироваться не только в соответствующих периферических тканях, но и в центральной нервной системе, вегетативной нервной системе и иммунными клетками; яичко, надпочечники, железистые клетки ЖКТ и нервные клетки вегетативной нервной системы могут синтезировать также те пептиды, которые сначала были обнаружены в нервной системе и получили, таким образом, название нейропептиды.
Функции пищевода:
моторно-эвакуаторная;
секреторная — выработка слизи, облегчающей проведение пищевого комка;
барьерно-защитная.
Пищевод — орган слоистого типа. Слизистая оболочка образует, продольные складки и состоит из трех слоев: эпителиального, собственной пластинки и мышечной пластинки. Эпителиальный слой — многослойный плоский неороговевающий эпителий, образованный базальным, шиповатым и слоем плоских клеток. Собственная пластинка слизистой оболочки образована рыхлой волокнистой соединительной тканью. Ее основные структуры — кровеносные и лимфатические сосуды, нервные волокна, одиночные лимфоидные фолликулы, выводные протоки собственных желез пищевода и концевые отделы кардиальных желез пищевода. Мышечная пластинка слизистой оболочки образована продольными пучками гладкой мышечной ткани. Она участвует в формировании складок, облегчает прохождение грубых комков пищи. Подслизистая оболочка образована рыхлой волокнистой соединительной тканью и участвует в образовании складок слизистой оболочки, обеспечивает ее питание и подвижность. Мышечная оболочка образована внутренним циркулярным и наружным продольным слоями. В верхней трети — поперечнополосатой, в средней трети поперечнополосатой, и гладкой, в нижней трети — только гладкой мышечной тканью. Циркулярный слой мышечной оболочки образует верхний и нижний сфинктеры пищевода. Функция оболочки — продвижение пищи к желудку. Между слоями мышечной оболочки находится межмышечное нервное сплетение Ауэрбаха. Серозная оболочка входит в состав стенки пищевода только в его поддиафрагмальном отделе. Образована двумя слоями: внутренний — рыхлая волокнистая соединительная ткань, наружный — мезотелий. На остальной части наружная оболочка представлена адвентицией, содержащей множество сосудов и нервное сплетение.
БИЛЕТ № 16
1. Немембранные органеллы: строение, функциональная роль. Специальные органеллы.
2. Рыхлая волокнистая неоформленная соединительная ткань: клеточные популяции, межклеточное вещество, локализация в организме. Строение и функции фибробластов и макрофагов.
3. Артерии: определение, классификация, функции. Строение различных типов артерий. Возрастные особенности
Строение и функции немембранных органелл. Рибосомы - аппараты синтеза белка и полипептидных молекул. По локализации подразделяются на:
свободные находятся гиалоплазме;
несвободные или прикрепленные связаны с мембранами эндоплазматической сети.Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка рибонуклеопротеида, которые образуются в ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной или информационной РНК объединяются в цепочки рибосом — полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализации, отличаются определенной функциональной специфичностью: свободные рибосомы синтезируют белки для внутренних нужд клетки (белки-ферменты, структурные белки), прикрепленные синтезируют белки "на экспорт". Клеточный центр - цитоцентр, центросома, центриоли. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:
диплосомы;
центросферы.
Микрофибриллы или промежуточные филаменты, представляют собой тонкие (10 нм) неветвящиеся нити, локализующиеся преимущественно в кортикальном (подмембранном) слое цитоплазмы. Функциональная роль микрофибрилл состоит в участии, наряду с микротрубочками, в формировании клеточного каркаса, выполняя опорную функцию.
Характеристика рыхлой волокнистой соединительной ткани. Она состоит из клеток и межклеточного вещества, которое в свою очередь состоит из волокон (коллагеновых, эластических, ретикулярных) и аморфного вещества. Морфологические особенности, отличающие рыхлую волокнистую соединительную ткань от других разновидностей соединительных тканей:
многообразие клеточных форм (9 клеточных типов);
преобладание в межклеточном веществе аморфного вещества над волокнами.
Функции рыхлой волокнистой соединительной ткани:
трофическая;
опорная - образует строму паренхиматозных органов;
защитная — неспецифическая и специфическая (участие в иммунных реакциях) защита;
депо воды, липидов, витаминов, гормонов;
репаративная (пластическая).
Функционально ведущими структурными компонентами рыхлой волокнистой соединительной ткани являются клетки различной морфологии и функции, которые и будут рассмотрены в первую очередь, а затем уже межклеточное вещество. I.Фибробласты — преобладающая популяция клеток рыхлой волокнистой соединительной ткани. Они неоднородны по степени зрелости и функциональной специфичности и потому подразделяются на следующие субпопуляции:
малодифференцированные клетки;
дифференцированные или зрелые клетки, или собственно фибробласты;
старые фибробласты (дефинитивные)фиброциты, а также специализированные формы фибробласты;
миофибробласты;
фиброкласты.
II. Макрофаги — клетки, осуществляющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц, откуда и происходит их название. Однако фагоцитоз, хотя и важная, но далеко не единственная функция этих клеток. По современным данным макрофаги являются полифункциональными клетками. Образуются макрофаги из моноцитов крови после их выхода из кровеносного русла. Макрофаги характеризуются структурной и функциональной гетерогенностью в зависимости от степени зрелости, от области локализации, а также от их активации антигенами или лимфоцитами. Прежде всего, они подразделяются на фиксированные и свободные (подвижные). Макрофаги соединительной ткани являются подвижными или блуждающими и называются гистиоцитами. Защитная функция макрофагов проявляется в разных формах:
неспецифическая защита — защита посредством фагоцитоза экзогенных и эндогенных частиц и их внутриклеточного переваривания;
выделение во внеклеточную среду лизосомальных ферментов и других веществ: пирогена, интерферона, перекиси водорода, синглетного кислорода и другие;
специфическая или иммунологическая защита — участие в разнообразных иммунных реакциях.
Артерии эластического типа. К таким сосудам относятся аорта и легочная артерии, они выполняют транспортную функцию и функцию поддержания давления в артериальной системе во время диастолы. В этом типе сосудов сильно развит эластический каркас, который дает возможность сосудам сильно растягиваться, сохраняя при этом целостность сосуда. Артерии эластического типа построены по общему принципу строения сосудов и состоят из внутренней, средней и наружной оболочек. Внутренняя оболочка достаточно толстая и образована тремя слоями: эндотелиальным, подэндотелиальным и слоем эластических волокон. В эндотелиальном слое клетки крупные, полигональные, они лежат на базальной мембране. Подэндотелиальный слой образован рыхлой волокнистой неоформленной соединительной тканью, в которой много коллагеновых и эластических волокон. Средняя оболочка состоит в основном из эластических элементов. Они образуют у взрослого человека 50—70 окончатых мембран, которые лежат друг от друга на расстояния 6—18 мкм и имеют толщину 2,5 мкм каждая. Наружная адвентициальная оболочка относительно тонкая, состоит из рыхлой волокнистой неоформленной соединительной ткани, содержит толстые эластические волокна и пучки коллагеновых волокон, идущие продольно или косо, а также сосуды сосудов и нервы сосудов, образованные миелиновыми и безмиелиновыми нервными волокнами. Артерии смешанного (мышечно-эластического) типа. Примером артерии смешанного типа является подмышечная и сонная артерии. Так как в этих артериях постепенно происходит снижение пульсовой волны, то наряду с эластическим компонентом они имеют хорошо развитый мышечный компонент для поддержания этой волны. Толщина стенки по сравнению с диаметром просвета у этих артерий значительной увеличивается. Внутренняя оболочка представлена эндотелиальным, подэндотелиальным слоями и внутренней эластической мембраной. В средней оболочке хорошо развиты как мышечный, так и эластический компоненты. Наружная оболочка образована рыхлой волокнистой неоформленной соединительной тканью, в которой встречаются пучки гладких миоцитов, и наружной эластической мембраной, лежащей сразу за средней оболочкой. Наружная эластическая мембрана выражена несколько слабее, чем внутренняя. Артерии мышечного типа. К этим артериям относятся артерии малого и среднего калибра, лежащие вблизи органов и внутриорганно. В этих сосудах сила пульсовой волны существенно снижается, и возникает необходимость создания дополнительных условий по продвижению крови, поэтому в средней оболочке преобладает мышечный компонент. Внутренняя оболочка имеет небольшую толщину и состоит из эндотелиального, подэндотелиального слоев и внутренней эластической мембраны. Их строение в целом такое же, как в артериях смешанного типа, причем внутренняя эластическая мембрана состоит из одного слоя эластических клеток. Средняя оболочка состоит из гладких миоцитов, расположенных по пологой спирали, и рыхлой сети эластических волокон, также лежащих спирально. Спиральное расположение миоцитов способствует большему уменьшению просвета сосуда. Эластические волокна сливаются с наружной и внутренней эластическими мембранами, образуя единый каркас. Наружная оболочка образована наружной эластической мембраной и слоем рыхлой волокнистой неоформленной соединительной тканью. В ней содержатся кровеносные сосуды сосудов, симпатические и парасимпатические нервные сплетения.
БИЛЕТ № 17(лимфатический узел,семенник)
1. Объекты и методы исследования в гистологии.
2. Покровный эпителий: генетическая и морфофункциональная классификации, топография.
З. Молочная железа: строение, тканевой состав, развитие, регуляция лактации.
Основным объектом изучения гистологии является организм здорового человека. Основная задача гистологии состоит в изучении строения клеток, тканей, органов, установления связей между различными явлениями, установление общих закономерностей. Современный этап развития гистологии - внедрение не только электронного микроскопа, но и других методов: цито - и гистохимии, гисторадиографии и других вышеперечисленных современных методов. Основным методом исследования биологических объектов, используемым в гистологии, является микроскопирование, т. е. изучение гистологических препаратов под микроскопом. Различают следующие виды микроскопии:
световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;
ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);
люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;
фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов;
поляризационная микроскопия для изучения, главным образом, волокнистых структур;
микроскопия в темном поле для изучения живых объектов;
микроскопия в падающем свете для изучения толстых объектов;
электронная микроскопия (разрешающая способность до 0,1—0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.
Гистохимические и цитохимические методы позволяет определять состав химических веществ, и даже их количество в изучаемых структурах. Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах. Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов. Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.
Морфологическая классификация покровных эпителиев:
однослойный плоский эпителий (эндотелий — выстилает все сосуды; мезотелий — выстилает естественные полости человека: плевральную, брюшную, перикардиальную);однослойный кубический эпителий — эпителий почечных канальцев;
однослойный однорядный цилиндрический эпителий — ядра располагаются на одном уровне;
однослойный многорядный цилиндрический эпителий — ядра располагаются на разных уровнях (легочный эпителий);
многослойный плоский ороговевающий эпителий — кожа;
многослойный плоский неороговевающий эпителий — полость рта, пищевод, влагалище;
переходный эпителий — форма клеток этого эпителия зависит от функционального состояния органа, например, мочевой пузырь.
Генетическая классификация эпителиев:
эпидермальный тип, развивается из эктодермы — многослойный и многорядный эпителий, выполняет защитную функцию;
энтеродермальный тип, развивается из энтодермы — однослойный цилиндрический эпителий, осуществляет процесс всасывания веществ;
целонефродермальный тип — развивается из мезодермы — однослойный плоский эпителий, выполняет барьерную и экскреторную функции;
эпендимоглиальный тип, развивается из нейроэктодермы, выстилает полости головного и спинного мозга;
ангиодермальный тип — эндотелий сосудов, развивается из мезенхимы.
Грудные, или молочные железы являются отличительной чертой представителей класса млекопитающих. Молочные железы — это видоизменённые потовые железы, и у первозверей молочные железы по своему строению почти не отличаются от потовых. У человека молочные железы есть как у женщин, так и у мужчин. По своей структуре они идентичны, различаются лишь степенью развития. До начала полового созревания грудь девочек и мальчиков ничем не отличается. Молочная железа (glandula mammaria или mamma) — парный орган, относящийся к типу апокринных желёз кожи. У половозрелой женщины молочные железы образуют два симметричных полушаровидных возвышения, прилегающих к передней грудной стенке в области между третьим и шестым или седьмым ребром. Большей частью своего основания каждая железа прикреплена к большой грудной мышце (m. pectoralis major) и частично к передней зубчатой мышце (m. serratus anterior). С наружной стороны между молочными железами имеется углубление, называемое пазухой (sinus mammarum). Немного ниже середины каждой груди, примерно на уровне четвёртого межрёберного промежутка или пятого ребра, на поверхности имеется небольшой выступ — грудной сосок (papilla mammae). Как правило, у нерожавших женщин сосок имеет конусообразную форму, у рожавших — цилиндрическую. Он окружён так называемой ареолой диаметром 3—5 сантиметров. Пигментация кожи соска и ареолы отличается от остальной кожи — она заметно более тёмная. Во время беременности интенсивность пигментации усиливается. В околососковом кружке имеется некоторое количество небольших рудиментарных молочных желёз, так называемых желёз Монтгомери, образующих вокруг соска небольшие возвышения. Кожа соска покрыта мелкими морщинами. У верхушки соска находятся небольшие отверстия — млечные поры, которые представляют собой окончания молочных протоков, идущих от верхушек молочных долей. Диаметр молочных протоков от 1,7 до 2,3 мм. Некоторые молочные протоки сливаются между собой, поэтому количество молочных отверстий всегда меньше количества протоков (обычно их бывает от 8 до 15). Собственно молочная, составляющая основу женской груди и называемая также телом молочной железы, представляет собой плотное тело в форме выпуклого диска, окружённое слоем жира. Тело молочной железы состоит из 15—20 отдельных конусообразных долей, расположенных радиально вокруг грудного соска, обращённых верхушкой к нему и разделённых между собой прослойками соединительной ткани. Каждая доля, в свою очередь, состоит из более крупных и более мелких долек. Каждая долька состоит из альвеол диаметром 0,05—0,07 мм. Кровоснабжение молочных желёз осуществляется в основном внутренней грудной и боковой грудной артериями. Во время менструального цикла молочная железа подвержена циклическим изменениям, однако наибольшие изменения происходят в период беременности. Молочная железа обычно имеет размер в поперечнике в среднем 10—12 см, в толщину 2—3 см. В период лактации вес молочной железы увеличивается до 300—900 г. Во время беременности железа постепенно начинает выделять так называемое молозиво, которое постепенно с развитием беременности изменяет, свои свойства и становится всё более похожим на молоко. В первые дни после родов выделяется так называемое переходное молоко, которое, как правило, гуще и желтее обычного грудного молока. Нормальное зрелое женское молоко — это чисто белая или голубовато-белая жидкость без запаха со слабым сладковатым вкусом, жирность около 4 %. Женское молоко также содержит соли и микроэлементы, необходимые для здорового роста новорожденного.
БИЛЕТ № 18
1. Немембранные органеллы: строение, функции. Специальные органеллы.
2.Поперечнополосатая сердечная ткань: источники развития, структурно-
функциональная единица: разновидности, строение, регенерация.
3. Щитовидная и околощитовидные железы: источники развития, строение, гормоны, регуляция. Особенности секреторного цикла тироцитов.
Строение и функции немембранных органелл. Рибосомы - аппараты синтеза белка и полипептидных молекул. По локализации подразделяются на:
свободные находятся гиалоплазме;
несвободные или прикрепленные связаны с мембранами эндоплазматической сети.Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка рибонуклеопротеида, которые образуются в ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной или информационной РНК объединяются в цепочки рибосом — полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализации, отличаются определенной функциональной специфичностью: свободные рибосомы синтезируют белки для внутренних нужд клетки (белки-ферменты, структурные белки), прикрепленные синтезируют белки "на экспорт". Клеточный центр - цитоцентр, центросома, центриоли. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:
диплосомы;
центросферы.
Микрофибриллы или промежуточные филаменты, представляют собой тонкие (10 нм) неветвящиеся нити, локализующиеся преимущественно в кортикальном (подмембранном) слое цитоплазмы. Функциональная роль микрофибрилл состоит в участии, наряду с микротрубочками, в формировании клеточного каркаса, выполняя опорную функцию.
Сердечная поперечнополосатая мышечная ткань. Структурно-функциональной единицей является клетка — кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы:
типичные или сократительные кардиомиоциты, образующие своей совокупностью миокард;
атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности.
Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50—120 мкм в длину, шириной 15—20 мкм, в центре которой локализуется обычно одно ядро. Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами.
Вторая разновидность кардиомиоцитов — атипичные кардиомиоциты образуют проводящую систему сердца, состоящую из:
синусо-предсердный узел;
предсердно-желудочковый узел;
предсердно-желудочковый пучок (пучок Гиса) ствол, правую и левую ножки;
концевые разветвления ножек — волокна Пуркинье.
Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты. По своей морфологии атипичные кардиомиоциты отличаются от типичным рядом особенностей:
они крупнее (длина 100 мкм, толщина 50 мкм);
в цитоплазме содержимся мало миофибрилл, которые расположены неупорядочено и потому атипичные кардиомиоциты не имеют поперечной исчерченности;
плазмолемма не образует Т-канальцев;
во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.
Атипичные кардиомиоциты различных отделов проводящей системы отличаются между собой по структуре и функциям и подразделяются на три основные разновидности:
Р-клетки (пейсмекеры) водители ритма (I типа);
переходные клетки (II типа);
клетки пучка Гиса и волокон Пуркинье (III тип).
Иннервация сердечной мышечной ткани. Биопотенциалы сократительные кардиомиоциты получают из двух источников:
из проводящей системы сердца (прежде всего из синусо-предсердного узла);
из вегетативной нервной системы (из ее симпатической и парасимпатической части).
Регенерация сердечной мышечной ткани. Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическая регенерация). Естественно, что сократительная функция в этих участках отсутствует. Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений.
Щитовидная железа вырабатывает несколько гомонов:
тиреоидные гормоны — тетрайодтиронин и трийодтиронин. Они регулируют основной обмен, а также процессы развития, роста и дифференцировки тканей. Тиреоидные гормоны ускоряют катаболизм белков (с одновременной активацией из синтеза), жиров и углеводов, увеличивают потребление кислорода клетками. Мишенями тиреоидных гормонов являются практически все клетки организма;
в щитовидной железе находятся клетки, вырабатывающие гормоны тирокальцитонин, соматостатин и серотонин. Тирокальцитонин является функциональным антагонистом гормона паращитовидных желез паратирина. Они понижают уровень кальция в крови в результате стимуляции клеток костной ткани (остеобластов). При этом кальций откладывается в костях, что приводит к их повышенной минерализации. Одновременно тирокальцитонин стимулирует экскрецию кальция почками. Соматостатин подавляет рост и размножение клеток, секрецию ряда других желез, а серотонин обладает множественными эффектами: регулирует функцию ряда эндо - и экзокринных желез, микроциркуляцию, функции соединительной ткани, иммунных реакций.
Щитовидная железа является паренхиматозным органом дольчатого строения. Строму формирует капсула из плотной неоформленной соединительной ткани и отходящие от нее трабекулы, образованные рыхлой волокнистой неоформленной соединительной тканью. Кроме того, к строме относится поддерживающий паренхиму внутридольковый каркас из рыхлой волокнистой соединительной ткани, содержащий кровеносные, лимфатические сосуды и нервы. Трабекулы делят железу на дольки. Фолликул является структурно-функциональной единицей щитовидной железы. Он образован двумя видами клеток. Основными являются тироциты, кроме которых имеются также парафолликулярные С-клетки. Оба вида клеток лежат на базальной мембране, однако С-клетки своими апикальными полюсами не достигают просвета фолликула. Внутри фолликула находится коллоидоксифильная субстанция, представляющая собой депонированную форму тиреоидных гормонов. Форма тироцитов зависит от функционального состояния железы. Выделяют три фазы секреторного цикла:
биосинтез тироглобулина — органической основы гормонов Т3 и Т4;
выделение тироглобулина в полость фолликула, йодирование органической основы тиреоидных гормонов и депонирование тироглобулина в фолликуле;
выведение гомонов из клетки в кровь, при этом большая часть молекулы тироглобулина остается в тироците.
Парафолликулярные клетки (С-клетки) составляют около 0,1 % от общего количества паренхиматозных клеток железы. Их относят к APUD-системе. Они вырабатывают белковые гормоны тирокальцитонин, соматостатин и биогенный амин серотонин. Эти клетки могут входить в состав фолликула, но при этом их апикальные поверхности полости фолликула не достигают. Кроме того, эти клетки входят в состав интерфолликулярных островков, а также лежат изолированно. Интерфолликулярные островки — это скопление тироцитов без полости. Тироциты островков в небольшом количестве продуцируют тиреоидные гормоны. При функциональной нагрузке на железу эти островки могут активироваться, при этом тироциты начинают вырабатывать коллоид, и островок превращается в фолликул. Таким образом, островки являются резервом для образования новых фолликулов. Среди тироцитов островков находятся С-клетки. Паращитовидные железы. Основная функция паращитовидных желез — секреция гормонов:
гормон паратирин, который является антагонистом тирокальцитонина, он повышает уровень кальция в крови двумя способами:
путем разрушения минерального компонента кости за счет активации остеокластов, при этом кальций идет в кровь, где его содержание повышается;
путем активации образования в кишечнике витамина D, которые усиливает всасывание кальция;
биогенные амины;
кальцитонин.
Паращитовидная железа — это паренхиматозный орган, паренхима имеет трабекулярное строение. Трабекулы состоят из клеток паратироцитов, которые делятся на два вида: главные (базофильные) и оксифильные. Главные клетки делятся на светлые и темные в зависимости от функционального состояния.

БИЛЕТ №19
1. Строение и функциональная роль мембранных органелл: митохондрий, лизосом, пероксисом.
2. Нервные окончания: определение, классификация, морфологическая классификация рецепторов. Особенности строения эффекторного окончания.
3. Орган слуха: анатомические части, структурные компоненты костного и перепончатого лабиринта, строение спирального органа. Проведение звуковой волны к рецепторным клеткам.
Классификация органелл: общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки.
Общая характеристика мембранных органелл
Все разновидности мембранных органелл имеют общий принцип строения:
они представляют собой замкнутые и изолированные участки в гиалоплазме (компарменты), имеющие свою внутреннюю среду;
стенка их состоит из билипидной мембраны и белков, подобно плазмолемме.
Однако билипидные мембраны органелл имеют и некоторые особенности:
толщина билипидных мембран органелл меньше (7 нм), чем в плазмолемме (10 нм);
мембраны отличаются по количеству и качеству белков, встроенных в мембраны.
Митохондрии наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью. Стенка митохондрий образована двумя билипидными мембранами, разделенные пространством в 10—20 нм. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутрь митохондрии складки кристы. Лизосомы наиболее мелкие органеллы цитоплазмы (0,2—0,4 мкм) и поэтому открытые только с использованием электронного микроскопа. Представляют собой тельца, ограниченные липидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (50 гидролаз), способных расщеплять любые полимерные соединения (белки, липиды, углеводы и их комплексы) на мономерные фрагменты. Функция лизосом обеспечение внутриклеточного пищеварения, то есть расщепления как экзогенных, так и эндогенных веществ. Пероксисомы - микротельца цитоплазмы (0,1—1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.
Все нервные волокна заканчиваются концевыми аппаратами, которые получили название нервные окончания. По функциональному значению нервные окончания можно разделить на три группы:
эффекторные (эффекторы);
рецепторные (аффекторные или чувствительные);
концевые аппараты, образующие межнейронные синапсы, осуществляющие связь нейронов между собой.
Эффекторные нервные окончания представлены двумя типами — двигательные и секреторные. Двигательные нервные окончания — это концевые аппараты аксонов двигательных клеток соматической или вегетативной нервной системы. При их участии нервный импульс передается на ткани рабочих органов. Секреторные нервные окончания имеют простое строение и заканчиваются на железе. Они представляют собой концевые утолщения, или четковидные расширения волокна с синаптическими пузырьками, содержащими главным образом ацетилхолин. Рецепторные нервные окончания. Главная функция афферентных нервных окончаний является восприятие сигналов поступающих из внешней и внутренней среды. Рецептор — это терминальное ветвление дендрита чувствительной (рецепторной) нервной клетки. Классификация рецепторов:
I. По происхождению:
Нейросенсорные — нейральный источник происхождения, представляют собой рецепторы нервных клеток — первичночувствительные;
Сенсоэпителиальные — имеют не нейральное происхождение, представлены специальными клетками которые способны воспринимать раздражение — вторичночувствительные, например: инкапсулированные и неинкапсулированные нервные окончания.
II. По локализации:
экстерорецепторы;
интерорецепторы;
проприорецепторы.
III. По морфологии:
свободные;
несвободные (инкапсулированные: пластинчатые тельца Фатера-Пачини, осязательные тельца Мейснера, концевые колбы Краузе, сухожильные органы Гольджи; неинкапсулированные);
IV. По специфичности восприятия (по модальности):
терморецепторы;
барорецепторы;
хеморецепторы;
механорецепторы;
болевые рецепторы;
V. По количеству воспринимающих раздражителей:
мономодальные;
полимодальные.
Орган слуха располагается в улитковом канале перепончатого лабиринта по всей его длине. На поперечном срезе этот канал имеет форму треугольника, обращенного к центральному костному стержню улитки. Улитковый канал имеет длину около 3,5 см, делает по спирали 2,5 витка вокруг центрального костного стержня (модиолуса) и слепо заканчивается на вершине. Канал заполнен эндолимфой. Снаружи от улиткового канала находятся пространства, заполненные перилимфой. Эти пространства называются лестницами. Сверху лежит вестибулярная лестница, снизу барабанная. Обе лестницы и улитковый канал окружены костью костной улитки. Стенка улиткового канала, обращенная к вестибулярной лестнице, называется вестибулярной мембраной. На ней находится рецепторный аппарат — кортиев орган. Основу этой стенки составляет базилярная мембрана, покрытая со стороны барабанной лестницы плоским эпителием. Базилярная мембрана состоит из тонких коллагеновых волокон слуховых струн. Эти струны натянуты между спиральной костной пластинкой, отходящей от модиолуса улитки, и спиральной связки, лежащей на наружной стенке улитки. Рецепторные клетки делятся на внутренние и наружные волосковые клетки. Внутренние клетки имеют грушевидную форму. Их ядра лежат в расширенной нижней части. На поверхности суженной апикальной части есть кутикула и проходящие через нее 30—60 коротких стереоцилий, расположенных линейно в три ряда. Волоски неподвижны. Наружные волосковые клетки имеют цилиндрическую форму. На апикальной поверхности этих клеток также имеется кутикула, через которую проходят стереоцилии. Спиральный ганглий находится в основании спиральной костной пластинки, отходящей от модиолуса, которая разделяется на две губы, образуя полость для ганглия. Ганглий построен по общему принципу чувствительных ганглиев. В отличие от спинальных ганглиев его образуют биполярные чувствительные нейроциты. Их дендриты через тоннель подходят к волосковым клеткам, образуя на них нейроэпителиальные синапсы. Аксоны биполярных клеток образуют улитковый нерв. Гистофизиология слуха. Звуки воспринимаются наружным ухом и передаются через слуховые косточки в овальное окно в барабанной и вестибулярной лестницах. При этом приходят в колебательные движения вестибулярная и базилярная мембраны, а, следовательно, и эндолимфа. В результате движения эндолимфы смещаются волоски сенсорных клеток, так как они прикреплены к текториальной мембране. Это приводит к возбуждению волосковых клеток, а через них — биполярных нейронов спирального ганглия, которые передают возбуждение в слуховые ядра ствола мозга, а затем в слуховую зону коры больших полушарий.
БИЛЕТ № 20(толстая кишка,селезенка)
1. Дробление: сущность, типы дробления у человека. Развитие и строение бластоцисты. Имплантация: сущность, хронология, изменения в бластоцисте.
2. Кровь. Агранулоциты: разновидности, строение, функции, процентное содержание.
Т - и В-лимфоциты, их субпопуляции.
3. Пищеварительная система: составные компоненты, источники развития, функции. Общий план строения пищеварительного канала: отделы, оболочки, слои, тканевой состав, нервные элементы.
Дробление — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных. При этом масса зародыша и его объём не меняются, оставаясь такими же, как и в начале дробления.  Характерная особенность дробления — ведущая регуляторная роль цитоплазмы в развитии. Характер дробления зависит от количества желтка и его расположения в яйце. Биологическое значение дробления: переход к многоклеточности и увеличение ядерно-цитоплазматического отношения. Дробление как особый этап онтогенеза животных имеет характерные черты, которые свойственны большинству животных, но могут отсутствовать у некоторых групп.
Интерфаза сокращена до S-периода; в связи с этим транскрипция собственных генов зародыша полностью подавлена, транскрибируются только запасённые в яйцеклетке материнские мРНК.
Между делениями нет периода роста, так что общая масса зародыша не растёт.
По всем этим характеристикам дробление млекопитающих резко отклоняется от типичного. Бластомеры делятся у них медленно, синхронность нарушается уже после 1—2 делений, в это же время активируется собственный геном зародыша. Классификация типов дробления. На основе ряда существенных характеристик (степень детерминированности, полнота, равномерность и симметрия деления) выделяют ряд типов дробления. Типы дробления во многом определяются распределением веществ (в том числе, желтка) по цитоплазме яйца и характером межклеточных контактов, которые устанавливаются между бластомерами. Дробление может быть: детерминированным и регулятивным; полным (голобластическим) или неполным (меробластическим); равномерным (бластомеры более-менее одинаковы по величине) и неравномерным (бластомеры не одинаковы по величине, выделяются две — три размерные группы, обычно называемые макро- и микромерами); наконец, по характеру симметрии различают радиальное, спиральное, различные варианты билатеризованных и анархическое дробление. В каждом из этих типов выделяют ряд вариантов.
Агранулоциты не содержат гранул в цитоплазме и подразделяются на две различные клеточные популяции - лимфоциты и моноциты. Лимфоциты являются клетками иммунной системы и потому в последнее время все чаще называются иммуноцитами. Лимфоциты (иммуноциты), при участии вспомогательных клеток (макрофагов), обеспечивают иммунитет — защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делится. Все остальные лейкоциты являются конечными дифференцированными клетками. Лимфоциты весьма гетерогенная (неоднородная) популяция клеток. Классификация лимфоцитов:
I. По размерам:
малые 4,5—6 мкм;
средние 7—10 мкм;
большие — больше 10 мкм.
В периферической крови около 90 % составляют малые лимфоциты и 10—12 % средние лимфоциты. Большие лимфоциты в нормальных условиях в периферической крови не встречаются. Электронно — микроскопически малые лимфоциты подразделяются на светлые (70—75 %) и темные (12—13 %). Морфология малых лимфоцитов:
относительно крупное круглое ядро, состоящее в основном из гетерохроматина (особенно в мелких темных лимфоцитах);
узкий ободок базофильной цитоплазмы, в которой содержатся свободные рибосомы и слабо выраженные органеллы — эндоплазматическая сеть, единичные митохондрии и лизосомы.
Морфология средних лимфоцитов:
более крупное и более рыхлое ядро, состоящее из эухроматина в центре и гетерохроматина по периферии;
в цитоплазме более развиты гранулярная и гладкая эндоплазматическая сеть, пластинчатый комплекс, больше митохондрий.
В крови содержится также 1—2 % плазмоцитов, образующихся из В-лимфоцитов. II. По источникам развития лимфоциты подразделяются на:
Т-лимфоциты их образование и дальнейшее развитие связано с тимусом (вилочковой железой);
В-лимфоциты, их развитие у птиц связано с особенным органом — фабрициевой сумкой, а у млекопитающих и человека пока точно не установленным ее аналогом.
Кроме источников развития Т- и В-лимфоциты отличаются между собой и по выполняемым функциям. III. По функциям:
а) В-лимфоциты и плазмоциты обеспечивают гуморальный иммунитет — защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов, белков и других);
б) Т-лимфоциты по выполняемым функциям подразделяются на киллеров, хелперов, супрессоров.
Киллеры или цитотоксические лимфоциты обеспечивают защиту организма от чужеродных клеток или генетически измененных собственных клеток, осуществляется клеточный иммунитет. Т-хелперы и Т-супрессоры регулируют гуморальный иммунитет: хелперы — усиливают, супрессоры — угнетают. Кроме того, в процессе дифференцировки и Т- и В-лимфоциты вначале выполняют рецепторные функции — распознают соответствующий их рецепторам антиген, а после встречи с ним трансформируются в эффекторные или регуляторные клетки. Моноциты это наиболее крупные клетки крови (18—20 мкм), имеющие круглое бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы. По своей функции моноциты являются фагоцитами. Моноциты являются не вполне зрелыми клетками. Они циркулируют в крови 2-е суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов. Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему или мононуклеарную фагоцитарную систему (МФС).
Пищеварительная система обеспечивает поступление в организм питательных веществ и расщепление их до мономеров, способных всасываться в кровь и лимфу, а также выведение нерасщепленных и невсосавшихся компонентов пищи. Основными функциями пищеварительной системы являются:
механическая и химическая обработка пищи;
секреторная;
экскреторная;
резорбтивная (всасывание);
барьерно-защитная.
Пищеварительная система состоит из двух частей:
органов пищеварительного канала (органы ротовой полости, глотка, пищевод, желудок, тонкий и толстый кишечник);
больших пищеварительных желез (большие слюнные железы, печень с желчным пузырем, поджелудочная железа).
В пищеварительной системе различают три основных отдела: передний (органы ротовой полости, глотка, пищевод), средний (желудок, кишечник, печень, желчный пузырь, поджелудочная железа) и задний (анальная часть прямой кишки). Основные органы пищеварительной системы образуются в процессе развития эмбриональной кишечной трубки энтодермального происхождения, которая вначале слепо заканчивается на головном и хвостовом концах тела зародыша. Пищеварительный канал образован органами слоистого типа, состоящими из четырех оболочек: слизистой, подслизистой, мышечной и серозной (адвентициальной). Каждая из оболочек имеет отчетливые границы с соседними оболочками и может подразделяться на слои. Слизистая оболочка состоит из трех оболочек: эпителия, собственной и мышечной пластинок. Слизистая оболочка формирует рельеф: складки, ямки, поля, ворсинки, крипты. Собственная пластинка слизистой оболочки образована рыхлой волокнистой соединительной тканью и содержит простые железы, кровеносные сосуды, лимфоузлы, лимфоидные узелки. Мышечная пластинка образована гладкой мышечной тканью и может формировать 2—3 слоя. Подслизистая оболочка (основа) образована рыхлой волокнистой неоформленной соединительной тканью. Она отсутствует в некоторых органах ротовой полости. В ней находятся: подслизистое сосудистое и нервное сплетение (Мейснера), сложные железы (пищевод, двенадцатиперстная кишка), крупные лимфоидные фолликулы. Мышечная оболочка представлена двумя слоями (в желудке таких слоев три): внутренним циркулярным и наружным продольным. В мышечной оболочке (между слоями рыхлой волокнистой соединительной ткани) находятся межмышечное нервное (ауэрбаховское) и сосудистое сплетение. Серозная оболочка (брюшина) образована двумя слоями. Внутренний слой представлен рыхлой волокнистой соединительной тканью и содержит серозное нервное и сосудистое сплетения. Наружный слой серозной оболочки — мезотелий, то есть однослойный плоский эпителий. Адвентициальная оболочка образована рыхлой волокнистой соединительной тканью, она покрывает органы пищеварительного канала, не обладающие выраженной подвижностью. Как и серозная оболочка, содержит нервное и сосудистое сплетения.
БИЛЕТ № 21
1. Клетка: определение, составные части и их структурные элементы.
2. Лейкоциты: содержание, классификация. Лейкоцитарная формула, ее возрастные изменения.
3. Дыхательная система: составные компоненты (органы), их тканевой состав, источники развития, функции. Внелегочные воздухоносные пути: отделы, оболочки, слои, функции.
Клетка - элементарная единица живого, состоящая из цитоплазмы и ядра и являющаяся основой строения, развития и жизнедеятельности всех животных и растительных организмов.
Основные компоненты клетки:
ядро;
цитоплазма.
По соотношению ядра и цитоплазмы (ядерно-цитоплазматическое отношение) клетки подразделяются на:
клетки ядерного типа объем ядра преобладает над объемом цитоплазмы;
клетки цитоплазматического типа цитоплазма преобладает над ядром.
По форме клетки бывают:
круглыми (клетки крови);
плоскими;
кубическими или цилиндрическими (клетки разных эпителиев);
веретенообразными;
отростчатыми (нервные клетки) и другие.
Большинство клеток содержат одно ядро, однако могут быть в одной клетке 2, 3 и более ядер многоядерные клетки. В организме имеются структуры (симпласты, синтиций), содержащие несколько десятков или даже сотен ядер. Однако эти структуры образуются или в результате слияния отдельных клеток (симпласты), или в результате неполного деления клеток (синцитий). Морфология этих структур будет рассмотрена при изучении тканей. Структурные компоненты цитоплазмы животной клетки:
плазмолемма (цитолемма);
гиалоплазма;
органеллы;
включения.
Плазмолемму, окружающую цитоплазму, нередко рассматривают как одну из органелл цитоплазмы.
Лейкоциты - ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровяное русло и проявляют свои функции в основном в тканях. Лейкоциты представляют собой неоднородную группу и подразделяются на несколько популяций. Классификация лейкоцитов:
содержании гранул в цитоплазме;
отношении к красителям по тинкториальным свойствам;
степени зрелости клеток данного типа;
морфологии и функции клеток;
размера клеток.
Классификация лейкоцитов:
зернистые (гранулоциты):
нейтрофилы (65—75 %): юные (0—0,5 %); палочкоядерные (3—5 %); сегментоядерные (60—65 %);
эозинофилы (1—5 %);
базофилы (0,5—1,0 %);
2. незернистые (агранулоциты):
лимфоциты (20—35 %): Т-лимфоциты; В-лимфоциты;
моноциты (6—8 %).
Лейкоцитарная формула — это процентное соотношение различных форм лейкоцитов (к общему числу лейкоцитов — 100 %). В таблице классификации лейкоцитов представлена лейкоцитарная формула здорового организма.
I. Нейтрофилы — самая большая популяция лейкоцитов (65—75 %). Морфологические особенности нейтрофилов:
сегментированное ядро;
в цитоплазме имеются мелкие гранулы, окрашивающиеся в слабо оксифильный (розовый) цвет, среди которых различают неспецифические азурофильные гранулы — разновидность лизосом, специфические гранулы, другие органеллы развиты слабо. Размеры в мазке 10—12 мкм.
По степени зрелости нейтрофилы подразделяются на:
юные (метамиелоциты)0—0,5 %;
палочкоядерные 3—5 %;
сегментоядерные (зрелые)60—65 %.
Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. Продолжительность жизни нейтрофилов 8 дней, из них 8—12 ч они находятся в крови, а затем выходят соединительную и эпителиальную ткани, где и выполняют основные функции. Функции нейтрофилов:
фагоцитоз бактерий;
фагоцитоз иммунных комплексов (антиген-антитело);
бактериостатическая и бактериолитическая;
выделение кейлонов и регуляция размножения лейкоцитов.
II.Эозинофилы. Содержание в норме 1—5 %, размеры в мазках 12—14 мкм. Морфологические особенности эозинофилов: двухсегментное ядро и в цитоплазме крупная оксифильная (красная) зернистость. Функции эозинофилов:
участвуют в иммунологических (аллергических и анафилактических) реакциях, угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина несколькими способами:
фагоцитируют гистамин и серотонин, выделяемые базофилами и тучными клетками, а также адсорбируют эти биологически активные вещества на цитолемме;
выделяют ферменты, расщепляющие гистамин и серотонин внеклеточно;
341566599060выделяют факторы, препятствующие выбросу гистамина и серотонина базофилами и тучными клетками;
способны фагоцитировать бактерии, но в незначительной степени.
Продолжительность жизни эозинофилов 6—8 дней, из них нахождение в кровеносном русле составляет 3—8 ч.
III. Базофилы. Это наименьшая популяция лейкоцитов (0,5—1 %), однако в общей массе в организме их огромное количество. Размеры в мазке 11—12 мкм. Морфологические особенности базофилов:
крупное слабо сегментированное ядро;
в цитоплазме содержатся крупные гранулы, окрашивающиеся основными красителями, метахроматично, за счет содержания в них гликозоаминогликанов — гепарина, а также гистамина, серотонина и других биологически активных веществ;
другие органеллы развиты слабо.
Функции базофилов заключают в участии в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции). Некоторые варианты изменения (сдвига) лейкоцитарной формулы:
Дыхательная система состоит из двух частей: воздухоносных путей и респираторного отдела. Полость носа состоит из преддверия и дыхательной части. Преддверие носа выстлано слизистой оболочкой, в составе которой находится многослойный плоский неороговевающий эпителий и собственная пластинка слизистой. Дыхательная часть выстлана однослойным многорядным реснитчатым эпителием. В его составе различают:
реснитчатые клетки — имеют мерцательные реснички, колеблющиеся против движения вдыхаемого воздуха, при помощи этих ресничек из полости носа удаляются микроорганизмы и инородные тела;
бокаловидные клетки секретируют муцины — слизь, которая склеивает инородные тела, бактерии и облегчает их выведение;
микроворсинчатые клетки являются хеморецепторными клетками;
базальные клетки играют роль камбиальных элементов.
Собственная пластинка слизистой оболочки образована рыхлой волокнистой неоформленной соединительной тканью, в ней залегают простые трубчатые белково-слизистые железы, сосуды, нервы и нервные окончания, а также лимфоидные фолликулы. Стенка гортани состоит из слизистой, фиброзно-хрящевой и адвентициальной оболочек. Слизистая оболочка представлена эпителиальной и собственной пластинками. Эпителий многорядный мерцательный, состоит из тех же клеток, что и эпителий носовой полости. Голосовые связки покрыты многослойным плоским неороговевающим эпителием. Собственная пластинка образована рыхлой волокнистой неоформленной соединительной тканью, содержит много эластических волокон. В слизистой оболочке гортани в собственной пластинке находится простые смешанные белковослизистые железы. Функции гортани:
проведение воздуха и его кондиционирование;
участие в речи;
секреторная функция;
барьерно-защитная функция.
Трахея является органом слоистого типа, и состоит из 4-х оболочек: слизистой, подслизистой, фиброзно-хрящевой и адвентициальной. Слизистая оболочка состоит из многорядного реснитчатого эпителия и собственной пластинки. Эпителий трахеи содержит такие виды клеток: реснитчатые, бокаловидные, вставочные или базальные, эндокринные. Бокаловидные и реснитчатые клетки образуют слизисто-реснитчатые (муко-цилиарный) конвейер. Эндокринные клетки имеют пирамидную форму, в базальной части содержат секреторные гранулы с биологически активными веществами: серотонин, бомбезин и другие. Базальные клетки являются малодифференцированными и выполняют роль камбия. Собственная пластинка слизистой образована рыхлой волокнистой соединительной тканью, содержит много эластических волокон, лимфатических фолликулов, и разрозненных гладких миоцитов.
БИЛЕТ № 22
1. Понятие о клеточных популяциях и клеточном диффероне. Типы дифферонов.
Производные клеток.
2. Железистый эпителий: принципы классификации желез. Секреторный цикл железистых клеток, его фазы, способы секреции.
З. Спинной мозг: развитие, строение серого и белого вещества. Ядра и нейроны серого вещества. Проводящие пути белого вещества. Спинальная рефлекторная дуга (изобразить схематично).
Клеточная популяция - это совокупность клеток данного типа. Например, в рыхлой соединительной ткани содержится: популяция фибробластов, популяция макрофагов, популяция тканевых базофилов и другие. Клеточный дифферон - это совокупность клеток данного типа (данной популяции), находящихся на разных этапах дифференцировки. Исходными клетками дифферона являются стволовые клетки, далее идут несколько переходных этапов - полустволовые, молодые (бластные) и созревающие клетки, и наконец зрелые или дифференцированные клетки. Различают полный дифферон - когда в ткани содержатся клетки всех этапов развития (например, эритроцитарный дифферон в красном костном мозге или эпидермальный дифферон в эпидермисе кожи) и неполный дифферон - когда в тканях содержатся только переходные и зрелые или даже только зрелые формы клеток (например, нейроциты центральной нервной системы). Производные клеток - это симпласт и синцитий. Симпласт - образование (структура), содержащее в единой цитоплазме большое количество ядер и органелл (общих и специальных). Симпласт образуется посредством слияния отдельных клеток. Локализация в организме: симпластотрофобласт хориона, симпласт поперечнополосатого мышечного волокна. Синцитий - образование, состоящее из клеток, соединенных между собой отростками, через которые цитоплазма одной клетки продолжается в другую клетку. Синцитий образуется в результате неполной цитотомии делящихся клеток. Локализация в организме - сперматогенный эпителий извитых канальцев семенника, пульпа эмалевого (зубного) органа.
Железистый эпителий образует подавляющее большинство желез организма. Состоит из
железистых клеток — гландулоцитов и базальной мембраны.
Классификация желез:
I. По количеству клеток:
одноклеточные (бокаловидная железа);
многоклеточные — подавляющее большинство желез.
II. По способу выведения секрета из железы и по строению:
экзокринные железы — имеют выводной проток;
эндокринные железы — не имеют выводного протока и выделяют инкреты (гормоны) в кровь и лимфу.
III. По способу выделения секрета из железистой клетки:
мерокриновые — потовые и слюнные железы;
апокриновые — молочная железа, потовые железы подмышечных впадин;
голокриновые — сальные железы кожи.
IV. По составу выделяемого секрета:
белковые (серозные);
слизистые;
смешанные белково-слизистые;
сальные.
V. По источникам развития:
эктодермальные;
энтодермальные;
мезодермальные.
VI. По строению:
простые;
сложные;
разветвленные;
неразветвленные.
Экзокринные железы состоят из концевых или секреторных отделов и выводных протоков. Концевые отделы могут иметь форму альвеолы или трубочки. Если в выводной проток открывается один концевой отдел — железа простая неразветвленная (альвеолярная или трубчатая). Если в выводной проток открываются несколько концевых отделов — железа простая разветвленная (альвеолярная, трубчатая или альвеолярно-трубчатая). Если главный выводной проток разветвляется — железа сложная, она же разветвленная (альвеолярная, трубчатая или альвеолярно-трубчатая). Фазы секреторного цикла железистых клеток:
поглощение исходных продуктов секретообразования;
синтез и накопление секрета;
выделение секрета (по мерокриновому или апокриновому типу);
восстановление железистой клетки.

Спинной мозг располагается в позвоночном канале и имеет вид округлого тяжа, расширенного в шейном и поясничном отделах и пронизанного центральным каналом. Он состоит из двух симметричных половин, разделенных спереди срединной щелью, сзади срединной бороздой, и характеризуется сегментарным строением; с каждым сегментом связана пара передних (вентральных) и пара задних (дорсальных) корешков. Серое вещество на поперечном разрезе имеет вид бабочки и включает парные передние (вентральные), задние (дорсальные) и боковые (латеральные) рога (в действительности представляют собой непрерывные столбы, идущие вдоль спинного мозга). Рога серого вещества обеих симметричных частей спинного мозга связаны друг с другом в области центральной серой комиссуры (спайки). Цитоархитектоника спинного мозга. Нейроны располагаются в сером веществе в виде не всегда резко разграниченных скоплений (ядер), в которых происходит переключение нервных импульсов с клетки на клетку (отчего их относят к нервным центрам ядерного типа). В зависимости от топографии аксонов нейроны спинного мозга подразделяются на:
корешковые нейроны, аксоны которых образуют передние корешки;
внутренние нейроны, отростки которых заканчиваются в пределах серого вещества спинного мозга;
пучковые нейроны, отростки которых образуют пучки волокон в белом веществе спинного мозга в составе проводящих путей.
Задние рога содержат несколько ядер, образованных мультиполярными вставочными нейронами мелких и средних размеров, на которых оканчиваются аксоны псевдоуниполярных клеток спинальных ганглиев, несущие разнообразную информацию от рецепторов, а также волокна нисходящих путей из лежащих выше (супраспинальных) центров. Аксоны вставочных нейронов:
оканчиваются в сером веществе спинного мозга на мотонейронах, лежащих в передних рогах;
образуют межсегментарные связи в пределах серого вещества спинного мозга;
выходят в белое вещество спинного мозга, где образуют восходящие и нисходящие проводящие пути, часть аксонов при этом переходит на противоположную сторону спинного мозга.
Боковые рога хорошо выражены на уровне грудных и крестцовых сегментов спинного мозга, содержат ядра, образованные телами вставочных нейронов, которые относятся к симпатическому и парасимпатическому отделам вегетативной нервной системы. На дендритах и телах этих клеток оканчиваются аксоны:
псевдоуниполярных нейронов, несущих импульсы от рецепторов, расположенных во внутренних органах;
нейронов центров регуляции вегетативных функций, тела которых находятся в продолговатом мозге.
Аксоны вегетативных нейронов, выходя из спинного мозга в составе передних корешков, образуют преганглионарные волокна, направляющиеся к симпатическим и парасимпатическим узлам. В нейронах боковых рогов основным медиатором является ацетилхолин, выявляется также ряд нейропептидов — энкефалин, нейротензин, вещество Р, соматостатин. Передние рога содержат мультиполярные двигательные клетки (мотонейроны) общим числом около 2—3 млн. Мотонейроны объединяются в ядра, каждое их которых обычно тянется на несколько сегментов. Различают крупные (диаметр тела 35—70 мкм) альфа-мотонейроны и рассеянные среди них более мелкие (15—35 мкм) гамма-мотонейроны. Белое вещество спинного мозга окружает серое и разделяется передними и задними корешками на симметричные дорсальные, латеральные и вентральные канатики. Оно состоит из продольно идущих нервных волокон (преимущественно миелиновых), образующих нисходящие и восходящие проводящие пути (тракты). Проводящие пути включают две группы: Проприоспинальные проводящие пути собственные проводящие пути спинного мозга, которые образованы аксонами вставочных нейронов, они осуществляют связь между его различными отделами. Эти пути проходят, в основном, на границе белого и серого вещества в составе латеральных и вентральных канатиков. Супраспинальные проводящие пути обеспечивают связь спинного мозга со структурами головного мозга и включают восходящие спинно-церебральные и нисходящие церебро-спинальные тракты.

26854155080
Схема рефлекторной дуги: нервный импульс от рецептора 1 передаётся по чувствительному (афферентному) нейрону 2 в спинной мозг. Клеточное тело 3 чувствительного нейрона расположено в спинальном ганглии вне спинного мозга. Аксон 4 чувствительного нейрона в сером веществе мозга связан посредством синапсов с одним или несколькими вставочными нейронами 5, которые, в свою очередь, связаны с дендритами 6 моторного (эфферентного) нейрона 7. Аксон 8 последнего передаёт сигнал от вентрального корешка 9 на эффектор 10 (мышцу или железу).
БИЛЕТ №23 (сомиты,почка)
Определение, содержание и задачи современной гистологии, цитологии и эмбриологии, их значение для медицины.
Агранулоциты: разновидности, процентное содержание, строение, функции. Т- и В- лимфоциты: содержание в крови, субпопуляции.
З. Толстая кишка: источники развития, отделы, оболочки, слои, функции. Структурно-функциональные отличия от тонкой кишки. Особенности строения и функции червеобразного отростка.
Основным объектом изучения гистологии является организм здорового человека. Основная задача гистологии состоит в изучении строения клеток, тканей, органов, установления связей между различными явлениями, установление общих закономерностей. Современный этап развития гистологии - внедрение не только электронного микроскопа, но и других методов: цито - и гистохимии, гисторадиографии и других вышеперечисленных современных методов. Основным методом исследования биологических объектов, используемым в гистологии, является микроскопирование, т. е. изучение гистологических препаратов под микроскопом. Различают следующие виды микроскопии:
световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;
ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);
люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;
фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов;
поляризационная микроскопия для изучения, главным образом, волокнистых структур;
микроскопия в темном поле для изучения живых объектов;
микроскопия в падающем свете для изучения толстых объектов;
электронная микроскопия (разрешающая способность до 0,1—0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.
Гистохимические и цитохимические методы позволяет определять состав химических веществ, и даже их количество в изучаемых структурах. Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах. Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов. Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.
Агранулоциты не содержат гранул в цитоплазме и подразделяются на две различные клеточные популяции - лимфоциты и моноциты. Лимфоциты являются клетками иммунной системы и потому в последнее время все чаще называются иммуноцитами. Лимфоциты (иммуноциты), при участии вспомогательных клеток (макрофагов), обеспечивают иммунитет — защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делится. Все остальные лейкоциты являются конечными дифференцированными клетками. Лимфоциты весьма гетерогенная (неоднородная) популяция клеток. Классификация лимфоцитов:
I. По размерам:
малые 4,5—6 мкм;
средние 7—10 мкм;
большие — больше 10 мкм.
В периферической крови около 90 % составляют малые лимфоциты и 10—12 % средние лимфоциты. Большие лимфоциты в нормальных условиях в периферической крови не встречаются. Электронно — микроскопически малые лимфоциты подразделяются на светлые (70—75 %) и темные (12—13 %). Морфология малых лимфоцитов:
относительно крупное круглое ядро, состоящее в основном из гетерохроматина (особенно в мелких темных лимфоцитах);
узкий ободок базофильной цитоплазмы, в которой содержатся свободные рибосомы и слабо выраженные органеллы — эндоплазматическая сеть, единичные митохондрии и лизосомы.
Морфология средних лимфоцитов:
более крупное и более рыхлое ядро, состоящее из эухроматина в центре и гетерохроматина по периферии;
в цитоплазме более развиты гранулярная и гладкая эндоплазматическая сеть, пластинчатый комплекс, больше митохондрий.
В крови содержится также 1—2 % плазмоцитов, образующихся из В-лимфоцитов. II. По источникам развития лимфоциты подразделяются на:
Т-лимфоциты их образование и дальнейшее развитие связано с тимусом (вилочковой железой);
В-лимфоциты, их развитие у птиц связано с особенным органом — фабрициевой сумкой, а у млекопитающих и человека пока точно не установленным ее аналогом.
Кроме источников развития Т- и В-лимфоциты отличаются между собой и по выполняемым функциям. III. По функциям:
а) В-лимфоциты и плазмоциты обеспечивают гуморальный иммунитет — защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов, белков и других);
б) Т-лимфоциты по выполняемым функциям подразделяются на киллеров, хелперов, супрессоров.
Киллеры или цитотоксические лимфоциты обеспечивают защиту организма от чужеродных клеток или генетически измененных собственных клеток, осуществляется клеточный иммунитет. Т-хелперы и Т-супрессоры регулируют гуморальный иммунитет: хелперы — усиливают, супрессоры — угнетают. Кроме того, в процессе дифференцировки и Т- и В-лимфоциты вначале выполняют рецепторные функции — распознают соответствующий их рецепторам антиген, а после встречи с ним трансформируются в эффекторные или регуляторные клетки. Моноциты это наиболее крупные клетки крови (18—20 мкм), имеющие круглое бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы. По своей функции моноциты являются фагоцитами. Моноциты являются не вполне зрелыми клетками. Они циркулируют в крови 2-е суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов. Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему или мононуклеарную фагоцитарную систему (МФС).
Функции толстого кишечника:
секреторная функция заключается в секреции кишечного сока (слизи, ферментов, дипептидаз);
всасывательная функция, в толстом кишечнике всасываются вода, минеральные вещества в небольшом количестве и другие компоненты пищи. Всасывательная способность толстого кишечника иногда используется в клинике для назначения питательных клизм при невозможности поступления в организм питательных веществ естественным путем;
экскреторная функция заключается в выделении из организма солей тяжелых металлов, конечных продуктов обмена веществ и другие;
выработка витаминов К и группы В. Эта функция осуществляется при участии бактерий;
пищеварительная функция (расщепление клетчатки, которое осуществляется в основном ферментами бактерий);
барьерно-защитная функция;
эндокринная функция.
Толстая кишка орган слоистого типа, состоит из слизистой, подслизистой, мышечной и серозной оболочек. Слизистая оболочка формирует рельеф: складки и крипты. Эпителий слизистой оболочки однослойный цилиндрический каемчатый, содержит клетки: каемчатые, бокаловидные, эндокринные, бескаемчатые, клетки Панета. В собственной пластинке слизистой оболочки содержится огромное количество одиночных лимфоидных узелков, иногда имеющих гигантские размеры, однако, отсутствуют пейеровы бляшки. Мышечная пластинка слизистой состоит из внутреннего циркулярного и наружного продольного слоев гладких миоцитов. Подслизистая оболочка образована рыхлой волокнистой соединительной тканью. Мышечная оболочка имеет два слоя: внутренний циркулярный и наружный продольный, причем продольный слой не сплошной, а образует три продольные ленты. Серозная оболочка состоит из рыхлой волокнистой соединительной ткани и мезотелия и имеет выпячивания, содержащие жировую ткань жировые привески. Таким образом, можно подчеркнуть следующие отличия стенки толстой кишки от тонкой:
отсутствие в рельефе слизистой оболочки ворсинок. Вместе с тем крипты имеют большую, чем в тонкой кишке, глубину;
наличие в эпителии большого числа бокаловидных клеток и лимфоцитов;
наличие большого числа одиночных лимфоидных узелков и отсутствие пейеровых бляшек в собственной пластинке;
продольный слой не сплошной, а формирует три ленты;
наличие выпячиваний — гаустр.
наличие жировых привесок в серозной оболочке.
Функции аппендикса:
антигензависимая дифференцировка лимфоцитов;
барьерно-защитная функция.
Стенка аппендикса состоит из 4-х оболочек, характерных для толстого кишечника, частью которого аппендикс является:
слизистой (цилиндрический однослойный эпителий, собственная и мышечная пластинки);
подслизистой (рыхлая волокнистая неоформленная соединительная ткань);
мышечной (внутренний циркулярный и наружный продольный слои гладкой мышечной ткани с межмышечной рыхлой волокнистой соединительной ткани);
серозной (слой рыхлой волокнистой соединительной ткани и мезотелий).
БИЛЕТ № 24(толстая кишка, кожа с волосом)
1. Дифференцировка зародышевых листков (гисто - и органогенез). Процессы, лежащие в основе дифференцировки.
2. Иммуноцитопоэз ( Т- и В лимфоцитопоэз): этапы, области кроветворения и образование иммуннокомпетентных клеток.
3. Вены: определение, классификация, особенности строения различных вен с учетом их топографии.
Гистогенез и органогенез. Каждая клетка развивающегося зародыша содержит определенный набор генов геном, совокупность генов организма — генотип. В основе гистогенеза лежат следующие процессы:
пролиферация — размножение;
рост;
эмиграция;
индукция;
детерминация;
дифференцировка.
Из кишечной энтодермы развивается эпителий желудочно-кишечного тракта и крупные пищеварительные железы: печень, поджелудочная железа. Желточная энтодерма дает начало первичным клеткам крови и половым клеткам. Из кожной эктодермы развиваются эпидермис, волосы, ногти и железы кожи. Из нейроэктодермы развивается нервная трубка и ганглиозная пластинка. Из внезародышевой эктодермы развивается соединительная ткань. Из мезодермы сомитов образуется дерма кожи, из миотомов сомитов поперечно-полосатая мышечная ткань, из склеротомов сомитов — костная и хрящевая ткани. Из париетального листка спланхнотома развивается серозная оболочка брюшины, плевры, перикарда, из висцерального листка спланхнотома — эндокард, миокард. В мезенхиме зародыша образуются все виды соединительной ткани, гладкая мышечная ткань, кровеносные сосуды.
Лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:
1 класс — стволовые клетки;
2 класс — полустволовые клетки-предшественницы лимфоцитопоэза;
3 класс — унипотентные Т-поэтинчувствительные клетки—предшественницы Т-лимфоцитопоэза.
Второй этап — этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов: киллеры, хелперы и супрессоры. В итоге третьего этапа Т-лимфоцитопоэза образуются эффекторные клетки клеточного иммунитета (Т-киллеры), регуляторные клетки гуморального иммунитета (Т-хелперы и Т-супрессоры), а также Т-памяти всех популяций Т-лимфоцитов. Первый этап В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток:
1 класс — стволовые клетки;
2 класс — полустволовые клетки-предшественницы лимфопоэза;
3 класс — унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза.
В процессе второго этапа В-лимфоциты приобретают разнообразные рецепторы к антигенам. Третий этап — антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт.
Строение вен зависит от гемодинамических условий. К венам безмышечного типа относятся вены плаценты, костей, мягкой мозговой оболочки, сетчатки глаза, ногтевого ложа, трабекул селезенки, центральные вены печени. Отсутствие в них мышечной оболочки объясняется тем, что кровь здесь движется под действием силы тяжести, и ее движение не регулируется мышечными элементами. Построены эти вены из внутренней оболочки с эндотелием и подэндотелиальным слоем и наружной оболочки из рыхлой волокнистой неоформленной соединительной ткани. Вены мышечного типа подразделяются на:
вены со слабым развитием мышечных элементов, к ним относятся мелкие, средние и крупные вены верхней части тела. Вены малого и среднего калибра со слабым развитием мышечной оболочки часто расположены внутриорганно. Подэндотелиальный слой в венах малого и среднего калибра развит относительно слабо. В их мышечной оболочке содержится небольшое количество гладких миоцитов, которые могут формировать отдельные скопления, удаленные друг от друга.
вены со средним развитием мышечных элементов, примером такого типа вен служит плечевая вена. Внутренняя оболочка состоит из эндотелиального и подэндотелиального слоев и формирует клапаны — дубликатуры с большим количеством эластических волокон и продольно расположенными гладкими миоцитами. Внутренняя эластическая мембрана отсутствует, ее заменяет сеть эластических волокон. Средняя оболочка образована спирально лежащими гладкими миоцитами и эластическими волокнами. Наружная оболочка в 2—3 раза толще, чем у артерии, и она состоит из продольно лежащих эластических волокон, отдельных гладких миоцитов и других компонентов рыхлой волокнистой неоформленной соединительной ткани;
вены с сильным развитием мышечных элементов, примером такого типа вен служат вены нижней части тела — нижняя полая вена, бедренная вена. Для этих вен характерно развитие мышечных элементов во всех трех оболочках.
БИЛЕТ № 25
1. Провизорные органы зародыша человека: источники и динамика развития, строение, функции.
2. Эпидермис и дерма кожи: слои, клеточный состав, возрастные изменения. Эпидермальный дифферон.
З. Спинномозговые ганглии: топография, строение, источники развития. Структурная и функциональная характеристика нейроцитов.
Функции провизорных органов:
хорион выполняет защитную, трофическую, эндокринную, экскреторную функции;
желточный мешок участвует в образовании первичных кровеносных сосудов и первичных половых клеток;
амнион — выработка околоплодных вод, защита плода от механических повреждений, поддержание определенной концентрации солей в околоплодных водах;
по аллантоису прорастают первичные кровеносные сосуды из зародыша к хориону, формируя плацентарный круг кровообращения.
Хорион возникает из трофобласта, который уже разделился на цитотрофобласт и синцитиотрофобласт. Последний под влиянием контакта со слизистой матки разрастается и разрушает ее. К концу 2-й недели образуются первичные ворсинки хориона в виде скопления эпителиальных клеток цитотрофобласта. В начале 3-й недели в них врастает мезодермальная мезенхима и возникают вторичные ворсинки, а когда к концу 3-й недели внутри соединительнотканной сердцевины появляются кровеносные сосуды, их называют третичными ворсинками. Амнион возникает путем расхождения клеток эпибласта внутренней клеточной массы. Амниотическая полость некоторое время ограничена клетками эпибласта и частично участком трофобласта. Затем боковые стенки эпибласта образуют складки, направленные вверх, которые впоследствии срастаются. Полость оказывается полностью выстланной эпибластическими (эктодермальными) клетками. Желточный мешок, появляется, когда от внутренней клеточной массы отделяется тонкий слой гипобласта и его внезародышевые энтодермальные клетки, перемещаясь, выстилают изнутри поверхность трофобласта. Образовавшийся первичный желточный мешок на 12—13-е сутки спадается и преобразуется во вторичный желточный мешок, связанный с зародышем. Энтодермальные клетки обрастают снаружи внезародышевой мезодермой. Аллантоис возникает у зародыша человека, в виде кармана вентральной стенки задней кишки, но его энтодермальная полость остается рудиментарной структурой. Тем не менее, в его стенках развивается обильная сеть сосудов, соединяющаяся с главными кровеносными сосудами зародыша. Мезодерма аллантоиса соединяется с мезодермой хориона, отдавая в него кровеносные сосуды.
Эпидермис — наружный слой кожи, он представлен многослойным плоским ороговевающим эпителием, в котором располагаются (помимо эпителиальных клеток — кератиноцитов) три типа отростчатых клеток. Вдается в подлежащую дерму в виде эпидермальных гребешков, чередующихся с ее сосочками. Эпидермис толстой кожи состоит из пяти слоев: базального, шиповатого, зернистого, блестящего и рогового. Эпителиальные клетки эпидермиса (кератиноциты) непрерывно образуются в базальном слое и смещаются в вышележащие слои, подвергаясь дифференцировке и в конечном итоге превращаясь в роговые чешуйки, слущиваются с поверхности кожи. Базальный слой кожи образован одним рядом базофильных клеток кубической или призматической формы, лежащих на базальной мембране, с хорошо развитыми органеллами, многочисленными кератиновыми филаментами (тонофиламентами). Шиповатый слой кожи состоит из нескольких рядов крупных клеток неправильной формы, связанных друг с другом десмосомами в области многочисленных отростков ("шипов"), которые содержат пучки тонофиламентов. Зернистый слой тонкий, образован несколькими рядами уплощенных (веретеновидных на разрезе) клеток. Ядро плоское, темное, в цитоплазме — многочисленные тонофиламенты, а также гранулы двух типов:
кератогиалиновые гранулы — крупные, базофильные, содержащие предшественник рогового вещества, в них проникают тонофиламенты;
пластинчатые гранулы (кератиносомы) — мелкие, с пластинчатой структурой. Содержат ряд ферментов и липидов, которые при экзоцитозе выделяются в межклеточное пространство, обеспечивая барьерную функцию и водонепроницаемость эпидермиса.
Блестящий слой кожи (имеется только в толстой коже) — светлый, гомогенный, содержит белок элеидин. Состоит из 1—2 рядов уплощенных оксифильных клеток с неопределяемыми границами. Роговой слой образован плоскими роговыми чешуйками, не содержащими ядра и органелл и заполненными тонофиламентами, лежащими в плотном матриксе. Дерма (собственно кожа) — соединительнотканная часть кожи (толщина: 0,5—5 мм) — располагается под эпидермисом, обеспечивает его питание, придает коже прочность и содержит ее производные. Она включает в себя два слоя:
сосочковый слой — образует конические выпячивания (сосочки), вдающиеся в эпидермис, состоит из рыхлой волокнистой соединительной ткани с лимфатическими и кровеносными капиллярами, нервными волокнами и окончаниями. Обеспечивает связь дермы с базальной мембраной эпидермиса с помощью ретикулярных, эластических волокон и особых якорных фибрилл;
сетчатый слой — более глубокий, толстый, прочный слой, который образован плотной волокнистой неоформленной соединительной тканью и содержит трехмерную сеть толстых пучков коллагеновых волокон, взаимодействующую с сетью эластических волокон.
Подкожная клетчатка (гиподерма) играет роль теплоизолятора, депо питательных веществ, витаминов и гормонов, обеспечивает подвижность кожи. Образована дольками жировой ткани с прослойками рыхлой волокнистой ткани; ее толщина связана с состоянием питания и участком тела, а общий характер распределения в организме обусловлен влиянием половых гормонов.
Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани. От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды. Нейроны спинномозгового узла характеризуются крупным сферическим телом и светлым ядром с хорошо заметным ядрышком. Дендриты нервных клеток идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Аксоны в совокупности образуют задние корешки, несущие нервные импульсы в спинной мозг или продолговатый мозг. Тело каждой нервной клетки в спинномозговом узле окружено слоем уплощенных клеток олигодендроглии, которые здесь называются мантийными глиоцитами, или глиоцитами ганглия, или же клетками-сателлитами. Они расположены вокруг тела нейрона и имеют мелкие округлые ядра. Снаружи глиальная оболочка нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер. Нейроны спинномозговых узлов содержат такие нейромедиаторы, как ацетилхолин, глутаминовая кислота, вещество P.
БИЛЕТ№ 26
1. Клетка; определение, составные части и их структурные элементы.
2. Гранулоциты: разновидности, строение, функции, процентное содержание, возрастные особенности.
3. Артерии: определение, классификация, функциональная роль. Строение различных типов артерий. Возрастные особенности строения артерий.
Клетка — элементарная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Плазматическая мембрана - биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. Плазматическая мембрана  состоит из фосфолипидов и липопротеидов с вкрапленными в неё молекулами белков, в частности, поверхностных антигенов и рецепторов. Цитоплазма. Жидкую составляющую цитоплазмы также называют цитозолем. В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом. Ту часть ЭПР, к мембранам которой прикреплены рибосомы, относят к гранулярному эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к агранулярному ЭПР, принимающему участие в синтезе липидов. Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Лизосомы - небольшое тельце, ограниченное от цитоплазмы одинарной мембраной. Основная функция — аутолиз — то есть расщепление отдельных органоидов, участков цитоплазмы клетки. Митохондрии - особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии.  Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы
Гранулоциты, или зернистые лейкоциты, — подгруппа белых клеток крови, характеризующихся наличием крупного сегментированного ядра и присутствием в цитоплазме специфических гранул, выявляемых в световой микроскоп при обычном окрашивании. Гранулы представлены крупными лизосомами и пероксисомами, а также видоизменениями этих органоидов. В зависимости от особенностей восприятия ими стандартных красителей гранулоциты делят на:
Нейтрофильные
Эозинофильные
Базофильные.
Артерии эластического типа. К таким сосудам относятся аорта и легочная артерии, они выполняют транспортную функцию и функцию поддержания давления в артериальной системе во время диастолы. В этом типе сосудов сильно развит эластический каркас, который дает возможность сосудам сильно растягиваться, сохраняя при этом целостность сосуда. Артерии эластического типа построены по общему принципу строения сосудов и состоят из внутренней, средней и наружной оболочек. Внутренняя оболочка достаточно толстая и образована тремя слоями: эндотелиальным, подэндотелиальным и слоем эластических волокон. В эндотелиальном слое клетки крупные, полигональные, они лежат на базальной мембране. Подэндотелиальный слой образован рыхлой волокнистой неоформленной соединительной тканью, в которой много коллагеновых и эластических волокон. Средняя оболочка состоит в основном из эластических элементов. Они образуют у взрослого человека 50—70 окончатых мембран, которые лежат друг от друга на расстояния 6—18 мкм и имеют толщину 2,5 мкм каждая. Наружная адвентициальная оболочка относительно тонкая, состоит из рыхлой волокнистой неоформленной соединительной ткани, содержит толстые эластические волокна и пучки коллагеновых волокон, идущие продольно или косо, а также сосуды сосудов и нервы сосудов, образованные миелиновыми и безмиелиновыми нервными волокнами. Артерии смешанного (мышечно-эластического) типа. Примером артерии смешанного типа является подмышечная и сонная артерии. Так как в этих артериях постепенно происходит снижение пульсовой волны, то наряду с эластическим компонентом они имеют хорошо развитый мышечный компонент для поддержания этой волны. Толщина стенки по сравнению с диаметром просвета у этих артерий значительной увеличивается. Внутренняя оболочка представлена эндотелиальным, подэндотелиальным слоями и внутренней эластической мембраной. В средней оболочке хорошо развиты как мышечный, так и эластический компоненты. Наружная оболочка образована рыхлой волокнистой неоформленной соединительной тканью, в которой встречаются пучки гладких миоцитов, и наружной эластической мембраной, лежащей сразу за средней оболочкой. Наружная эластическая мембрана выражена несколько слабее, чем внутренняя. Артерии мышечного типа. К этим артериям относятся артерии малого и среднего калибра, лежащие вблизи органов и внутриорганно. В этих сосудах сила пульсовой волны существенно снижается, и возникает необходимость создания дополнительных условий по продвижению крови, поэтому в средней оболочке преобладает мышечный компонент. Внутренняя оболочка имеет небольшую толщину и состоит из эндотелиального, подэндотелиального слоев и внутренней эластической мембраны. Их строение в целом такое же, как в артериях смешанного типа, причем внутренняя эластическая мембрана состоит из одного слоя эластических клеток. Средняя оболочка состоит из гладких миоцитов, расположенных по пологой спирали, и рыхлой сети эластических волокон, также лежащих спирально. Спиральное расположение миоцитов способствует большему уменьшению просвета сосуда. Эластические волокна сливаются с наружной и внутренней эластическими мембранами, образуя единый каркас. Наружная оболочка образована наружной эластической мембраной и слоем рыхлой волокнистой неоформленной соединительной тканью. В ней содержатся кровеносные сосуды сосудов, симпатические и парасимпатические нервные сплетения.
БИЛЕТ № 27
1. Оплодотворение: сущность, этапы, условия.
2. Рыхлая волокнистая неоформленная соединительная ткань: морфофункциональные особенности, локализация в организме. Фибробласты и макрофаги. Понятие о макрофагической системе.
З. Семявыносящие пути и вспомогательные железы мужской половой системы: их строение и функции, источники развития, возрастные особенности.
Оплодотворение — процесс слияния мужской и женской гамет, приводящее к образованию зиготы. При оплодотворении взаимодействуют мужская и женская гаплоидные гаметы, при этом сливаются их ядра, объединяются хромосомы, и возникает первая диплоидная клетка нового организма — зигота. Начало оплодотворения — момент слияния мембран сперматозоида и яйцеклетки, окончание оплодотворения — момент объединения материала мужского и женского ядер. Оплодотворение происходит в дистальном отделе маточной трубы и проходит 3 стадии: I стадия — дистантное взаимодействие, включает в себя 3 механизма:
хемотаксис — направленное движение сперматозоидов навстречу к яйцеклетке;
реотаксис — движение сперматозоидов в половых путях против тока жидкости;
капацитация — усиление двигательной активности сперматозоидов, под воздействием факторов женского организма (рН, слизь и другие).
II стадия — контактное взаимодействие, за 1,5—2 ч сперматозоиды приближаются к яйцеклетке, окружают ее и приводят к вращательным движениям, со скоростью 4 оборота в минуту. Одновременно из акросомы сперматозоидов выделяются сперматозилины, которые разрыхляют оболочки яйцеклетки. В том месте, где оболочка яйцеклетки истончается, максимально происходит оплодотворение, оволемма выпячивается и головка сперматозоида проникает в цитоплазму яйцеклетки, занося с собой центриоли, но оставляя снаружи хвостик.
III стадия — проникновение, самый активный сперматозоид приникает головкой в яйцеклетку, сразу после этого в цитоплазме яйцеклетки образуется оболочка оплодотворения, которая препятствует полиспермии. Затем происходит слияние мужского и женского ядер, этот процесс носит название синкарион. Этот процесс (сингамия) и есть собственно оплодотворение, появляется диплоидная зигота (новый организм, пока одноклеточный). Условия необходимые для оплодотворения:
концентрация сперматозоидов в эякуляте, не менее 60 млн. в 1 мл;
проходимость женских половых путей;
нормальная температура тела женщины;
слабощелочная среда в женских половых путях.

Характеристика рыхлой волокнистой соединительной ткани. Она состоит из клеток и межклеточного вещества, которое в свою очередь состоит из волокон (коллагеновых, эластических, ретикулярных) и аморфного вещества. Морфологические особенности, отличающие рыхлую волокнистую соединительную ткань от других разновидностей соединительных тканей:
многообразие клеточных форм (9 клеточных типов);
преобладание в межклеточном веществе аморфного вещества над волокнами.
Функции рыхлой волокнистой соединительной ткани:
трофическая;
опорная - образует строму паренхиматозных органов;
защитная — неспецифическая и специфическая (участие в иммунных реакциях) защита;
депо воды, липидов, витаминов, гормонов;
репаративная (пластическая).
Функционально ведущими структурными компонентами рыхлой волокнистой соединительной ткани являются клетки различной морфологии и функции, которые и будут рассмотрены в первую очередь, а затем уже межклеточное вещество. I.Фибробласты — преобладающая популяция клеток рыхлой волокнистой соединительной ткани. Они неоднородны по степени зрелости и функциональной специфичности и потому подразделяются на следующие субпопуляции:
малодифференцированные клетки;
дифференцированные или зрелые клетки, или собственно фибробласты;
старые фибробласты (дефинитивные)фиброциты, а также специализированные формы фибробласты;
миофибробласты;
фиброкласты.
II. Макрофаги — клетки, осуществляющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц, откуда и происходит их название. Однако фагоцитоз, хотя и важная, но далеко не единственная функция этих клеток. По современным данным макрофаги являются полифункциональными клетками. Образуются макрофаги из моноцитов крови после их выхода из кровеносного русла. Макрофаги характеризуются структурной и функциональной гетерогенностью в зависимости от степени зрелости, от области локализации, а также от их активации антигенами или лимфоцитами. Прежде всего, они подразделяются на фиксированные и свободные (подвижные). Макрофаги соединительной ткани являются подвижными или блуждающими и называются гистиоцитами. Защитная функция макрофагов проявляется в разных формах:
неспецифическая защита — защита посредством фагоцитоза экзогенных и эндогенных частиц и их внутриклеточного переваривания;
выделение во внеклеточную среду лизосомальных ферментов и других веществ: пирогена, интерферона, перекиси водорода, синглетного кислорода и другие;
специфическая или иммунологическая защита — участие в разнообразных иммунных реакциях.
Семявыносящие пути выполняют следующие функции:
депонирование, трофика, кондиционирование спермы;
обеспечение массированного выброса спермы во время коитуса;
секреторная функция;
эндокринная функция.
Основной тканью семявыносящих путей является эпителий. Он имеет разное строение в различных отделах и обеспечивает транспорт и дозревание сперматозоидов, так как сперматозоиды, образующиеся в извитых канальцах, сначала неподвижные. К семявыносящим путям относятся прямые канальцы, канальцы сети, выносящие канальцы головки придатка, канал придатка, семявыносящий и семяизвергающий протоки, мочеиспускательный канал. Прямые канальцы выстланы однослойным кубическим или цилиндрическим эпителием, под эпителием лежит собственная пластинка с отдельными гладкими миоцитами. Сеть семенника выстлана кубическим или плоским эпителием. Выносящие канальцы лежат в головке придатка. Имеют три хорошо сформированные оболочки: слизистую, мышечную и адвентициальную. Эпителий содержит два вида клеток: реснитчатые и секреторные. Эти два вида клеток имеют разную высоту, лежат группами, в результате просвет канальца неровный, формируются как бы языки пламени за счет выступающих реснитчатых клеток. Эпителий лежит на тонкой собственной пластинке слизистой оболочки. Мышечная оболочка образована несколькими слоями гладких миоцитов, а адвентициальная — рыхлой волокнистой соединительной тканью. Канал придатка лежит в теле придатка и образован теми же оболочками, что и выносящие канальцы. Эпителий канала придатка вырабатывает жидкость, разбавляющую сперму, и фактор продольной подвижности сперматозоидов. Семявыносящий проток построен по типу слоистого органа, имеет слизистую, мышечную и адвентициальную оболочки. Эпителий слизистой двухрядный (реснитчатые и вставочные клетки). Собственная пластинка — рыхлая волокнистая соединительная ткань. Мышечная оболочка состоит из внутреннего и наружного продольного и среднего циркулярного слоев. Адвентициальная оболочка представлена рыхлой волокнистой соединительной тканью. Между местом впадения семявыносящий проток семенных пузырьков и началом мочеиспускательного канала находится семяизвергательный канал, построенный так же, как и семявыносящий проток, но в нем тоньше мышечная оболочка.
БИЛЕТ № 28(надпочечник, сердце)
1. Регенерация тканей: типы и способы, регуляция.
2.Лимфоидный аппарат пищеварительной и дыхательной системы. Строение, развитие и функциональное значение миндалин. Возрастные особенности.
З. Нервная система: структурные компоненты, тканевой состав, источники развития, функции. Классификация (морфологическая и функциональная). Нерв: строение и регенерация.
Регенерация — восстановление клеток, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.
Формы регенерации:
физиологическая регенерация — восстановление клеток ткани после их естественной гибели (например, кроветворение);
репаративная регенерация — восстановление тканей и органов после их повреждения (травмы, воспаления, хирургического воздействия и так далее).
Уровни регенерации — соответствуют уровням организации живой материи:
клеточный (внутриклеточный);
тканевой;
органный.
Способы регенерации:
клеточный способ размножением (пролиферацией) клеток;
внутриклеточный способ внутриклеточное восстановление органелл, гипертрофия, полиплоидия;
заместительный способ замещение дефекта ткани или органа соединительной тканью, обычно с образованием рубца, например: образование рубцов в миокарде после инфаркта миокарда.
Факторы регулирующие регенерацию:
гормоны — биологически активные вещества;
медиаторы — индикаторы метаболических процессов;
кейлоны — это вещества гликопротеидной природы, которые синтезируются соматическими клетками, основная функция торможение клеточного созревания;
антагонисты кейлонов — факторы роста;
микроокружение любой клетки.
Миндалины — скопления лимфоидной ткани, расположенные в области носоглотки и ротовой полости. Миндалины выполняют защитную и кроветворную функции, участвуют в выработке иммунитета — являются защитным механизмом первой линии на пути вдыхаемых чужеродных патогенов. Полная иммунологическая роль миндалин всё еще остаётся неясной. Вместе с другими лимфоидными образованиями носоглотки миндалины образуют глоточное лимфаденоидное кольцо. Миндалины подразделяются на:
парные
нёбные — в углублении между мягким нёбом и языком (первая и вторая миндалины).
трубные — в области глоточного отверстия слуховой трубы (пятая и шестая миндалины)
непарные
глоточная (носоглоточная) — в области свода и задней части стенки глотки
язычная — под поверхностью задней части языка (четвертая миндалина)
Нёбные миндалины иннервируются ветвями языкоглоточного нерва.
Нервная система осуществляет объединение частей организма в единое целое (интеграцию), обеспечивает регуляцию разнообразных процессов, координацию функции различных органов и тканей и взаимодействие организма с внешней средой. Нервная система воспринимает многообразную информацию, поступающую из внешней среды и из внутренних органов, перерабатывает ее и генерирует сигналы, обеспечивающие ответные реакции, адекватные действующим раздражителям.

Анатомически нервную систему подразделяют на:
центральную нервную систему, которая включает в себя головной и спинной мозг;
периферическую нервную систему, к которой относят периферические нервные узлы (ганглии), нервы и нервные окончания.
Физиологически (в зависимости от характера иннервации органов и тканей) нервную систему разделяют на:
соматическую (анимальную) нервную систему, которая регулирует преимущественно функции произвольного движения;
автономную (вегетативную) нервную систему, которая регулирует деятельность внутренних органов и желез. Влияя на активность обмена веществ в различных органах и тканях в соответствии с меняющимися условиями их функционирования и внешней среды, она осуществляет адаптационно-трофическую функцию.
Вегетативная нервная система подразделяется на взаимодействующие друг с другом симпатический и парасимпатический отделы, которые различаются локализацией центров в мозге и периферических узлов, а также характером влияния на внутренние органы. В соматическую и автономную нервную систему входят звенья, расположенные в центральной и периферической нервных системах. Функционально ведущей тканью органов нервной системы является нервная ткань, включающая нейроны и глию. Скопление нейронов в центральной нервной системе обычно называются ядрами, а в периферической нервной системе — узлами (ганглиями). Пучки нервных волокон в центральной нервной системе носят название трактов, в периферической нервной системе они образуют нервы. Нервы (нервные стволы) связывают нервные центры головного и спинного мозга с рецепторами и рабочими органами. Они образованы пучками нервных волокон, которые объединены соединительнотканными компонентами (оболочками): эндоневрием, периневрием и эпиневрием. Эндоневрий — тонкие прослойки рыхлой волокнистой соединительной ткани, окружающие отдельные нервные волокна и связывающие их в единый пучок. Периневрий — оболочка, покрывающая каждый пучок нервных волокон снаружи и отдающая перегородки вглубь пучка. Он образован 2—10 концентрическими пластами уплощенных клеток, связанных плотными и щелевыми соединениями. В терминальной части нерва периневрий образован лишь одним слоем плоских клеток, который дистально резко обрывается и имеет вид открытой манжетки.
БИЛЕТ №29
1.Дифференцировка зародышевых листков ( гисто - И органогенез). Процессы, лежащие в основе дифференцировки.
2.Структурно-функциональная и генетическая классификация тканей. Понятие о клеточных популяциях и клеточном диффероне.
3. Орган равновесия (сенсорная система гравитации): развитие, строение, значение; гистофизиология макул и крист.
Гистогенез и органогенез. Каждая клетка развивающегося зародыша содержит определенный набор генов геном, совокупность генов организма — генотип. В основе гистогенеза лежат следующие процессы:
пролиферация — размножение;
рост;
эмиграция;
индукция;
детерминация;
дифференцировка.
Из кишечной энтодермы развивается эпителий желудочно-кишечного тракта и крупные пищеварительные железы: печень, поджелудочная железа. Желточная энтодерма дает начало первичным клеткам крови и половым клеткам. Из кожной эктодермы развиваются эпидермис, волосы, ногти и железы кожи. Из нейроэктодермы развивается нервная трубка и ганглиозная пластинка. Из внезародышевой эктодермы развивается соединительная ткань. Из мезодермы сомитов образуется дерма кожи, из миотомов сомитов поперечно-полосатая мышечная ткань, из склеротомов сомитов — костная и хрящевая ткани. Из париетального листка спланхнотома развивается серозная оболочка брюшины, плевры, перикарда, из висцерального листка спланхнотома — эндокард, миокард. В мезенхиме зародыша образуются все виды соединительной ткани, гладкая мышечная ткань, кровеносные сосуды.
Клеточная популяция - это совокупность клеток данного типа. Например, в рыхлой соединительной ткани содержится: популяция фибробластов, популяция макрофагов, популяция тканевых базофилов и другие. Клеточный дифферон - это совокупность клеток данного типа (данной популяции), находящихся на разных этапах дифференцировки. Исходными клетками дифферона являются стволовые клетки, далее идут несколько переходных этапов - полустволовые, молодые (бластные) и созревающие клетки, и наконец зрелые или дифференцированные клетки. Различают полный дифферон - когда в ткани содержатся клетки всех этапов развития (например, эритроцитарный дифферон в красном костном мозге или эпидермальный дифферон в эпидермисе кожи) и неполный дифферон - когда в тканях содержатся только переходные и зрелые или даже только зрелые формы клеток (например, нейроциты центральной нервной системы). Производные клеток - это симпласт и синцитий. Симпласт - образование (структура), содержащее в единой цитоплазме большое количество ядер и органелл (общих и специальных). Симпласт образуется посредством слияния отдельных клеток. Локализация в организме: симпластотрофобласт хориона, симпласт поперечнополосатого мышечного волокна. Синцитий - образование, состоящее из клеток, соединенных между собой отростками, через которые цитоплазма одной клетки продолжается в другую клетку. Синцитий образуется в результате неполной цитотомии делящихся клеток. Локализация в организме - сперматогенный эпителий извитых канальцев семенника, пульпа эмалевого (зубного) органа.
Орган равновесия состоит из сферического пузырька — мешочка или саккулюса, эллиптического пузырька маточки или утрикулюса и трех полукружных каналов. В месте соединения этих каналов с маточкой образуются расширения — ампулы. Мешочек соединяется с каналом улитки. В ампуле находятся рецепторные участки в виде гребешков или крист. Эпителий макул состоит из 7000—9000 сенсорных волосковых эпителиоцитов и расположенных между ними опорных клеток. Различают два вида волосковых клеток:
грушевидные клетки имеют широкое основание и узкую апикальную часть. На апикальной поверхности имеется кутикула с 60—80 неподвижными волосками — стереоцилиями. Кроме того, на поверхности клеток имеется и подвижный волосок — киноцилия, представляющая собой эксцентрично расположенную ресничку. К основанию каждой грушевидной клетки подходит нервное окончание в виде чаши — чашеобразное нервное окончание;
цилиндрические клетки имеют призматическую форму, и на них оканчиваются нервные окончания дендритов — биполярных клеток точечного типа. В остальном строение этих клеток похоже на строение грушевидных.
опорные клетки, которые имеют призматическую форму и многочисленные микроворсинки на апикальной поверхности. Ее основной функцией является голокриновая секреция компонентов отолитовой мембраны.
Гребешки в ампулах полукружных каналов принципиально построены так же, как и пятна. В их составе имеются рецепторные волосковые (цилиндрические и грушевидные) и опорные клетки. Общее число волосковых клеток равно 15 000—17 000. Вместо отолитовой мембраны здесь формируется желатинообразное вещество в виде купола. Купол является продуктом голокриновой секреции опорных клеток, он в отличии от отолитовой мембраны не содержит отолитов. В купол погружены киноцилии и стереоцилии. При движении головы и ускоренном движении тела купол отклоняется из-за перемещения эндолимфы в полукружных каналах. Основная функция гребешков — восприятие угловых ускорений.
БИЛЕТ № 30
1.Плазмолемма: слои, химический состав, функции.
2.Понятие о клеточном и гуморальном иммунитете. Кооперация клеток в иммунных реакциях.
3.Тонкая кишка: отделы, оболочки, слои, тканевой состав, источники развития, функции. Гистофизиология системы крипта - ворсинка, типы клеток.
Плазмолемма оболочка животной клетки, ограничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой. Плазмолемма имеет толщину около 10 нм, и состоит на 40 % из липидов, на 5—10 % из углеводов (в составе гликокаликса), и на 50—55 % из белков. Функции плазмолеммы:
разграничивающая (барьерная);
рецепторная или антигенная;
транспортная;
образование межклеточных контактов.
Основу строения плазмолеммы составляет двойной слой липидных молекул - билипидная мембрана, в которую местами включены молекулы белков, также имеется надмембранный слой гликокаликс, структурно связанный с белками и липидами билипидной мембраны, и в некоторых клетках имеется подмембранный слой. Каждый монослой ее образован в основном молекулами фосфолипидов и, частично, холестерина. При этом в каждой липидной молекуле различают две части: гидрофильную головку и гидрофобные хвосты. Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки билипидного слоя соприкасаются с внешней или внутренней средой. Билипидная мембрана, а точнее ее глубокий гидрофобный слой, выполняет барьерную функцию, препятствуя проникновению воды и растворенных в ней веществ, а также крупных молекул и частиц. Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя.
По локализации в мембране белки подразделяются на:
интегральные пронизывают всю толщу билипидного слоя;
полуинтегральные включающиеся только в монослой липидов (наружный или внутренний);
прилежащие к мембране, но не встроенные в нее.
По выполняемой функции белки плазмолеммы подразделяются на:
структурные белки;
транспортные белки;
рецепторные белки;
ферментные.
Помимо барьерной функции, предохраняющей внутреннюю среду клетки, плазмолемма выполняет транспортные функции, обеспечивающие обмен клетки с окружающей средой.
Клеточный иммунитет — это такой тип иммунного ответа, в котором не участвуют ни антитела, ни система комплемента. В процессе клеточного иммунитета активируются макрофаги, натуральные киллеры, антиген-специфичные цитотоксические Т-лимфоциты, и в ответ на антиген выделяются цитокины. Иммунная система разделена на две части — систему гуморального иммунитета и систему клеточного иммунитета. В случае гуморального иммунитета, защитные функции выполняют молекулы, находящиеся в плазме крови, но не клеточные элементы. В то время как в случае клеточного иммунитета защитная функция связана именно с клетками иммунной системы. Лимфоциты кластера дифференцировки CD4 или Т-хелперы осуществляют защиту против различных патогенов. Система клеточного иммунитета выполняет защитные функции следующими способами:
путем активации антиген-специфических цитотоксичных Т-лимфоцитов, которые могут вызывать апоптоз соматических клеток, демонстрируя на поверхности эпитопы чужеродных антигенов, например, клеток, зараженных вирусами, содержащими бактерии и клеток опухолей, демонстрирующих опухолевые антигены;
путем активации макрофагов и натуральных киллеров, которые разрушают внутриклеточные патогены;
путем стимулирования секреции цитокинов, которые оказывают влияние на другие клетки иммунной системы, принимающие участие в адаптивном иммунном ответе и врожденном иммунном ответе.
Клеточный иммунитет направлен преимущественно против микроорганизмов, которые выживают в фагоцитах и против микроорганизмов, поражающие другие клетки.
Функции тонкого кишечника:
пищеварительная функция заключается в расщеплении компонентов химуса, осуществляется ферментами поджелудочной железы и вырабатываемыми в определенном количестве собственными ферментами дипептидазами. Белки расщепляются энтерокиназой, трипсином, эрепсином; липазы ферментируют жиры; амилазы, мальтаза, сахараза, лактазауглеводы; нуклеаза — нуклеопротеиды. В тонкой кишке происходит как полостное, так и пристеночное пищеварение;
всасывательная функция;
моторно-эвакуаторная функция;
секреторная функция;
экскреторная функция;
эндокринная функция;
барьерно-защитная.
Тонкий кишечник состоит из трех отделов: двенадцатиперстной, тощей и подвздошной кишок. Все они — органы слоистого типа и состоят из четырех оболочек: слизистой, подслизистой, мышечной и серозной. Наряду с общим планом строения и большим сходством эти три отдела имеют и различия, заключающиеся в следующем:
различной высоте ворсинок (нарастает от двенадцатиперстной кишки к подвздошной), их ширине (более широкие — в двенадцатиперстной кишке), количестве (наибольшее количество в двенадцатиперстной кишке);
наличии групповых лимфоидных фолликулов (пейеровых бляшек), которые преимущественно находятся в подвздошной кишке, однако, иногда могут обнаруживаться в двенадцатиперстной и тощей кишках;
наличии дуоденальных желез (в двенадцатиперстной кишке).
Слизистая оболочка формирует рельеф: ворсинки, крипты и циркулярные складки Керкринга, которые увеличивают рабочую поверхность кишки. Ворсинки — пальцевидные выпячивания слизистой оболочки в просвет кишечника. Содержат кровеносные и лимфатические капилляры. Бокаловидные энтероциты — вторая разновидность клеток эпителия ворсинок. Это одноклеточные слизистые железы. Они вырабатывают углеводно-протеидные комплексы — муцины, выполняющие защитную функцию и способствующие продвижению компонентов пищи в кишечнике. Количество бокаловидных клеток возрастает по направлению к каудальному отделу. Собственная пластинка представлена рыхлой волокнистой соединительной тканью, содержит большое количество ретикулярных волокон, эозинофилов, плазмоцитов. В ней находятся также одиночные и групповые лимфоидные фолликулы (пейеровы бляшки). Мышечная пластинка состоит из двух слоев гладкой мышечной ткани: внутреннего циркулярного и наружного продольного. От циркулярного слоя скопления клеток идут в ворсинку и в подслизистую основу. Подслизистая оболочка образована рыхлой волокнистой соединительной тканью и содержит дольки жировой ткани. В ней находятся сосудистое и нервное сплетения. Мышечная оболочка состоит из 2 слоев гладкой мышечной ткани. Направление пучков в слоях не строго продольное и циркулярное, а спиральное. Между слоями находится рыхлой волокнистой соединительной ткани, в которой залегают межмышечное сосудистое и нервное сплетения. Функция мышечной оболочки — обеспечение перистальтических движений стенки кишки и продвижение химуса в каудальном направлении. Серозная оболочка образована рыхлой волокнистой соединительной тканью и слоем мезотелия.
БИЛЕТ № 31
1. Структура и функциональная роль мембранных органелл: эндоплазматической сети и пластинчатого комплекса.
2.Проводящая система сердца: структурные компоненты, типы клеток, строение, функции. Кровоснабжение и иннервация сердца.
3.Орган зрения: составные части, строение глазного яблока, нейронные состав сетчатки, структурные основы саморегуляции органа зрения.
Классификация органелл: общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки.
Они в свою очередь делятся на:
мембранные органеллы: митохондрии, эндоплазматическая сеть, пластинчатый комплекс, лизосомы, пероксисомы;
немембранные органеллы: рибосомы, клеточный центр, микротрубочки, микрофибриллы, микрофиламенты.
Специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток. Специальные органеллы делятся на:
цитоплазматические — миофибриллы, нейрофибриллы, тонофибриллы;
органеллы клеточной поверхности — реснички, жгутики.
Общая характеристика мембранных органелл
Все разновидности мембранных органелл имеют общий принцип строения:
они представляют собой замкнутые и изолированные участки в гиалоплазме (компарменты), имеющие свою внутреннюю среду;
стенка их состоит из билипидной мембраны и белков, подобно плазмолемме.
Однако билипидные мембраны органелл имеют и некоторые особенности:
толщина билипидных мембран органелл меньше (7 нм), чем в плазмолемме (10 нм);
мембраны отличаются по количеству и качеству белков, встроенных в мембраны.
Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы. Различают две разновидности эндоплазматической сети:
зернистая (гранулярная или шероховатая);
незернистая или гладкая.
На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы. Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы — диктиосомы. Функции пластинчатого комплекса:
транспортная — выводит из клетки, синтезированные в ней продукты;
конденсация и модификация веществ, синтезированных в зернистой эндоплазматической сети;
образование лизосом (совместно с зернистой эндоплазматической сетью);
участие в обмене углеводов;
синтез молекул, образующих гликокаликс цитолеммы;
синтез, накопление и выведение муцина (слизи);
модификация мембран, синтезированных в эндоплазматической сети и превращение их в мембраны плазмолеммы.
Различают три вида проводящих кардиомиоцитов:
Р-клетки (пейсмекерные клетки) образуют синоаурикулярный узел. Они отличаются от рабочих кардиомиоцитов тем, что способны к спонтанной деполяризации и образованию электрического импульса. Волна деполяризации передается чрез нексусы типичным кардиомиоцитам предсердия, которые сокращаются. Кроме того, возбуждение передается на промежуточные атипичные кардиомиоциты предсердно—желудочкового узла. Генерация импульсов Р-клетками происходит с частотой 60—80 в 1 мин;
промежуточные (переходные) кардиомиоциты предсердно-желудочкового узла передают возбуждение на рабочие кардиомиоциты, а также на третий вид атипичных кардиомиоцитов — клетки-волокна Пуркинье. Переходные кардиомиоциты также способны самостоятельно генерировать электрические импульсы, однако их частота ниже, чем частота импульсов, генерируемых пейсмекерными клетками, и оставляет 30—40 в мин;
клетки-волокна — третий тип атипичных кардиомиоцитов, из которых построены пучок Гиса и волокна Пуркинье. Основная функция клеток-волокон - передача возбуждения от промежуточных атипичных кардиомиоцитов рабочим кардиомиоцитам желудочка. Кроме того, эти клетки способны самостоятельно генерировать электрические импульсы с частотой 20 и менее в 1 минуту;
секреторные кардиомиоциты располагаются в предсердиях, основной функцией этих клеток является синтез натрийуретического гормона. Он выделяется в кровь тогда, когда в предсердие поступает большое количество крови, то есть при угрозе повышения артериального давления. Выделившись в кровь, этот гормон действует на канальцы почек, препятствуя обратной реабсорбции натрия в кровь из первичной мочи. При этом в почках вместе с натрием из организма выделяется вода, что ведет к уменьшению объема циркулирующей крови и падению артериального давления.
Кровоснабжение сердца осуществляется за счет венечных артерий, берущих начало от дуги аорты. Венечные артерии имеют сильно развитый эластический каркас с выраженными наружной и внутренней эластическими мембранами. Венечные артерии сильно разветвляются до капилляров во всех оболочках, а также в сосочковых мышцах и сухожильных нитях клапанов. Сосуды содержатся и в основании клапанов сердца. Из капилляров кровь собирается в коронарные вены, которые изливают кровь или в правое предсердие, или в венозный синус. Еще более интенсивное кровоснабжение имеет проводящая система, где плотность капилляров на единицу площади выше, чем в миокарде.
БИЛЕТ № 32(печень, кора мозжечка)
1.Гаструляция: способы, фазы, хронология. Зародышевые листки.
2.Система крови и ее компоненты. Кровь как ткань: составные части, разновидности форменных элементов, источники развития, химический состав и значение плазмы.
3.Орган равновесия (сенсорная система гравитации): развитие, строение, значение, гистофизиология макул и крист.
Гаструляция — сложный процесс морфогенетических изменений, сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате чего образуются зародышевые листки (эктодерма, мезодерма и энтодерма) — источники зачатков тканей и органов. В эмбриобласте на 6—7 сутки после оплодотворения протекает I фаза гаструляции. У человека гаструляция осуществляется 2-я процессами: деляминацией и иммиграцией. Эмбриобласт расслаивается на эпибласт — слой цилиндрических клеток, ограничивающий вместе с трофобластом полость амниона, и гипобласт — слой кубических клеток, обращенных к бластоцелю. Эпибласт и гипобласт вместе образуют двухслойный зародышевый диск или щиток. Из зародышевого щитка в полость бластоцисты выселяются клетки внезародышевой паренхимы, часть из этих клеток оттесняется к цитотрофобласту, при этом образуется хорион. В дальнейшем на месте двухслойного зародышевого диска путем его инвагинации, миграции и пролиферации клеток развиваются первичные зародышевые листки: эктодерма, мезодерма и энтодерма. Из эктодермы образуются:
кожный эпителий,
нервная система,
органы чувств,
передний и задний отделы кишечной трубки.
У позвоночных из энтодермы развивается слизистая оболочка всего кишечника и связанные с ним железы (печень, поджелудочная железа и др.).
Кровь и лимфа — это ткани внутренней среды организма, они является разновидностью соединительной ткани. У данных видов тканей имеются следующие особенности: мезенхимальное происхождение, большой удельный вес межуточного вещества, большое разнообразие структурных компонентов.

Функции крови делятся на:
транспортная;
трофическая;
дыхательная;
защитная;
экскреторная;
регуляция гомеостаза.
Составные компоненты крови:
клетки — форменные элементы;
жидкое межклеточное вещество — плазма крови.
Масса крови составляет 5 % от массы тела человека, объем крови около 5,5 л. Депо крови — печень, селезенка, кожа и кишечник, в кишечнике может депонироваться до 1 л крови. Потеря человеком 1/3 объема крови ведет к смертельному исходу. Соотношение частей крови: плазма — 55—60 %, форменные элементы — 40—45 %. Плазма крови состоит из воды на 90—93 % и содержащихся в ней веществ — 7—10 %. В плазме содержатся белки, аминокислоты, нуклеотиды, глюкоза, минеральные вещества, продукты обмена. Белки плазмы крови: альбумины, глобулины (в том числе иммуноглобулины), фибриноген, белки-ферменты и другие. Функции плазмы — транспорт растворимых веществ. В связи с тем, что в крови содержатся как истинные клетки (лейкоциты), так и постклеточные образования — эритроциты и тромбоциты, принято именовать их в совокупности форменными элементами. Классификация форменных элементов:
эритроциты;
тромбоциты;
лейкоциты.
Качественный состав крови (анализ крови) определяется такими понятиями как гемограмма и лейкоцитарная формула. Гемограмма — количественное содержание форменных элементов крови в одном литре или одном миллилитре. Гемограмма взрослого человека: I. эритроцитов:
у женщины — 3,7—4,9 млн. в литре;
у мужчины — 3,9—5,5 млн. в литре;
II. тромбоцитов 200—400 тыс. в литре;
III. лейкоцитов 3,8—9,0 тыс. в литре.
Орган равновесия состоит из сферического пузырька — мешочка или саккулюса, эллиптического пузырька маточки или утрикулюса и трех полукружных каналов. В месте соединения этих каналов с маточкой образуются расширения — ампулы. Мешочек соединяется с каналом улитки. В ампуле находятся рецепторные участки в виде гребешков или крист. Эпителий макул состоит из 7000—9000 сенсорных волосковых эпителиоцитов и расположенных между ними опорных клеток. Различают два вида волосковых клеток:
грушевидные клетки имеют широкое основание и узкую апикальную часть. На апикальной поверхности имеется кутикула с 60—80 неподвижными волосками — стереоцилиями. Кроме того, на поверхности клеток имеется и подвижный волосок — киноцилия, представляющая собой эксцентрично расположенную ресничку. К основанию каждой грушевидной клетки подходит нервное окончание в виде чаши — чашеобразное нервное окончание;
цилиндрические клетки имеют призматическую форму, и на них оканчиваются нервные окончания дендритов — биполярных клеток точечного типа. В остальном строение этих клеток похоже на строение грушевидных.
опорные клетки, которые имеют призматическую форму и многочисленные микроворсинки на апикальной поверхности. Ее основной функцией является голокриновая секреция компонентов отолитовой мембраны.
Гребешки в ампулах полукружных каналов принципиально построены так же, как и пятна. В их составе имеются рецепторные волосковые (цилиндрические и грушевидные) и опорные клетки. Общее число волосковых клеток равно 15 000—17 000. Вместо отолитовой мембраны здесь формируется желатинообразное вещество в виде купола. Купол является продуктом голокриновой секреции опорных клеток, он в отличии от отолитовой мембраны не содержит отолитов. В купол погружены киноцилии и стереоцилии. При движении головы и ускоренном движении тела купол отклоняется из-за перемещения эндолимфы в полукружных каналах. Основная функция гребешков — восприятие угловых ускорений.
БИЛЕТ № 33
1. Ядро: структурные элементы и функциональная роль. Ядерно-цитоплазматические отношения.
2.Иммуннокомпетентные клетки: классификация, строение, функциональная роль. Понятие о рецепторных и эффекторных иммунных клетках.
З.Органы чувств. Определение. Понятие о сенсорных системах (анализаторах), их составные части. Строение периферического отдела. Понятие и классификация рецепторов. Орган вкуса.
Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки одни структурные элементы исчезают, другие существенно преобразуются.
Классификация структурных элементов интерфазного ядра:
хроматин;
ядрышко;
кариоплазма;
кариолемма.
Хроматин представляет собой вещество, хорошо воспринимающее краситель, откуда и произошло его название. Различают два вида хроматина:
эухроматин — рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;
гетерохроматин — компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.
По химическому строению хроматин состоит из:
дезоксирибонуклеиновой кислоты (ДНК) 40 %;
белков около 60 %;
рибонуклеиновой кислоты (РНК) 1 %.
Ядерные белки представлены формами:
щелочными или гистоновыми белками 80—85 %;
кислыми белками15—20%.
Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. Ядрышко — сферическое образование (1—5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Микроскопически в ядрышке различают:
фибриллярный компонент — локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);
гранулярный компонент — локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.
Кариоплазма состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина. Кариолемма — ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина. Кариолемма состоит из двух билипидных мембран — внешней и внутренней ядерной мембраны. В кариолемме имеются поры, диаметром 80—90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга. Просвет поры закрыт особым структурным образованием — комплексом поры, который состоит из фибриллярного и гранулярного компонента.
Функции ядер соматических клеток:
хранение генетической информации, закодированной в молекулах ДНК;
репарация (восстановление) молекул ДНК после их повреждения с помощью специальных репаративных ферментов;
редупликация (удвоение) ДНК в синтетическом периоде интерфазы;
передача генетической информации дочерним клеткам во время митоза;
реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтеза информационной, рибосомальной и транспортной РНК.
Функции ядер половых клеток:
хранение генетической информации;
передача генетической информации при слиянии женских и мужских половых клеток.
Иммунокомпетентные клетки — это клетки, входящие в состав иммунной системы. Все эти клетки происходят из единой родоначальной стволовой клетки красного костного мозга. Все клетки делятся на 2 типа: гранулоциты и агранулоциты. К гранулоцитам относят нейтрофилы, эозинофилы и базофилы. К агранулоцитам: макрофаги и лимфоциты (B, T). Нейтрофилы — это неделящиеся и короткоживущие клетки. Они составляют 95 % от гранулоцитов. Нейтрофилы содержат огромное количество антибиотических белков, которые содержатся в различных гранулах. Эозинофилы составляют 2—5 % от гранулоцитов. Способны фагоцитировать микробы и уничтожать их. Но это не является их главной функцией. Главным объектом эозинофилов являются гельминты. Базофилы составляют меньше, чем 0,2 % от гранулоцитов. Существуют две формы базофилов: собственно базофилы — базофилы, циркулирующие в крови и тучные клетки — базофилы, находящиеся в ткани. Они участвуют в аллергических реакциях. В частности, в реакциях немедленного типа. Моноциты превращаются в макрофаги в селезёнке. Существует два типа макрофагов:
Профессиональные макрофаги. Их главная функция — обеспечить фагоцитарную защиту от микробной инфекции. Также они способны фагоцитировать повреждённые клетки организма, в том числе клетки крови. Макрофаги секретируют цитокины, привлекающие нейтрофилы и эозинофилы к месту нахождения антигенов.
Антиген-презентирующие макрофаги. Их роль — поглощение микробов и «представление» их Т-лимфоцитам. Макрофаги принимают участие в иммунном ответе на всех его этапах.
Натуральные киллеры (NK-клетки) — незрелые Т-лимфоциты, обладающие цитотоксичной активностью, то есть они способны: прикрепляться к клеткам-мишеням, секретировать токсичные для них белки, убивать их или отправлять в апоптоз.
Сенсорная система обеспечивает восприятие организмом информации о состоянии внешней и внутренней среды, а также ее обработку и трансформацию в ощущения. Все эти функции осуществляются анализаторами и их периферическими отделами — органами чувств. Анализаторы — это сложные структурно-функциональные системы, связывающие центральную нервную систему с внешней и внутренней средой. Они являются афферентной частью рефлекторных дуг. Каждый анализатор состоит из трех частей:
периферической, в которой происходит восприятие раздражения;
промежуточной или кондуктивной, представленной проводящими путями и подкорковыми образованиями;центральной, образованной участком коры головного мозга, где идет анализ информации и синтез ощущения.
Органы чувств являются периферическими частями анализаторов. Выделяют три типа органов чувств:
I тип образован органами, развивающимися из нейроэктодермы. Рецепторные клетки в этих органах являются нервными клетками и называются первичночувствующими (первичночувствующие рецепторы). Такими органами являются органы зрения и обоняния;
II тип органов чувств представлен органами слуха, равновесия, вкуса. В этих органах раздражения воспринимают эпителиальные клетки, которые называются сенсоэпителиальными, развивающиеся из кожной эктодермы. Сенсоэпителиальные клетки называются вторичночувствующими (вторичночувствующие рецепторы). С ними контактируют дендриты чувствительных нервных клеток, которые передают воспринятое раздражение на свой нейрон;
III тип органов чувств представлен инкапсулированными и неинкапсулированными нервными окончаниями. Их строение как правило не имеет органного принципа (исключение инкапсулированные нервные окончания). Все они являются дендритами нейронов чувствительных ганглиев.
Значение вкусового анализатора заключается в апробации пищи при непосредственном соприкосновении ее со слизистой оболочкой полости рта. Вкусовые рецепторы (периферический отдел) заложены в эпителии слизистой оболочки ротовой полости. Нервные импульсы по проводниковому пути поступают в мозговой конец анализатора, располагающегося в ближайшем соседстве с корковым отделом обонятельного анализатора. Вкусовые почки (рецепторы) сосредоточены, в основном, на сосочках языка. Больше всего вкусовых рецепторов имеется на кончике, краях и в задней части языка. Рецепторы вкуса располагаются также на задней стенке глотки, мягком небе, миндалинах, надгортаннике. Раздражение одних сосочков вызывает ощущение только сладкого одного вкуса. Вместе с тем имеются сосочки, возбуждение которых сопровождается двумя или тремя вкусовыми ощущениями.
БИЛЕТ № 34
1.Строение и функции мембранных органелл: митохондрий, лизосом, пероксисом.
2.Поперечнополосатая сердечная мышечная ткань: источники развития, структурно-функциональная единица, разновидности, строение, регенерация.
З. Поджелудочная железа: источники развития, строение экзокринного и эндокринного отделов. Типы инсулярных клеток и их гормоны.
Классификация органелл: общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки.
Общая характеристика мембранных органелл
Все разновидности мембранных органелл имеют общий принцип строения:
они представляют собой замкнутые и изолированные участки в гиалоплазме (компарменты), имеющие свою внутреннюю среду;
стенка их состоит из билипидной мембраны и белков, подобно плазмолемме.
Однако билипидные мембраны органелл имеют и некоторые особенности:
толщина билипидных мембран органелл меньше (7 нм), чем в плазмолемме (10 нм);
мембраны отличаются по количеству и качеству белков, встроенных в мембраны.
Митохондрии наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью. Стенка митохондрий образована двумя билипидными мембранами, разделенные пространством в 10—20 нм. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутрь митохондрии складки кристы. Лизосомы наиболее мелкие органеллы цитоплазмы (0,2—0,4 мкм) и поэтому открытые только с использованием электронного микроскопа. Представляют собой тельца, ограниченные липидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (50 гидролаз), способных расщеплять любые полимерные соединения (белки, липиды, углеводы и их комплексы) на мономерные фрагменты. Функция лизосом обеспечение внутриклеточного пищеварения, то есть расщепления как экзогенных, так и эндогенных веществ. Пероксисомы - микротельца цитоплазмы (0,1—1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.
Сердечная поперечнополосатая мышечная ткань. Структурно-функциональной единицей является клетка — кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы:
типичные или сократительные кардиомиоциты, образующие своей совокупностью миокард;
атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности.
Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50—120 мкм в длину, шириной 15—20 мкм, в центре которой локализуется обычно одно ядро. Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами.
Вторая разновидность кардиомиоцитов — атипичные кардиомиоциты образуют проводящую систему сердца, состоящую из:
синусо-предсердный узел;
предсердно-желудочковый узел;
предсердно-желудочковый пучок (пучок Гиса) ствол, правую и левую ножки;
концевые разветвления ножек — волокна Пуркинье.
Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты. По своей морфологии атипичные кардиомиоциты отличаются от типичным рядом особенностей:
они крупнее (длина 100 мкм, толщина 50 мкм);
в цитоплазме содержимся мало миофибрилл, которые расположены неупорядочено и потому атипичные кардиомиоциты не имеют поперечной исчерченности;
плазмолемма не образует Т-канальцев;
во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.
Атипичные кардиомиоциты различных отделов проводящей системы отличаются между собой по структуре и функциям и подразделяются на три основные разновидности:
Р-клетки (пейсмекеры) водители ритма (I типа);
переходные клетки (II типа);
клетки пучка Гиса и волокон Пуркинье (III тип).
Иннервация сердечной мышечной ткани. Биопотенциалы сократительные кардиомиоциты получают из двух источников:
из проводящей системы сердца (прежде всего из синусо-предсердного узла);
из вегетативной нервной системы (из ее симпатической и парасимпатической части).
Регенерация сердечной мышечной ткани. Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическая регенерация). Естественно, что сократительная функция в этих участках отсутствует. Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений.
Функции поджелудочной железы:
экзокринная функция заключается в секреции панкреатического сока — смеси пищеварительных ферментов, поступающих в двенадцатиперстную кишку и расщепляющих все компоненты химуса;
эндокринная функция состоит в выработке ряда гормонов.
Поджелудочная железа — паренхиматозный дольчатый орган. Строма представлена:
капсулой, которая сливается с висцеральной брюшиной;
отходящими от капсулы трабекулами.
И тонкая капсула, и трабекулы образованы рыхлой волокнистой соединительной тканью. Трабекулы делят железу на дольки. В прослойках рыхлой волокнистой соединительной ткани находятся выводные протоки экзокринной части железы, сосуды, нервы, интрамуральные ганглии, пластинчатые тельца Фатер-Пачини. Паренхима образована совокупностью ацинусов, выводных протоков и островков Лангерганса. Каждая долька состоит из экзокринной и эндокринной частей Экзокринная часть поджелудочной железы представляет собой сложную альвеолярно-трубчатую белковую железу. Структурно-функциональной единицей экзокринной части является ацинус. Он образован 8—12 ацинозными клетками (ациноцитами) и центроацинозными клетками (центроациноцитами). Функция ациноцитов — выработка пищеварительных ферментов. Активация ферментов, секретируемых ациноцитами, в норме происходит только в двенадцатиперстной кишке под влиянием активаторов. Эндокринная часть железы. Структурно-функциональной единицей эндокринной части поджелудочной железы является островок Лангерганса. Он отделен от ацинусов рыхлой волокнистой неоформленной соединительной тканью. Островок состоит из клеток инсулоцитов, между которыми лежит рыхлая волокнистая соединительная ткань с гемокапиллярами фенестрироваиного типа. Инсулоциты различаются по способности окрашиваться красителями: Функцией В-инсулоцитов является выработка инсулина, снижающего в крови уровень глюкозы и стимулирующего ее поглощение клетками организма. В печени инсулин стимулирует образование из глюкозы гликогена. При недостатке выработки инсулина формируется сахарный диабет. А-клетки или ацидофильные (20—25 % всех клеток островка) секретируют гормон глюкагон. D-клетки составляют около 5 % эндокринных клеток островка. Содержат умеренно плотные гранулы без светлого ободка. В гранулах содержится гормон соматостатин, угнетающий функцию А, В-клеток островков и ациноцитов. Он же обладает митозингибирующим действием на различные клетки. D1-клетки содержат гранулы с узким ободком. Вырабатывают вазоинтестинальный полипептид, понижающий артериальное давление и стимулирующий выработку панкреатического сока. Количество этих клеток невелико. РР-клетки (2—5 %) располагаются по периферии островков, иногда могут встречаться и в составе экзокринной части железы. Содержат гранулы различной формы, плотности и величины. Клетки вырабатывают панкреатический полипептид, угнетающий внешнесекреторную активность поджелудочной железы.
БИЛЕТ№ 35(кора полушарий, надпочечник)
1.Плацента человека: тип, источники и динамика развития, строение, функции.
2.Скелетные соединительные ткани, их структурно - функциональные особенности. Хрящевые ткани: развитие, классификация, топография, особенности строения.
З.Селезенка: развитие, строение, функциональное значение. Сосудистая система селезенки. Возрастные особенности и изменения.
Плацента —  эмбриональный орган, позволяющий осуществлять перенос материала между циркуляционными системами плода и матери. У млекопитающих плацента образуется из зародышевых оболочек, которые плотно прилегают к стенке матки. Пуповина связывает эмбрион с плацентой. Плацента вместе с оболочками плода у женщины выходит из половых путей от 5 минут до 1 часа после появления на свет ребёнка. Плацента образуется чаще всего в слизистой оболочке задней стенки матки из эндометрия и цитотрофобласта. Слои плаценты (от матки к плоду):
Децидуа — трансформированный эндометрий (с децидуальными клетками, богатыми гликогеном),
Фибриноид Рора (слой Лантганса),
Трофобласт, покрывающий лакуны и врастающий в стенки спиральных артерий, предотвращающий их сокращение,
Лакуны, заполненные кровью,
Синцитиотрофобласт (многоядерный симпласт, покрывающий цитотрофобласт),
Цитотрофобласт (отдельные клетки, образующие синцитий и секретирующие БАВ),
Строма (соединительная ткань, содержащая сосуды, клетки Кащенко-Гофбауэра — макрофаги),
Амнион (на плаценте больше синтезирует околоплодные воды, внеплацентарный — адсорбирует).
Между плодовой и материнской частью плаценты — базальной децидуальной оболочкой — находятся наполненные материнской кровью углубления. Эта часть плаценты разделена децидуальными септами на 15-20 чашеобразных пространств (котиледонов). Каждый котиледон содержит главную ветвь, состоящую из пупочных кровеносных сосудов плода, которая разветвляется далее во множестве ворсинок хориона, образующих поверхность котиледона. Благодаря плацентарному барьеру кровоток матери и плода не сообщаются между собой. Обмен материалами происходит при помощи диффузии, осмоса или активного транспорта. С 3-й недели беременности, когда начинает биться сердце ребёнка, плод снабжается кислородом и питательными веществами через «плаценту». Плацента формирует гематоплацентарный барьер, который морфологически представлен слоем клеток эндотелия сосудов плода, их базальной мембраной, слоем рыхлой перикапиллярной соединительной ткани, базальной мембраной трофобласта, слоями цитотрофобласта и синцитиотрофобласта.
К скелетным соединительным тканям относятся хрящевые и костные ткани, выполняющие опорную, защитную и механическую функции, а также принимающие участие в обмене минеральных веществ в организме. Хрящевая ткань состоит из клеток — хондроцитов, хондробластов и плотного межклеточного вещества, состоящего из аморфного и волокнистого компонентов. Хондробласты располагаются одиночно по периферии хрящевой ткани. Эти клетки синтезируют компоненты межклеточного вещества, выделяют их в межклеточную среду и постепенно дифференцируются в дефинитивные клетки хрящевой ткани — хондроциты. Хондробласты обладают способностью митотического деления. Изогенная группа является общей структурно-функциональной единицей хрящевой ткани. Расположение хондроцитов в изогенных группах в разных хрящевых тканях неодинаково. Межклеточное вещество хрящевой ткани состоит из волокнистого компонента (коллагеновых или эластических волокон) и аморфного вещества, в котором содержатся главным образом сульфатированные гликозоаминогликаны (прежде всего хондроитинсерные кислоты), а также протеогликаны. Гиалиновая хрящевая ткань характеризуется наличием в межклеточном веществе только коллагеновых волокон. По физическим свойствам гиалиновая хрящевая ткань характеризуется прозрачностью, плотностью и малой эластичностью. В организме человека гиалиновая хрящевая ткань широко распространена и входит в состав крупных хрящей гортани, трахеи и крупных бронхов, составляет хрящевые части ребер, покрывает суставные поверхности костей. Эластическая хрящевая ткань характеризуется наличием в межклеточном веществе как коллагеновых, так и эластических волокон. По физическим свойствам эластическая хрящевая ткань непрозрачна, эластична, менее плотная и менее прозрачная, чем гиалиновая хрящевая ткань. Она входит в состав эластических хрящей: ушной раковины и хрящевой части наружного слухового прохода, хрящей наружного носа, мелких хрящей гортани и средних бронхов, а также составляет основу надгортанника. Волокнистая хрящевая ткань характеризуется содержанием в межклеточном веществе мощных пучков из параллельно расположенных коллагеновых волокон. По физическим свойствам характеризуется высокой прочностью. В организме встречается лишь в ограниченных местах: составляет часть межпозвоночных дисков.
В надхрящнице выделяют два слоя:
наружный — фиброзный;
внутренний — клеточный или камбиальный (ростковый).
Во внутреннем слое локализуются малодифференцированные клетки — прехондробласты и неактивные хондробласты, которые в процессе эмбрионального и регенерационного гистогенеза превращаются вначале в хондробласты, а затем в хондроциты. В фиброзном слое располагается сеть кровеносных сосудов. Развитие хрящевой ткани (хондрогистогенез) осуществляется из мезенхимы. В процессе развития хряща отмечается два вида роста хряща: интерстициальный рост — за счет размножения хондроцитов и выделения ими межклеточного вещества; оппозиционный рост — за счет деятельности хондробластов надхрящницы и наложения хрящевой ткани по периферии хряща.
Функции селезенки:
кроветворная — образование лимфоцитов;
барьерно-защитная — фагоцитоз, осуществление иммунных реакций. Селезенка удаляет из крови все бактерии за счет деятельности многочисленных макрофагов;
депонирование крови и тромбоцитов;
обменная функция — регулирует обмен углеводов, железа, стимулирует синтез белков, факторов свертывания крови и другие процессы;
гемолитическая при участии лизолецитина селезенка разрушает старые эритроциты, а также в селезенке разрушаются стареющие и поврежденные тромбоциты;
эндокринная функция — синтез эритропоэтина, стимулирующего эритропоэз.
Селезенка — паренхиматозный зональный орган, снаружи она покрыта соединительнотканной капсулой, к которой прилежит мезотелий. Капсула содержит гладкие миоциты. От капсулы отходят трабекулы из рыхлой волокнистой соединительной ткани. В селезенке выделяют две различающиеся по строению зоны красную и белую пульпу. Белая пульпа — это совокупность лимфоидных фолликулов (узелков), лежащих вокруг центральных артерий. Белая пульпа составляет 1/5 часть селезенки. Лимфоидные узелки селезенки отличаются по строению от фолликулов лимфоузла, так как содержат и Т-зоны и В-зоны. Каждый фолликул имеет 4 зоны:
реактивный центр (центр размножения);
мантийная зона — корона из малых В-лимфоцитов памяти;
маргинальная зона;
периартериальная зона или периартериальная лимфоидная муфтазона вокруг центральных артерий.
Красная пульпа селезенки состоит из пульпарных сосудов, пульпарных тяжей и нефильтрующих зон. Пульпарные тяжи в своей основе содержат ретикулярную ткань. Между ретикулярными клетками находятся эритроциты, зернистые и незернистые лейкоциты, плазмоциты на разных стадиях созревания. Функциями пульпарных тяжей являются:
распад и уничтожение старых эритроцитов;
созревание плазмоцитов;
осуществление обменных процессов.
Синусы красной пульпы — это часть кровеносной системы селезенки. Они составляют большую часть красной пульпы. Имеют диаметр 12—40 мкм. Относятся к венозной системе, но по строению близки к синусоидным капиллярам: выстланы эндотелием, который лежит на прерывистой базальной мембране. Кровь из синусов может поступать сразу в ретикулярную основу селезенки. Функции синусов транспорт крови, обмен кровью между сосудистой системой и стромой, депонирование крови. Соотношение белой и красной пульпы может быть различным, в связи с этим выделяют два типа селезенок:
иммунный тип характеризуется выраженным развитием белой пульпы;
метаболический тип, при котором значительно преобладает красная пульпа.
БИЛЕТ № 36
1.Гаструляция: способы, фазы, хронология, зародышевые листки.
2.Покровные эпителии: топография, морфофункциональная и гистогенетическая классификация. Типы и способы регенерации покровного эпителия.
З.Гипоталамус: нейросекреторные отделы, их ядра, нейросекреторные клетки, гормоны, связь с гипофизом.
Гаструляция — сложный процесс морфогенетических изменений, сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате чего образуются зародышевые листки (эктодерма, мезодерма и энтодерма) — источники зачатков тканей и органов. В эмбриобласте на 6—7 сутки после оплодотворения протекает I фаза гаструляции. У человека гаструляция осуществляется 2-я процессами: деляминацией и иммиграцией. Эмбриобласт расслаивается на эпибласт — слой цилиндрических клеток, ограничивающий вместе с трофобластом полость амниона, и гипобласт — слой кубических клеток, обращенных к бластоцелю. Эпибласт и гипобласт вместе образуют двухслойный зародышевый диск или щиток. Из зародышевого щитка в полость бластоцисты выселяются клетки внезародышевой паренхимы, часть из этих клеток оттесняется к цитотрофобласту, при этом образуется хорион. В дальнейшем на месте двухслойного зародышевого диска путем его инвагинации, миграции и пролиферации клеток развиваются первичные зародышевые листки: эктодерма, мезодерма и энтодерма. Из эктодермы образуются:
кожный эпителий,
нервная система,
органы чувств,
передний и задний отделы кишечной трубки.
У позвоночных из энтодермы развивается слизистая оболочка всего кишечника и связанные с ним железы (печень, поджелудочная железа и др.).
Морфологическая классификация покровных эпителиев:
однослойный плоский эпителий (эндотелий — выстилает все сосуды; мезотелий — выстилает естественные полости человека: плевральную, брюшную, перикардиальную);однослойный кубический эпителий — эпителий почечных канальцев;
однослойный однорядный цилиндрический эпителий — ядра располагаются на одном уровне;
однослойный многорядный цилиндрический эпителий — ядра располагаются на разных уровнях (легочный эпителий);
многослойный плоский ороговевающий эпителий — кожа;
многослойный плоский неороговевающий эпителий — полость рта, пищевод, влагалище;
переходный эпителий — форма клеток этого эпителия зависит от функционального состояния органа, например, мочевой пузырь.
Генетическая классификация эпителиев:
эпидермальный тип, развивается из эктодермы — многослойный и многорядный эпителий, выполняет защитную функцию;
энтеродермальный тип, развивается из энтодермы — однослойный цилиндрический эпителий, осуществляет процесс всасывания веществ;
целонефродермальный тип — развивается из мезодермы — однослойный плоский эпителий, выполняет барьерную и экскреторную функции;
эпендимоглиальный тип, развивается из нейроэктодермы, выстилает полости головного и спинного мозга;
ангиодермальный тип — эндотелий сосудов, развивается из мезенхимы.
Гипоталамус является центром регуляции вегетативных функций и высшим эндокринным центром. Он оказывает трансаденогипофизарное влияние (через стимуляцию выработки гипофизом тропных гормонов) на аденогипофиззависмые эндокринные железы. Гипоталамус осуществляет контроль за всеми висцеральными функциями организма, объединяет нервные и эндокринные механизмы регуляции. Гипоталамус занимает базальную часть промежуточного мозга — находится под зрительным бугром (таламусом), образуя дно 3 желудочка. Полость 3 желудочка продолжается в воронку, направленную в строну гипофиза. Стенка этой воронки называется гипофизарной ножкой. Ее дистальный конец продолжается в заднюю долю гипофиза (нейрогипофиз). Передний гипоталамус содержит наиболее крупные парные супраоптические и паравентрикулярные ядра, а также ряд других ядер. Супраоптические ядра образованы в основном крупными пептидхолинергическими нейронами. Аксоны пептидхолинергических нейронов идут через гипофизарную ножку в заднюю долю гипофиза и образуют синапсы на кровеносных сосудах — аксовазальные синапсы. Нейроны супраоптических ядер секретируют в основном антидиуретический гормон или вазопресин. Паравентрикулярные ядра наряду с крупными пептидхолинергическими нейронами содержат также мелкие пептидадренергические. Первые вырабатывают гормон окситоцин, который поступает по аксонам в тельца Геринга задней доли гипофиза. Окситоцин вызывает синхронное сокращение мускулатуры матки во время родов и активирует миоэпителиоциты молочной железы, что усиливает выделение молока во время кормления ребенка. Средний гипоталамус содержит ряд ядер состоящих из мелких нейросекреторных пептидадренергических нейронов. Наиболее важны аркуатное и вентромедиальное ядра, образующие так называемый аркуатно-медиобазальный комплекс. Нейросекреторные клетки этих ядер вырабатывают аденогипофизотропные гормоны, регулирующие функцию аденогипофизарилизинг-гормоны. Гипофизотропные рилизинг—гормоны являются олигопептидами и подразделяются на две группы: либерины, усиливающие секрецию гормонов аденогипофизом, и статины, тормозящие ее. Из либеринов выделены гонадолиберин, кортиколиберин, соматолиберин. В то же время, описаны только два статина: соматостатин, который подавляет синтез гипофизом гормона роста, адренокортикотропина и тиреотропина, и пролактиностатин. Задний гипоталамус включает маммилярные тела и перифорникальное ядро. Этот отдел не относится к эндокринному, он регулирует содержание глюкозы и ряд поведенческих реакций.
БИЛЕТ №37
1.Периоды индивидуального развития. Критические периоды онтогенеза: сущность, влияние экологических и социальных факторов.
2.Поперечнополосатая скелетная мышечная ткань: структурно-функциональная единица, ее строение, развитие, типы, иннервация, структурные основы сокращения. Мышца как орган.
З. Печень: тканевой состав, источники развития, структурно-функциональные единицы, особенности кровоснабжения. Строение классической дольки. Регенерация. Возрастные особенности. Строение и функциональная роль желчного пузыря.
В зависимости от среды, в которой происходит развитие организма человека, онтогенез распадается на два больших периода, отделенных друг от друга моментом рождения:
Внутриутробный, когда вновь зародившийся организм развивается в утробе матери; этот период длится от зарождения до рождения.
Внеутробный (постнатальный), когда новая особь продолжает свое развитие вне организма матери; этот период длится от момента рождения до смерти. Выделяют следующие его:
новорожденный (первые 1 - 10 дней после рождения),
грудной (от 10 дней до 12 месяцев),
раннее детство (с 1 до 3 лет),
первое детство (с 4 до 7 лет),
второе детство (с 8 до 12 лет),
подростковый возраст (с13 до 16 лет),
юношеский возраст (с17 лет до 21 года),
период зрелости (от 22 лет до 55 -60 лет),
пожилой возраст (от 56-61 года до 74 лет),
старческий период ( 75 - 90 лет)
долгожители (свыше 90 лет).
В процессе индивидуального развития имеются критические периоды, когда повышена чувствительность развивающегося организма к воздействию повреждающих факторов внешней и внутренней среды. Выделяют несколько критических периодов развития. Такими наиболее опасными периодами являются: 
1) время развития половых клеток - овогенез и сперматогенез; 
2) момент слияния половых клеток - оплодотворение; 
3) имплантация зародыша (4-8-е сутки эмбриогенеза); 
4) формирование зачатков осевых органов (головного и спинного мозга, позвоночного столба, первичной кишки) и формирование плаценты (3-8-я неделя развития); 
5) стадия усиленного роста головного мозга (15-20-я неделя); 
6) формирование функциональных систем организма и дифференцирование мочеполового аппарата (20-24-я неделя пренатального периода); 
7) момент рождения ребенка и период новорожденности - переход к внеутробной жизни; метаболическая и функциональная адаптация; 
8) период раннего и первого детства (2 года - 7 лет), когда заканчивается формирование взаимосвязей между органами, системами и аппаратами органов;
9) подростковый возраст (период полового созревания - у мальчиков с 13 до 16 лет, у девочек - с 12 до 15 лет). 
Сердечная поперечнополосатая мышечная ткань. Структурно-функциональной единицей является клетка — кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы:
типичные или сократительные кардиомиоциты, образующие своей совокупностью миокард;
атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности.
Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50—120 мкм в длину, шириной 15—20 мкм, в центре которой локализуется обычно одно ядро. Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами.
Вторая разновидность кардиомиоцитов — атипичные кардиомиоциты образуют проводящую систему сердца, состоящую из:
синусо-предсердный узел;
предсердно-желудочковый узел;
предсердно-желудочковый пучок (пучок Гиса) ствол, правую и левую ножки;
концевые разветвления ножек — волокна Пуркинье.
Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты. По своей морфологии атипичные кардиомиоциты отличаются от типичным рядом особенностей:
они крупнее (длина 100 мкм, толщина 50 мкм);
в цитоплазме содержимся мало миофибрилл, которые расположены неупорядочено и потому атипичные кардиомиоциты не имеют поперечной исчерченности;
плазмолемма не образует Т-канальцев;
во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.
Атипичные кардиомиоциты различных отделов проводящей системы отличаются между собой по структуре и функциям и подразделяются на три основные разновидности:
Р-клетки (пейсмекеры) водители ритма (I типа);
переходные клетки (II типа);
клетки пучка Гиса и волокон Пуркинье (III тип).
Иннервация сердечной мышечной ткани. Биопотенциалы сократительные кардиомиоциты получают из двух источников:
из проводящей системы сердца (прежде всего из синусо-предсердного узла);
из вегетативной нервной системы (из ее симпатической и парасимпатической части).
Регенерация сердечной мышечной ткани. Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическая регенерация). Естественно, что сократительная функция в этих участках отсутствует. Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений.
Функции печени:
депонирование, в печени депонируется гликоген, жирорастворимые витамины (А, D, Е, К). Сосудистая система печени способна в довольно больших количествах депонировать кровь;
участие во всех видах обмена веществ: белковом, липидном (в том числе в обмене холестерина), углеводном, пигментном, минеральном и др.
дезинтоксикационная функция;
барьерно-защитная функция;
синтез белков крови: фибриногена, протромбина, альбуминов;
участие в регуляции свертывания крови путем образования белков — фибриногена и протромбина;
секреторная функция — образование желчи;
гомеостатическая функция, печень участвует в регуляции метаболического, антигенного и температурного гомеостаза организма;
кроветворная функция;
эндокринная функция.
Печень — паренхиматозный дольчатый орган. Ее строма представлена:
капсулой из плотной волокнистой соединительной ткани (капсула Глиссона), которая срастается с висцеральным листком брюшины;
прослойками рыхлой волокнистой соединительной ткани, которые делят орган на дольки.
Паренхима печени представлена совокупностью гепатоцитов, формирующих классическую дольку. Классическая долька — структурно-функциональная единица печени. Она имеет форму шестигранной призмы. По периферии дольки находятся триады или портальные тракты, в состав которых входят междольковые артерия, вена и желчный проток, а также лимфососуды и нервные стволы (в силу этого некоторые исследователи предлагают называть эти структуры не триадами, а пентодами). В центре дольки лежит центральная вена безмышечного типа. Печень получает кровь из двух сосудистых систем: печеночной артерии и воротной вены. По печеночной артерии в печень поступает около 20 % всей крови. Она доставляет органу кислород. Из системы воротной вены печень получает до 80 % крови. Это кровь от непарных органов брюшной полости (кишечника, селезенки, поджелудочной железы), богатая питательными веществами, гормонами, биологически активными веществами, антителами и веществами, подлежащими детоксикации.
Функции желчного пузыря:
депонирование желчи;
концентрирование желчи путем всасывания ее жидкого компонента;
секреция слизи.
Желчный пузырь слоистый орган, состоящий из слизистой, мышечной и серозной (адвентициальной) оболочек. Слизистая оболочка образована однослойным призматическим эпителием и собственной пластинкой из рыхлой волокнистой соединительной ткани. Эпителиоциты, являясь секреторными клетками, образуют и выделяют на поверхность эпителия слизь, защищающую его от агрессивных компонентов желчи. В связи с этим в клетках обнаруживаются секреторные гранулы. Апикальная цитолемма формирует многочисленные микроворсинки. Цитолемма латеральной поверхности эпителиоцитов содержит большое количество натриевых насосов, благодаря деятельности которых создается градиент натрия и калия между межклеточными пространствами и просветом пузыря. Это обеспечивает пассивный транспорт воды из пузырной желчи в межклеточные пространства и далее в гемокапилляры, что ведет к концентрированию желчи. Слизистая оболочка образует множество складок. В области шейки пузыря в собственной пластинке лежат альвеолярно-трубчатые железы, вырабатывающие слизь. Подслизистая оболочка отсутствует. Мышечная оболочка представлена пучками гладких миоцитов, формирующими два нерезких слоя (внутренний циркулярный и наружный продольный). Циркулярные пучки миоцитов преобладают. Наружная оболочка со стороны печени адвентициальная, со стороны брюшной полости серозная.
БИЛЕТ № 38
1.Включения: определения, классификация, значение. Гиалоплазма: физико - химические свойства и значение в жизнедеятельности клеток.
2.Нервные окончания: определение, функциональная классификация. Морфологическая классификация рецепторов. Строение эффекторного окончания (моторной бляшки).
3.Женская половая система: источники развития, органы, тканевой состав, функции. Яичник: строение, функции, циклические изменения и их регуляция. Овогенез: периоды, их сущность, регуляция, гемато-фолликулярный барьер.
Включения — непостоянные структурные компоненты цитоплазмы. В процессе жизнедеятельности в некоторых клетках накапливаются случайные включения:
медикаментозные,
частички угля,
кремния и так далее.
Трофические включения — лецитин в яйцеклетках, гликоген, липиды, имеются почти во всех клетках. Секреторные включения — секреторные гранулы в секретирующих клетках (зимогенные гранулы в ацинозных клетках поджелудочной железы, секреторные гранулы в эндокринных железах и другие). Экскреторные включения — вещества, подлежащие удалению из организма (например, гранулы мочевой кислоты в эпителии почечных канальцев). Пигментные включения — меланин, гемоглобин, липофусцин, билирубин и другие. Эти включения имеют определенный цвет и придают окраску всей клетке (меланин — черный или коричневый, гемоглобин — желто-красный и так далее). Необходимо отметить, что пигментные включения характерны только для определенных типов клеток (меланин содержится в меланоцитах, гемоглобин — в эритроцитах). Однако, липофусцин может накапливаться во многих типах клеток обычно при их старении. Его наличие в клетках свидетельствует о их старении и функциональной неполноценности.
Все нервные волокна заканчиваются концевыми аппаратами, которые получили название нервные окончания. По функциональному значению нервные окончания можно разделить на три группы:
эффекторные (эффекторы);
рецепторные (аффекторные или чувствительные);
концевые аппараты, образующие межнейронные синапсы, осуществляющие связь нейронов между собой.
Эффекторные нервные окончания представлены двумя типами — двигательные и секреторные. Двигательные нервные окончания — это концевые аппараты аксонов двигательных клеток соматической или вегетативной нервной системы. При их участии нервный импульс передается на ткани рабочих органов. Секреторные нервные окончания имеют простое строение и заканчиваются на железе. Они представляют собой концевые утолщения, или четковидные расширения волокна с синаптическими пузырьками, содержащими главным образом ацетилхолин. Рецепторные нервные окончания. Главная функция афферентных нервных окончаний является восприятие сигналов поступающих из внешней и внутренней среды. Рецептор — это терминальное ветвление дендрита чувствительной (рецепторной) нервной клетки. Классификация рецепторов:
I. По происхождению:
Нейросенсорные — нейральный источник происхождения, представляют собой рецепторы нервных клеток — первичночувствительные;
Сенсоэпителиальные — имеют не нейральное происхождение, представлены специальными клетками которые способны воспринимать раздражение — вторичночувствительные, например: инкапсулированные и неинкапсулированные нервные окончания.
II. По локализации:
экстерорецепторы;
интерорецепторы;
проприорецепторы.
III. По морфологии:
свободные;
несвободные (инкапсулированные: пластинчатые тельца Фатера-Пачини, осязательные тельца Мейснера, концевые колбы Краузе, сухожильные органы Гольджи; неинкапсулированные);
IV. По специфичности восприятия (по модальности):
терморецепторы;
барорецепторы;
хеморецепторы;
механорецепторы;
болевые рецепторы;
V. По количеству воспринимающих раздражителей:
мономодальные;
полимодальные.
Женская половая система обеспечивает не только образование половых клеток и синтез гормонов, но и вынашивание и вскармливание потомства. В связи с этим она устроена несколько сложнее и имеет более тонкие и сложные механизмы регуляции, нарушение которых чаще приводит к патологии. После индифферентной стадии на 4-ой неделе внутриутробного развития и после образования половых валиков, половые шнуры, содержащие эпителиальные клетки половых валиков и гонобласты желточного мешка внедряются в строму первичной почки. Яичники выполняют две основные функции: генеративную (образование женских половых клеток — яйцеклеток) и эндокринную — вырабатывают женские и мужские половые гормоны, а также ряд других гормонов и биологически активных веществ, регулирующих собственные функции яичников (внутрисистемный уровень регуляции). Его строму составляют белочная оболочка из плотной волокнистой соединительной ткани и рыхлая волокнистая соединительная ткань коркового и мозгового вещества, в клеточном составе которого преобладают фибробласты и фиброциты. Снаружи от белочной оболочки находится видоизмененный мезотелий серозной оболочки. Который обладает высокой пролиферативной активностью и очень часто является источником развития опухолей яичника. Паренхима яичника представлена совокупностью фолликулов и желтых тел, находящихся на разных стадиях развития. Яичник разделен на корковое и мозговое вещество. В корковом веществе находятся премордиальные, первичные, вторичные, третичные (пузырчатые) и атретические фолликулы, желтые и белые тела. Мозговое вещество образовано, рыхлой волокнистой соединительной тканью, в которой находятся кровеносные сосуды, нервный аппарат, а также могут встречаться эпителиальные тяжи, представляющие собой остатки мезонефроса. Они могут быть источником развития кист яичника.
БИЛЕТ №39
1. Прогенез: морфофункциональная характеристика половых клеток; понятие о спермато - и овогенезе.
2.Гладкая мышечная ткань: источники развития, классификация, функциональная единица, строение, иннервация, регенерация, структурные основы сокращения. 3. Почки: этапы развития, тканевой состав, строение, особенности кровоснабжения. Нефрон: составные части, гистофизиология, типы нефронов. ЮГА почки.
Зрелые половые клетки, в отличие от соматических содержат одиночный набор хромосом. В мужских половых клетках у млекопитающих содержатся половые хромосомы либо X, либо Y, в женских половых клетках — только хромосома Х, Дифференцированные гаметы обладают невысоким уровнем метаболизма и неспособны к размножению. Прогенез включает в себя сперматогенез и овогенез. Сперматогенез — это развитие и формирование мужских половых клеток. Сперматогенез протекает в извитых канальцах семенников, и его средняя продолжительность от 68 до 75 суток. Сперматогенез у человека начинается с момента полового созревания и продолжается в течение всего активного полового периода в больших количествах. Стадии сперматогенеза. Начальной фазой сперматогенеза является размножение сперматогоний путем митоза, большая часть клеток продолжает делиться, а меньшая часть вступает в стадию роста. В этот период клетки растут, накапливают питательные вещества, и потом превращаются в сперматоциты 1-го порядка. Следующая фаза созревание-деление, характеризуется двумя редукционными делениями, без интерфазы. В результате 1-го деления 1 сперматоцит 1-го порядка дает начало 2-м сперматоцитам 2-го порядка, а 2-ое деление-созревание приводит к появлению 4 сперматид. Фаза формирования происходит в присутствии тестостерона, происходит преобразование сперматид в сперматозоиды. Овогенез — это процесс образования и развития женских половых клеток. Он включает в себя 3 фазы:
размножения;
роста;
созревания.
Фаза размножения начинается в эмбриональном периоде и продолжается в течение 1-го года жизни девочки. К моменту рождения у девочки имеется около 2-х млн. клеток. Сущностью фазы размножения является митотическое деление овогоний. Фаза роста, в конце 1-го года жизни девочки размножение овогоний останавливается, и клетки яичника вступают в фазу малого роста, превращаясь в овоциты 1-го порядка. Наступает 1 блок роста, который снимается с наступлением полового созревания, то есть появлением женских половых гормонов. Далее овоциты 1-го порядка вступают в фазу большого роста. Фаза созревания, как и во время сперматогенеза, включает в себя два деления, причем второе следует за первым без интеркинеза, что приводит к уменьшению (редукции) числа хромосом вдвое. При первом делении созревания овоцит 1-го порядка делится, в результате чего образуются овоцит 2-го порядка и небольшое редукционное тельце.
Подавляющая часть гладкой мышечной ткани организма (внутренних органов и сосудов) имеет мезенхимальное происхождение. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит. Представляет собой чаще всего веретенообразную клетку (длиной 20—500 мкм, диаметром 5—8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр. Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофиламентов вдоль миозиновых. Миоциты окружены снаружи рыхлой волокнистой соединительной тканью — эндомизием и связаны друг с другом боковыми поверхностями. При этом, в области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения. Регенерация гладкой мышечной ткани осуществляется несколькими способами:
посредством внутриклеточной регенерации гипертрофии при усилении функциональной нагрузки;
посредством митотического деления миоцитов при их повреждении (репаративная регенерация);
посредством дифференцировки из камбиальных элементов — из адвентициальных клеток и миофибробластов.
Функции почек:
мочеобразование и мочевыделение, заключается в образовании мочи путем фильтрации плазмы крови и реабсорбции обратно в кровь полезных для организма продуктов обмена. С образующейся в почках мочой выделяются конечные продукты азотистого обмена и ксенобиотики: токсические, лекарственные вещества и другие;
поддержание кислотно-щелочного гомеостаза;
регуляция водно-солевого обмена;
регуляция артериального давления;
эндокринная функция и синтез биологически активных веществ — выработка ренина, эритропоэтина, эритрогенина, простагландинов, биогенных аминов, витамина D3 (кальцитрола), калликреина, ряда интерлейкинов;
участие в обмене веществ, в первую очередь, в обмене белков и углеводов;
участие в работе свертывающей противосвертывающей системы заключающейся в выработке урокиназы (активатора плазминогена, фактора фибринолиза), фактора активации тромбоцитов.
Развитие почек начинается на первом месяце эмбриогенеза и продолжается после рождения. Источником развития является промежуточная мезодерма — нефротом. В развитии почек выделяют три стадии: 1. Пронефрос развивается из 8—10 передних сегментов нефротома. 2. На втором месяце эмбриогенеза из 25 пар сегментов нефротома начинает развиваться первичная почка — мезонефрос. 3.Метанефрос (окончательная почка) начинает формироваться на 2-м месяце эмбриогенеза, а к 5-му — уже функционирует. Почка является паренхиматозным зональным органом. Снаружи она покрыта капсулой из плотной волокнистой соединительной ткани и серозной оболочки. От капсулы отходят прослойки рыхлой волокнистой неоформленной соединительной ткани, по которым идут сосуды. Корковое вещество занимает наружную, поверхностную часть почки и мозговыми лучами Феррейна разделяется на отдельные участки. Участки коркового вещества своей нижней частью внедряются между основаниями мозговых пирамид в мозговое вещество в виде колонок Бертини, отделяя пирамиды друг от друга. Мозговое вещество образовано мозговыми пирамидами. Их широкие основания повернуты в сторону коркового вещества, вершины пирамид называются сосочками. Они обращены к малым чашечкам, которые далее продолжаются в большие чашечки и затем в почечную лоханку. Гистофизиология нефрона. Структурно-функциональной единицей почки является нефрон. Он состоит из капсулы и переходящих друг в друга канальцев проксимальных извитого и прямого, дистальных извитого и прямого. В каждой почке около 2 млн. нефронов.
По локализации различают:
суперфициальные или подкапсульные (около 1 %);
корковые (85 %);
юкстамедуллярные, или околомозговые (около 14 %).
В нефроне выделяют:
капсулу (вместе с сосудистым клубочком формирует почечное тельце Мальпиги);
проксимальный извитой отдел;
проксимальный прямой отдел;
тонкий отдел;
дистальный извитой отдел;
дистальный прямой отдел.
В состав коркового вещества входят следующие структуры:
почечные тельца Мальпиги;
проксимальные извитые канальцы;
дистальные извитые канальцы.
В корковом веществе залегают также компоненты юкстагломерулярного аппарата. В мозговом веществе находятся: проксимальные прямые канальцы, тонкие канальцы, дистальные прямые канальцы, а также в мозговом веществе находятся собирательные трубочки. Юкстагломерулярные нефроны имеют очень длинный тонкий сегмент, который состоит из нисходящей и восходящей частей (петля Генле). Они глубоко спускаются в мозговое вещество, в котором лежат также прямые проксимальные и прямые дистальные канальцы. Капсула нефрона, имеющая вид двустенной чаши, и входящие в нее капилляры первичной капиллярной сети образуют почечное тельце Мальпиги. Проксимальный каналец выполняет следующие функции:
облигатное (обязательное) обратное всасывание из первичной мочи в кровь белков и глюкозы;
факультативное всасывание воды и минеральных веществ;
секреция некоторых органических кислот и оснований;
экскреция некоторых экзогенных веществ;
биосинтез кальцитриола.
Тонкий отдел нефрона. В корковых нефронах этот отдел имеет нисходящую часть и залегает в основном в мозговых лучах и наружных отделах мозгового вещества, тогда как в юкстагломерулярных нефронах в нем имеются нисходящая и восходящая части. Тонкий отдел участвует в формировании петли Генле. Его стенка выстлана плоскими клетками, которые имеют глубокие складки цитолеммы. Функции:
пассивная реабсорбция воды из первичной мочи;
в восходящей части тонкого отдела юкстагломерулярных нефронов, напротив, непроницаемая для воды, помимо этого происходит диффузия солей.
Дистальный отдел делится на дистальный прямой и дистальный извитой канальцы. Дистальный прямой каналец образует восходящее колено петли и входит в состав мозгового вещества и мозговых лучей. Дистальный извитой каналец, многократно извиваясь в корковом веществе, подходит к почечному тельцу, образуя плотное пятно, а затем впадает в собирательную трубку. Дистальный отдел имеет хорошо выраженный просвет, образован кубическими или цилиндрическими клетками. Функции:
в дистальном отделе происходит дополнительная реабсорбция электролитов из мочи. Эти процессы идут активно, то есть против градиента концентрации, с затратой энергии;
в клетках дистального отдела синтезируется калликреин.
Кровоснабжение почки. Сосуды почки имеют характерную архитектонику в связи с наличием двух основных видов нефронов: корковых и юкстамедуллярных. Кровь поступает в почку через почечную артерию, которая делится на междолевые ветви, достигающие границы коркового и мозгового вещества. Здесь междолевые артерии разделяются на несколько стволов, идущих параллельно указанной границе. В составе юкстагломерулярного аппарата выделяют следующие виды клеток: 1. юкстагломерулярные клетки — это клетки средней оболочки приносящей и выносящей артериол, по происхождению мышечные, по функции секреторные. Они содержат белоксинтезирующий аппарат и гранулы ренина.. 2. Клетки плотного пятна — это клетки в количестве 20—40 находятся в участке стенки дистального канальца, лежащего между приносящей и выносящей артериолами. Базальная мембрана в этом месте очень тонкая или полностью отсутствует. 3.Юкставаскулярные клетки лежат в треугольном пространстве между приносящей, выносящей артериолами и клетками плотного пятна, формируя так называемую подушку.БИЛЕТ NQ 40
Прогенез, оплодотворение: сущность, этапы, условия.
Многослойный эпителий: топография, морфофункциональные особенности, генез.
Желудок: части, оболочки, слои, тканевой состав, источники развития, функции.
Типы и строение желез желудка. Эндокринные клетки. Иннервация желудка.
Зрелые половые клетки, в отличие от соматических содержат одиночный набор хромосом. В мужских половых клетках у млекопитающих содержатся половые хромосомы либо X, либо Y, в женских половых клетках — только хромосома Х, Дифференцированные гаметы обладают невысоким уровнем метаболизма и неспособны к размножению. Прогенез включает в себя сперматогенез и овогенез. Сперматогенез — это развитие и формирование мужских половых клеток. Сперматогенез протекает в извитых канальцах семенников, и его средняя продолжительность от 68 до 75 суток. Сперматогенез у человека начинается с момента полового созревания и продолжается в течение всего активного полового периода в больших количествах. Стадии сперматогенеза. Начальной фазой сперматогенеза является размножение сперматогоний путем митоза, большая часть клеток продолжает делиться, а меньшая часть вступает в стадию роста. В этот период клетки растут, накапливают питательные вещества, и потом превращаются в сперматоциты 1-го порядка. Следующая фаза созревание-деление, характеризуется двумя редукционными делениями, без интерфазы. В результате 1-го деления 1 сперматоцит 1-го порядка дает начало 2-м сперматоцитам 2-го порядка, а 2-ое деление-созревание приводит к появлению 4 сперматид. Фаза формирования происходит в присутствии тестостерона, происходит преобразование сперматид в сперматозоиды. Овогенез — это процесс образования и развития женских половых клеток. Он включает в себя 3 фазы:
размножения;
роста;
созревания.
Фаза размножения начинается в эмбриональном периоде и продолжается в течение 1-го года жизни девочки. К моменту рождения у девочки имеется около 2-х млн. клеток. Сущностью фазы размножения является митотическое деление овогоний. Фаза роста, в конце 1-го года жизни девочки размножение овогоний останавливается, и клетки яичника вступают в фазу малого роста, превращаясь в овоциты 1-го порядка. Наступает 1 блок роста, который снимается с наступлением полового созревания, то есть появлением женских половых гормонов. Далее овоциты 1-го порядка вступают в фазу большого роста. Фаза созревания, как и во время сперматогенеза, включает в себя два деления, причем второе следует за первым без интеркинеза, что приводит к уменьшению (редукции) числа хромосом вдвое. При первом делении созревания овоцит 1-го порядка делится, в результате чего образуются овоцит 2-го порядка и небольшое редукционное тельце.
Многослойный плоский неороговевающий эпителий. Он развивается из эктодермы, выстилает роговицу, передний отдел пищеварительного канала и участок анального отдела пищеварительного канала, влагалище. Клетки располагаются в несколько слоёв. На базальной мембране лежит слой базальных или цилиндрических клеток. Часть из них — стволовые клетки. Они пролиферируют, отделяются от базальной мембраны, превращаются в клетки полигональной формы с выростами, шипами и совокупность этих клеток формирует слой шиповатых клеток, располагающихся в несколько этажей. Они постепенно уплощаются и образуют поверхностный слой плоских, которые с поверхности отторгаются во внешнюю среду.
Многослойный плоский ороговевающий эпителий — эпидермис, он выстилает кожные покровы. В толстой коже (ладонные поверхности), которая постоянно испытывает нагрузку, эпидермис содержит 5 слоёв:
1 — базальный слой — содержит стволовые клетки, дифференцированные цилиндрические и пигментные клетки (пигментоциты).
2 — шиповатый слой — клетки полигональной формы, в них содержатся тонофибриллы.
3 — зернистый слой — клетки приобретают ромбовидную форму, тонофибриллы распадаются и внутри этих клеток в виде зёрен образуются белок кератогиалин, с этого начинается процесс ороговения.
4 — блестящий слой — узкий слой, в нём клетки становятся плоскими, они постепенно утрачивают внутриклеточную структуру, и кератогиалин превращается в элеидин.
5 — роговой слой — содержит роговые чешуйки, которые полностью утратили строение клеток, содержат белок кератин. При механической нагрузке и при ухудшении кровоснабжения процесс ороговения усиливается.
В тонкой коже, которая не испытывает нагрузки, отсутствует зернистый и блестящий слои.
Многослойный кубический и цилиндрический эпителии встречаются крайне редко — в области конъюнктивы глаза и области стыка прямой кишки между однослойным и многослойным эпителиями.
Переходный эпителий (уроэпителий) выстилает мочевыводящие пути и аллантоис. Содержит базальный слой клеток, часть клеток постепенно отделяется от базальной мембраны и образует промежуточный слой грушевидных клеток. На поверхности располагается слой покровных клеток — крупные клетки, иногда двухрядные, покрыты слизью. Толщина этого эпителия меняется в зависимости от степени растяжения стенки мочевыводящих органов. Эпителий способен выделять секрет, защищающий его клетки от воздействия мочи.
Железистый эпителий — разновидность эпителиальной ткани, которая состоит из эпителиальных железистых клеток, которые в процессе эволюции приобрели ведущее свойство вырабатывать и выделять секреты. Такие клетки называются секреторными (железистыми) — гландулоцитами. Они имеют точно такую же общую характеристику как покровный эпителий. Расположен в железах кожи, кишечнике, слюнных железах, железах внутренней секреции и др. Cреди эпителиальных клеток находятся секреторные клетки, их 2 вида.
экзокринные — выделяют свой секрет во внешнюю среду или просвет органа.
эндокринные — выделяют свой секрет непосредственно в кровоток.
Функции желудка :секреторная и пищеварительная функции;
моторно-эвакуаторная функция и депонирование;
всасывательная функция;
экскреторная функция;
выработка мукопротеида, называемого антианемическим фактором Кастла;
барьерно-защитная;
эндокринная функция.
Желудок — орган слоистого типа. Слизистая оболочка имеет сложный рельеф, представленный желудочными ямками, складками и полями. Ямки — это углубления эпителия в собственную пластинку слизистой оболочки. Складки представляют собой выпячивания в просвет желудка слизистой и подслизистой оболочек. Поля — это участки слизистой оболочки, включающие группу желез, отграниченную от других таких же групп выраженной прослойкой рыхлой волокнистой соединительной ткани с просвечивающими кровеносными сосудами. Ямки и складки существенно увеличивают рабочую поверхность слизистой оболочки. Основными структурами собственной пластинки являются железы. Все железы желудка простые трубчатые разветвленные. Они открываются в желудочные ямки и состоят из трех частей: дна, тела и шейки. В зависимости от локализации железы делятся на кардиальные, главные или фундальные и пилоричекие. Строение и клеточный состав этих желез неодинаковы. В количественном отношении преобладают главные железы. Они являются наиболее слаборазветвленными из всех желез желудка. Их клеточный состав такой:
главные клетки;
париетальные клетки;
добавочные или слизистые клетки;
эндокриноциты;
шеечные мукоциты.
Подслизистая оболочка образована рыхлой волокнистой неоформленной соединительной тканью, содержит артериальное и венозное сплетения, ганглии подслизистого нервного сплетения Мейснера. В некоторых случаях здесь могут располагаться крупные лимфоидные фолликулы. Мышечная оболочка образована тремя слоями гладкой мышечной ткани: внутренний косой, средний циркулярный, наружный продольный. В пилорическом отделе желудка циркулярный слой достигает максимального развития, формируя пилорический сфинктер. Серозная оболочка образована двумя слоями: слоем рыхлой волокнистой неоформленной соединительной ткани и лежащим на нем мезотелием.

БИЛЕТ № 41(селезенка, почка) и клеточная мембрана
1.Периоды индивидуального развития. Критические периоды онтогенеза: сущность, влияние экологических и социальных факторов. Причины аномалий, пороков и уродств.
2.Рефлекторная дуга: составные элементы, типы, структурные основы динамической поляризации.
3.. Микроциркуляторное русло: составные элементы и их функциональная роль.
В зависимости от среды, в которой происходит развитие организма человека, онтогенез распадается на два больших периода, отделенных друг от друга моментом рождения:
Внутриутробный, когда вновь зародившийся организм развивается в утробе матери; этот период длится от зарождения до рождения.
Внеутробный (постнатальный), когда новая особь продолжает свое развитие вне организма матери; этот период длится от момента рождения до смерти. Выделяют следующие его:
новорожденный (первые 1 - 10 дней после рождения),
грудной (от 10 дней до 12 месяцев),
раннее детство (с 1 до 3 лет),
первое детство (с 4 до 7 лет),
второе детство (с 8 до 12 лет),
подростковый возраст (с13 до 16 лет),
юношеский возраст (с17 лет до 21 года),
период зрелости (от 22 лет до 55 -60 лет),
пожилой возраст (от 56-61 года до 74 лет),
старческий период ( 75 - 90 лет)
долгожители (свыше 90 лет).
В процессе индивидуального развития имеются критические периоды, когда повышена чувствительность развивающегося организма к воздействию повреждающих факторов внешней и внутренней среды. Выделяют несколько критических периодов развития. Такими наиболее опасными периодами являются: 
1) время развития половых клеток - овогенез и сперматогенез; 
2) момент слияния половых клеток - оплодотворение; 
3) имплантация зародыша (4-8-е сутки эмбриогенеза); 
4) формирование зачатков осевых органов (головного и спинного мозга, позвоночного столба, первичной кишки) и формирование плаценты (3-8-я неделя развития); 
5) стадия усиленного роста головного мозга (15-20-я неделя); 
6) формирование функциональных систем организма и дифференцирование мочеполового аппарата (20-24-я неделя пренатального периода); 
7) момент рождения ребенка и период новорожденности - переход к внеутробной жизни; метаболическая и функциональная адаптация; 
8) период раннего и первого детства (2 года - 7 лет), когда заканчивается формирование взаимосвязей между органами, системами и аппаратами органов;
9) подростковый возраст (период полового созревания - у мальчиков с 13 до 16 лет, у девочек - с 12 до 15 лет). 
Рефлекторная дуга является функциональной единицей нервной системы, они представляют собой цепочки нейронов, которые обеспечивают реакции рабочих органов (органов-мишеней) в ответ на раздражение рецепторов. В рефлекторных дугах нейроны, связанные друг с другом синапсами, образуют три звена: рецепторное (афферентное), эффекторное и расположенное между ними ассоциативное (вставочное), которое в простейшем варианте дуги может отсутствовать. На различные звенья дуги оказывают регуляторные воздействия связанные с ними нейроны вышележащих центров, вследствие чего рефлекторные дуги имеют сложное строение. Рефлекторные дуги в соматическом (анимальном) и автономном (вегетативном) отделах нервной системы обладают рядом особенностей. Рецепторное звено образовано афферентными псевдоуниполярными нейронами, тела которых располагаются в спинальных ганглиях. Ассоциативное звено представлено мультиполярными вставочными нейронами, дендриты и тела которых расположены в задних рогах спинного мозга, а аксоны направляются в передние рога, передавая импульсы на тела и дендриты эффекторных нейронов. Эффекторное звено образовано мультиполярными мотонейронами, тела и дендриты которых лежат в передних рогах, а аксоны выходят из спинного мозга в составе передних корешков, направляются к спинальному ганглию и далее в составе смешанного нерва — к скелетной мышце, на волокнах которой их веточки образуют нервно-мышечные синапсы (моторные, или двигательные, бляшки).

Микроциркуляторное русло включает в себя следующие компоненты: артериолы, прекапилляры, капилляры, посткапилляры, венулы, артериоло-венулярные анастомозы. Функции микроциркуляторного русла состоят в следующем:
трофическая и дыхательная функции, так как обменная поверхность капилляров и венул составляет 1000 м2, или 1,5 м2 на 100 г ткани;
депонирующая функция, так как в сосудах микроциркуляторного русла в состоянии покоя депонируется значительная часть крови, которая во время физической работы включается в кровоток;
дренажная функция, так как микроциркуляторное русло собирает кровь из приносящих артерий и распределяет ее по органу;
регуляция кровотока в органе, эту функцию выполняют артериолы благодаря наличию в них сфинктеров;
транспортная функция, то есть транспорт крови.
Артериолы имеют диаметр 50—100 мкм. В их строении сохраняются три оболочки, но они выражены слабее, чем в артериях. В области отхождения от артериолы капилляра находится гладкомышечный сфинктер, который регулирует кровоток. Этот участок называется прекапилляром. Капилляры — это самые мелкие сосуды, они различаются по размерам на:
узкий тип 4—7 мкм;
обычный или соматический тип 7—11 мкм;
синусоидный тип 20—30 мкм;
лакунарный тип 50—70 мкм.
Для капилляров характерна органная специфичность, в связи с чем выделяют три типа капилляров:
капилляры соматического типа или непрерывные, они находятся в коже, мышцах, головном мозге, спинном мозге. Для них характерен непрерывный эндотелий и непрерывная базальная мембрана;
капилляры фенестрированного или висцерального типа (локализация — внутренние органы и эндокринные железы). Для них характерно наличие в эндотелии сужений — фенестр и непрерывной базальной мембраны;
капилляры прерывистого или синусоидного типа (красный костный мозг, селезенка, печень). В эндотелии этих капилляров имеются истинные отверстия, есть они и в базальной мембране, которая может вообще отсутствовать.
Венулы делятся на посткапиллярные, собирательные и мышечные. Посткапиллярные венулы образуются в результате слияния нескольких капилляров, имеют такое же строение, как и капилляр, но больший диаметр (12—30 мкм) и большое количество перицитов. Артериоло-венулярные анастомозы или шунты — это вид сосудов микроциркуляторного русла, по которым кровь из артериол попадает в венулы, минуя капилляры. Это необходимо, например, в коже для терморегуляции. Все артериоло-венулярные анастомозы делятся на два типа:
истинные — простые и сложные;
атипичные анастомозы или полушунты.
БИЛЕТ №42
1.Плазмолемма: структура, химический состав, функции. Межклеточные контакты, их типы.
2. Волокнистые соединительные ткани: общая морфофункциональная характеристика, классификация, источники развития, составные компоненты. Возрастные изменения. Регенерация.
З. Легкие. Респираторный отдел легкого: структурно-функциональная единица, ее составные компоненты, строение альвеол. Аэрогематический барьер, особенности кровоснабжения легкого.
Плазмолемма оболочка животной клетки, ограничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой. Плазмолемма имеет толщину около 10 нм, и состоит на 40 % из липидов, на 5—10 % из углеводов (в составе гликокаликса), и на 50—55 % из белков. Функции плазмолеммы:
разграничивающая (барьерная);
рецепторная или антигенная;
транспортная;
образование межклеточных контактов.
Основу строения плазмолеммы составляет двойной слой липидных молекул - билипидная мембрана, в которую местами включены молекулы белков, также имеется надмембранный слой гликокаликс, структурно связанный с белками и липидами билипидной мембраны, и в некоторых клетках имеется подмембранный слой. Каждый монослой ее образован в основном молекулами фосфолипидов и, частично, холестерина. При этом в каждой липидной молекуле различают две части: гидрофильную головку и гидрофобные хвосты. Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки билипидного слоя соприкасаются с внешней или внутренней средой. Билипидная мембрана, а точнее ее глубокий гидрофобный слой, выполняет барьерную функцию, препятствуя проникновению воды и растворенных в ней веществ, а также крупных молекул и частиц. Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя.
По локализации в мембране белки подразделяются на:
интегральные пронизывают всю толщу билипидного слоя;
полуинтегральные включающиеся только в монослой липидов (наружный или внутренний);
прилежащие к мембране, но не встроенные в нее.
По выполняемой функции белки плазмолеммы подразделяются на:
структурные белки;
транспортные белки;
рецепторные белки;
ферментные.
Помимо барьерной функции, предохраняющей внутреннюю среду клетки, плазмолемма выполняет транспортные функции, обеспечивающие обмен клетки с окружающей средой.
Характеристика рыхлой волокнистой соединительной ткани. Она состоит из клеток и межклеточного вещества, которое в свою очередь состоит из волокон (коллагеновых, эластических, ретикулярных) и аморфного вещества. Морфологические особенности, отличающие рыхлую волокнистую соединительную ткань от других разновидностей соединительных тканей:
многообразие клеточных форм (9 клеточных типов);
преобладание в межклеточном веществе аморфного вещества над волокнами.
Функции рыхлой волокнистой соединительной ткани:
трофическая;
опорная - образует строму паренхиматозных органов;
защитная — неспецифическая и специфическая (участие в иммунных реакциях) защита;
депо воды, липидов, витаминов, гормонов;
репаративная (пластическая).
Функционально ведущими структурными компонентами рыхлой волокнистой соединительной ткани являются клетки различной морфологии и функции, которые и будут рассмотрены в первую очередь, а затем уже межклеточное вещество. I.Фибробласты — преобладающая популяция клеток рыхлой волокнистой соединительной ткани. Они неоднородны по степени зрелости и функциональной специфичности и потому подразделяются на следующие субпопуляции:
малодифференцированные клетки;
дифференцированные или зрелые клетки, или собственно фибробласты;
старые фибробласты (дефинитивные)фиброциты, а также специализированные формы фибробласты;
миофибробласты;
фиброкласты.
II. Макрофаги — клетки, осуществляющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц, откуда и происходит их название. Однако фагоцитоз, хотя и важная, но далеко не единственная функция этих клеток. По современным данным макрофаги являются полифункциональными клетками. Образуются макрофаги из моноцитов крови после их выхода из кровеносного русла. Макрофаги характеризуются структурной и функциональной гетерогенностью в зависимости от степени зрелости, от области локализации, а также от их активации антигенами или лимфоцитами. Прежде всего, они подразделяются на фиксированные и свободные (подвижные). Макрофаги соединительной ткани являются подвижными или блуждающими и называются гистиоцитами. Защитная функция макрофагов проявляется в разных формах:
неспецифическая защита — защита посредством фагоцитоза экзогенных и эндогенных частиц и их внутриклеточного переваривания;
выделение во внеклеточную среду лизосомальных ферментов и других веществ: пирогена, интерферона, перекиси водорода, синглетного кислорода и другие;
специфическая или иммунологическая защита — участие в разнообразных иммунных реакциях.
Основные функции легких:
газообмен;
терморегуляторная функция;
участие в регуляции кислотно-щелочного равновесия;
регуляция свертывания крови — легкие образуют в больших количествах тромбопластин и гепарин, которые участвуют в деятельности коагулянтно-антигоагулянтной системы крови;
регуляция водно-солевого обмена;
регуляция эритропоэза путем секреции эритропоэтина;
иммунологическая функция;
участие в обмене липидов.
Легкие состоят из двух основных частей: внутрилегочных бронхов (бронхиальное дерево) и многочисленных ацинусов, формирующих паренхиму легких. Бронхиальное дерево начинается правым и левым главными бронхами, которые делятся на долевые бронхи — 3 справа и 2 слева. Долевые бронхи делятся на внелегочные зональные бронхи, образующие в свою очередь 10 внутрилегочных сегментарных бронхов. Последние последовательно разделяются на субсегментарные, междольковые, внутридольковые бронхи и терминальные бронхи. Существует классификация бронхов по их диаметру. По данному признаку выделяют бронхи крупного (15—20 мм), среднего (2—5 мм), малого (1—2 мм) калибра. Стенка бронха состоит из 4-х оболочек: слизистой, подслизистой, фиброзно-хрящевой и адвентициальной. Эти оболочки на протяжении бронхиального дерева претерпевают изменения. Внутренняя, слизистая оболочка состоит из трех слоев: многорядного мерцательного эпителия, собственной и мышечной пластинок. В состав эпителия входят следующие виды клеток:
секреторные клетки, клетки секретируют ферменты разрушающие сурфактант;
безреснитчатые клетки, возможно, выполняют рецепторную функцию;
каемчатые клетки, основной функцией этих клеток является хеморецепция;
реснитчатые;
бокаловидные;
эндокринные.
Собственная пластинка слизистой оболочки состоит из рыхлой волокнистой соединительной ткани, богатой эластическими волокнами. Мышечная пластинка слизистой оболочки образована гладкой мышечной тканью. Подслизистая оболочка представлена рыхлой волокнистой соединительной тканью. В ней лежат концевые отделы смешанных слизисто-белковых желез. Секрет желез увлажняет слизистую оболочку. Фиброзно-хрящевая оболочка образована хрящевой и плотной волокнистой соединительной тканями. Адвентициальная оболочка представлена рыхлой волокнистой соединительной тканью. В крупных бронхах он эпителий многорядный, затем постепенно становится двурядным, а в терминальных бронхиолах превращается в однорядный кубический. Воздухоносные пути заканчиваются терминальными бронхиолами, имеющими диаметр до 0,5 мм. Их стенка образована слизистой оболочкой. Эпителий — однослойный кубический реснитчатый. В его состав входят реснитчатые, щеточные, бескаемчатые клетки и секреторные клетки Клара. Собственная пластинка образована рыхлой волокнистой соединительной тканью, которая переходит в междольковую рыхлую волокнистую соединительную ткань легкого.
БИЛЕТ № 43
1. Провизорные органы зародыша человека: источники и хронология развития, строение, функциональная роль.
2.Костные ткани: классификация, строение, функциональная роль. Остеогенез: типы, этапы. Влияние экологических и социальных факторов на структурно - функциональное состояние костных тканей.
3.Сердечнососудистая система: составные компоненты, функциональная роль различных звеньев. Классификация и общий принцип строения сосудов. Развитие сосудов.
Функции провизорных органов:
хорион выполняет защитную, трофическую, эндокринную, экскреторную функции;
желточный мешок участвует в образовании первичных кровеносных сосудов и первичных половых клеток;
амнион — выработка околоплодных вод, защита плода от механических повреждений, поддержание определенной концентрации солей в околоплодных водах;
по аллантоису прорастают первичные кровеносные сосуды из зародыша к хориону, формируя плацентарный круг кровообращения.
Хорион возникает из трофобласта, который уже разделился на цитотрофобласт и синцитиотрофобласт. Последний под влиянием контакта со слизистой матки разрастается и разрушает ее. К концу 2-й недели образуются первичные ворсинки хориона в виде скопления эпителиальных клеток цитотрофобласта. В начале 3-й недели в них врастает мезодермальная мезенхима и возникают вторичные ворсинки, а когда к концу 3-й недели внутри соединительнотканной сердцевины появляются кровеносные сосуды, их называют третичными ворсинками. Амнион возникает путем расхождения клеток эпибласта внутренней клеточной массы. Амниотическая полость некоторое время ограничена клетками эпибласта и частично участком трофобласта. Затем боковые стенки эпибласта образуют складки, направленные вверх, которые впоследствии срастаются. Полость оказывается полностью выстланной эпибластическими (эктодермальными) клетками. Желточный мешок, появляется, когда от внутренней клеточной массы отделяется тонкий слой гипобласта и его внезародышевые энтодермальные клетки, перемещаясь, выстилают изнутри поверхность трофобласта. Образовавшийся первичный желточный мешок на 12—13-е сутки спадается и преобразуется во вторичный желточный мешок, связанный с зародышем. Энтодермальные клетки обрастают снаружи внезародышевой мезодермой. Аллантоис возникает у зародыша человека, в виде кармана вентральной стенки задней кишки, но его энтодермальная полость остается рудиментарной структурой. Тем не менее, в его стенках развивается обильная сеть сосудов, соединяющаяся с главными кровеносными сосудами зародыша. Мезодерма аллантоиса соединяется с мезодермой хориона, отдавая в него кровеносные сосуды.
Костная ткань является разновидностью соединительной ткани и состоит из клеток и межклеточного вещества, в котором содержится большое количество минеральных солей, главным образом фосфат кальция. Минеральные вещества составляют 70 % от костной ткани, органические — 30 %. Функции костных тканей:
опорная;
механическая;
защитная;
участие в минеральном обмене организма - депо кальция и фосфора.
Клетки костной ткани: остеобласты, остеоциты, остеокласты. Основными клетками в сформированной костной ткани являются остеоциты. Это клетки отростчатой формы с крупным ядром и слабовыраженной цитоплазмой (клетки ядерного типа). Остеобласты содержатся только в развивающейся костной ткани. В сформированной костной ткани они отсутствуют, но содержатся обычно в неактивной форме в надкостнице. Отеокласты — костеразрушающие клетки, в сформированной костной ткани отсутствуют. Но содержатся в надкостнице и в местах разрушения и перестройки костной ткани. Поскольку в онтогенезе непрерывно осуществляются локальные процессы перестройки костной ткани, то в этих местах обязательно присутствуют и остеокласты. В процессе эмбрионального остеогистогенеза эти клетки играют важную роль и определяются в большом количестве. Остеокласты имеют характерную морфологию: во-первых, эти клетки являются многоядерными (3—5 и более ядер), во-вторых, это довольно крупные клетки (диаметром около 90 мкм), в-третьих, они имеют характерную форму — клетка имеет овальную форму, но часть ее, прилежащая к костной ткани, является плоской. Межклеточное вещество костной ткани состоит из основного вещества и волокон, в которых содержатся соли кальция. Волокна состоят из коллагена I типа и складываются в пучки, которые могут располагаться параллельно (упорядочено) или неупорядочено, на основании чего и строится гистологическая классификация костных тканей. Различают две разновидности костных тканей: в ретикулофиброзной костной ткани пучки коллагеновых волокон толстые, извилистые и располагаются неупорядочено. В минерализованном межклеточном веществе в лакунах беспорядочно располагаются остеоциты. Пластинчатая костная ткань состоит из костных пластинок, в которых коллагеновые волокна или их пучки располагаются параллельно в каждой пластинке, но под прямым углом к ходу волокон в соседних пластинках. Между пластинками в лакунах располагаются остеоциты, тогда как их отростки проходят в канальцах через пластинки.

Сердечно-сосудистая система образована сердцем, кровеносными и лимфатическими сосудами. Функции:
транспортная — обеспечение циркуляции крови и лимфы в организме, транспорт их к органам и от органов. Эта фундаментальная функция складывается из трофической (доставка к органам, тканям и клеткам питательных веществ), дыхательной (транспорт кислорода и углекислого газа) и экскреторная (транспорт конечных продуктов обмена веществ к органам выделения) функции;интегративная функция — объединение органов и систем органов в единый организм;
регуляторная функция, наряду с нервной, эндокринной и иммунной системами сердечно-сосудистая система относится к числу регуляторных систем организма. Она способна регулировать функции органов, тканей и клеток путем доставки к ним медиаторов, биологически активных веществ, гормонов и других, а также путем изменения кровоснабжения;
сердечно-сосудистая система участвует в иммунных, воспалительных и других общепатологических процессах (метастазирование злокачественных опухолей и других).
Сосуды развиваются из мезенхимы. Различают первичный и вторичный ангиогенез. Первичный ангиогенез или васкулогенез, представляет собой процесс непосредственного, первоначального образования сосудистой стенки из мезенхимы. Вторичный ангиогенез — формирование сосудов путем их отрастания от уже имеющихся сосудистых структур.
БИЛЕТ № 44
1.Дробление: сущность, типы, дробление у человека. Развитие и строение бластоцисты. Имплантация: сущность, хронология, изменения в бластоцисте.
2.Плотная соединительная ткань: особенности строения, классификация, топография. Соединительные ткани со специальными свойствами: особенности строения, функциональное значение, топография.
З. Тимус: развитие, строение, функции. Структуры гематотканевого барьера. Понятие о возрастной и акцидентальной инволюции тимуса.
Дробление — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных. При этом масса зародыша и его объём не меняются, оставаясь такими же, как и в начале дробления.  Характерная особенность дробления — ведущая регуляторная роль цитоплазмы в развитии. Характер дробления зависит от количества желтка и его расположения в яйце. Биологическое значение дробления: переход к многоклеточности и увеличение ядерно-цитоплазматического отношения. Дробление как особый этап онтогенеза животных имеет характерные черты, которые свойственны большинству животных, но могут отсутствовать у некоторых групп.
Интерфаза сокращена до S-периода; в связи с этим транскрипция собственных генов зародыша полностью подавлена, транскрибируются только запасённые в яйцеклетке материнские мРНК.
Между делениями нет периода роста, так что общая масса зародыша не растёт.
По всем этим характеристикам дробление млекопитающих резко отклоняется от типичного. Бластомеры делятся у них медленно, синхронность нарушается уже после 1—2 делений, в это же время активируется собственный геном зародыша. Классификация типов дробления. На основе ряда существенных характеристик (степень детерминированности, полнота, равномерность и симметрия деления) выделяют ряд типов дробления. Типы дробления во многом определяются распределением веществ (в том числе, желтка) по цитоплазме яйца и характером межклеточных контактов, которые устанавливаются между бластомерами. Дробление может быть: детерминированным и регулятивным; полным (голобластическим) или неполным (меробластическим); равномерным (бластомеры более-менее одинаковы по величине) и неравномерным (бластомеры не одинаковы по величине, выделяются две — три размерные группы, обычно называемые макро- и микромерами); наконец, по характеру симметрии различают радиальное, спиральное, различные варианты билатеризованных и анархическое дробление. В каждом из этих типов выделяют ряд вариантов.
В зависимости от расположения соединительнотканных волокон плотная соединительная ткань подразделяется на два вида: плотную неоформленную и плотную оформленную соединительную ткань. В плотной неоформленной соединительной ткани пучки волокон межклеточного вещества располагаются в различных направлениях и не имеют строгой, закономерной линейной ориентации. В плотной оформленной соединительной ткани, как свидетельствует ее наименование, пучкам соединительнотканных волокон свойственна закономерная линейная ориентация, отражающая воздействие механических сил на ткань. В зависимости от того, какие волокна составляют основную массу ткани, плотная оформленная соединительная ткань подразделяется на коллагеновую и эластическую. Плотная неоформленная соединительная ткань у человека и млекопитающих животных образует основу кожи. Вследствие постоянного и всестороннего механического воздействия пучки коллагеновых волокон располагаются в различных плоскостях и переплетаются. Наряду с коллагеновыми волокнами в этом виде соединительной ткани имеется некоторое количество эластических волокон, которые располагаются в прослойках рыхлой неоформленной соединительной ткани между пучками коллагеновых волокон, а также по ходу сосудов и нервов. Клеток в этой ткани мало, они в основном представлены фибробластами, фиброцитами, изредка встречаются и другие клетки, которые наблюдаются в рыхлой неоформленной соединительной ткани.
Тимус выполняет следующие функции:
в тимусе происходит антигеннезависимая дифференцировка Т-лимфоцитов, то есть он является центральным органом иммуногенеза;
в тимусе вырабатываются гормоны тимозин, тимопоэтин, тимусный сывороточный фактор.
Тимус — паренхиматозный дольчатый орган. Снаружи он покрыт соединительнотканной капсулой. Отходящие от капсулы перегородки делят орган на дольки, однако это разделение неполное. Основу каждой дольки составляют отростчатые эпителиальные клетки, которые называются ретикулоэпителиоцитами. Рыхлая волокнистая неоформленная соединительная ткань имеется только периваскулярно. Корковое вещество состоит из двух зон: субкапсулярной или наружной и зоны глубокой коры. В субкапсулярную зону из красного костного мозга поступают пре-Т-лимфоциты. Они превращаются в лимфобласты и начинают пролиферировать, тесно контактируя с клетками-кормилицами. Мозговое вещество содержит соединительнотканную строму, ретикулоэпителиальную основу и лимфоциты. Которых значительно меньше (3—5 % от всех лимфоцитов тимуса). Часть лимфоцитов мигрирует сюда из коркового вещества, чтобы на границе с корой через посткапиллярные венулы покинуть тимус. Другая часть лимфоцитов мозгового вещества, возможно, является лимфоцитами, поступившими из периферических органов иммуногенеза. В мозговом веществе есть эпителиальные тимические тельца Гассаля. Они образованы наслоением друг на друга эпителиоцитами. В корковом веществе тимуса происходит антигеннезависимая дифференцировка Т-лимфоцитов, и действие антигенов на этом этапе может нарушить нормальный лимфопоэз. Поэтому развивающиеся Т-лимфоциты коркового вещества отделены от крови и находящихся в ней антигенов гематотимическим барьером. В его состав входят следующие структуры:
эндотелий капилляра непрерывного типа;
непрерывная базальная мембрана эндотелия;
перикапиллярное пространство, в соединительной ткани которого присутствуют макрофаги, расщепляющие антигены;
базальная мембрана периваскулярных ретикулоэпителиоцитов;
ретикулоэпителиоциты, которые имеют отростчатую форму и при помощи своих отростков охватывают гемокапилляры.
БИЛЕТ № 45
1. Провизорные органы зародыша человека: источники и хронология развития, строение, функциональная роль.
2. Иммуноцитопоэз. Т - и В-лимфоциты: этапы, области кроветворения, особенности каждого этапа, образование эффекторных иммунокомпетентных клеток.
З. Печень: источники развития, структурно-функциональные единицы. Строение классической дольки. Регенерация. Возрастные особенности. Строение и функциональная роль желчного пузыря.
Функции провизорных органов:
хорион выполняет защитную, трофическую, эндокринную, экскреторную функции;
желточный мешок участвует в образовании первичных кровеносных сосудов и первичных половых клеток;
амнион — выработка околоплодных вод, защита плода от механических повреждений, поддержание определенной концентрации солей в околоплодных водах;
по аллантоису прорастают первичные кровеносные сосуды из зародыша к хориону, формируя плацентарный круг кровообращения.
Хорион возникает из трофобласта, который уже разделился на цитотрофобласт и синцитиотрофобласт. Последний под влиянием контакта со слизистой матки разрастается и разрушает ее. К концу 2-й недели образуются первичные ворсинки хориона в виде скопления эпителиальных клеток цитотрофобласта. В начале 3-й недели в них врастает мезодермальная мезенхима и возникают вторичные ворсинки, а когда к концу 3-й недели внутри соединительнотканной сердцевины появляются кровеносные сосуды, их называют третичными ворсинками. Амнион возникает путем расхождения клеток эпибласта внутренней клеточной массы. Амниотическая полость некоторое время ограничена клетками эпибласта и частично участком трофобласта. Затем боковые стенки эпибласта образуют складки, направленные вверх, которые впоследствии срастаются. Полость оказывается полностью выстланной эпибластическими (эктодермальными) клетками. Желточный мешок, появляется, когда от внутренней клеточной массы отделяется тонкий слой гипобласта и его внезародышевые энтодермальные клетки, перемещаясь, выстилают изнутри поверхность трофобласта. Образовавшийся первичный желточный мешок на 12—13-е сутки спадается и преобразуется во вторичный желточный мешок, связанный с зародышем. Энтодермальные клетки обрастают снаружи внезародышевой мезодермой. Аллантоис возникает у зародыша человека, в виде кармана вентральной стенки задней кишки, но его энтодермальная полость остается рудиментарной структурой. Тем не менее, в его стенках развивается обильная сеть сосудов, соединяющаяся с главными кровеносными сосудами зародыша. Мезодерма аллантоиса соединяется с мезодермой хориона, отдавая в него кровеносные сосуды.
Лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:
1 класс — стволовые клетки;
2 класс — полустволовые клетки-предшественницы лимфоцитопоэза;
3 класс — унипотентные Т-поэтинчувствительные клетки—предшественницы Т-лимфоцитопоэза.
Второй этап — этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов: киллеры, хелперы и супрессоры. В итоге третьего этапа Т-лимфоцитопоэза образуются эффекторные клетки клеточного иммунитета (Т-киллеры), регуляторные клетки гуморального иммунитета (Т-хелперы и Т-супрессоры), а также Т-памяти всех популяций Т-лимфоцитов. Первый этап В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток:
1 класс — стволовые клетки;
2 класс — полустволовые клетки-предшественницы лимфопоэза;
3 класс — унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза.
В процессе второго этапа В-лимфоциты приобретают разнообразные рецепторы к антигенам. Третий этап — антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт.
Функции печени:
депонирование, в печени депонируется гликоген, жирорастворимые витамины (А, D, Е, К). Сосудистая система печени способна в довольно больших количествах депонировать кровь;
участие во всех видах обмена веществ: белковом, липидном (в том числе в обмене холестерина), углеводном, пигментном, минеральном и др.
дезинтоксикационная функция;
барьерно-защитная функция;
синтез белков крови: фибриногена, протромбина, альбуминов;
участие в регуляции свертывания крови путем образования белков — фибриногена и протромбина;
секреторная функция — образование желчи;
гомеостатическая функция, печень участвует в регуляции метаболического, антигенного и температурного гомеостаза организма;
кроветворная функция;
эндокринная функция.
Печень — паренхиматозный дольчатый орган. Ее строма представлена:
капсулой из плотной волокнистой соединительной ткани (капсула Глиссона), которая срастается с висцеральным листком брюшины;
прослойками рыхлой волокнистой соединительной ткани, которые делят орган на дольки.
Паренхима печени представлена совокупностью гепатоцитов, формирующих классическую дольку. Классическая долька — структурно-функциональная единица печени. Она имеет форму шестигранной призмы. По периферии дольки находятся триады или портальные тракты, в состав которых входят междольковые артерия, вена и желчный проток, а также лимфососуды и нервные стволы (в силу этого некоторые исследователи предлагают называть эти структуры не триадами, а пентодами). В центре дольки лежит центральная вена безмышечного типа. Печень получает кровь из двух сосудистых систем: печеночной артерии и воротной вены. По печеночной артерии в печень поступает около 20 % всей крови. Она доставляет органу кислород. Из системы воротной вены печень получает до 80 % крови. Это кровь от непарных органов брюшной полости (кишечника, селезенки, поджелудочной железы), богатая питательными веществами, гормонами, биологически активными веществами, антителами и веществами, подлежащими детоксикации.
Функции желчного пузыря:
депонирование желчи;
концентрирование желчи путем всасывания ее жидкого компонента;
секреция слизи.
Желчный пузырь слоистый орган, состоящий из слизистой, мышечной и серозной (адвентициальной) оболочек. Слизистая оболочка образована однослойным призматическим эпителием и собственной пластинкой из рыхлой волокнистой соединительной ткани. Эпителиоциты, являясь секреторными клетками, образуют и выделяют на поверхность эпителия слизь, защищающую его от агрессивных компонентов желчи. В связи с этим в клетках обнаруживаются секреторные гранулы. Апикальная цитолемма формирует многочисленные микроворсинки. Цитолемма латеральной поверхности эпителиоцитов содержит большое количество натриевых насосов, благодаря деятельности которых создается градиент натрия и калия между межклеточными пространствами и просветом пузыря. Это обеспечивает пассивный транспорт воды из пузырной желчи в межклеточные пространства и далее в гемокапилляры, что ведет к концентрированию желчи. Слизистая оболочка образует множество складок. В области шейки пузыря в собственной пластинке лежат альвеолярно-трубчатые железы, вырабатывающие слизь. Подслизистая оболочка отсутствует. Мышечная оболочка представлена пучками гладких миоцитов, формирующими два нерезких слоя (внутренний циркулярный и наружный продольный). Циркулярные пучки миоцитов преобладают. Наружная оболочка со стороны печени адвентициальная, со стороны брюшной полости серозная.

Приложенные файлы

  • docx 17896551
    Размер файла: 616 kB Загрузок: 0

Добавить комментарий