Ms_12_dodelat_vyvod


МИНИСТЕРСВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ОДЕССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ
Факультет компьютерных наук
Кафедра информационных технологий
Лабораторная работа №12
С дисциплины Моделирование систем
На тему «Моделирование многоканальных систем массового обслуживания»
Выполнила:
Студентка группы К-31
Шуль О. В.
Проверил:
Доцент кафедры
информационных технологий
Онищенко С. М.
Одесса – 2014
Цель работы:
Многоканальные системы массового обслуживания с ожиданием
Моделирование одноканальных систем массового обслуживания с отказами;
Моделирование одноканальных систем массового обслуживания с ожиданием при ограниченной очереди;
Моделирование одноканальных систем массового обслуживания с ожиданием при неограниченной очереди.
Ответы на вопросы:
1. Что происходит с заявкой, поступившей в момент времени, когда все каналы обслуживания заняты в многоканальной системе массового обслуживания?
Независимо от характера процесса, протекающего в системе массового обслуживания, различают два основных вида СМО:
- системы с отказами, в которых заявка, поступившая в систему в момент, когда все каналы заняты, получает отказ и сразу же покидает очередь;
- системы с ожиданием (очередью), в которых заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь и ждет, пока не освободится один из каналов.
Системы с очередью делятся на:
Системы с неограниченным ожиданием, при этом поступившая в СМО задача становится в очередь и ждет обслуживания. Рано или поздно она будет обслужена;
Системы с ограниченным ожиданием, при этом на заявку в очереди накладываются ограничения, например ограниченное время пребывания в очереди, длина очереди, общее время пребывания в СМО. В зависимости от типа СМО для оценки эффективности могут быть применены разные показатели.
2. Что служит исходными данными для расчетов показателей эффективности многоканальных систем массового обслуживания?
В качестве характеристик эффективности многоканальных систем массового обслуживания могут применяться следующие величины и функции:
среднее количество заявок, которые может обслужить СМО в единицу времени;
среднее количество заявок, получающих отказ и покидающих СМО;
вероятность того, что поступившая заявка немедленно будет обслужена;
среднее время ожидания в очереди;
среднее количество заявок в очереди;
средний доход СМО в единицу времени.
3. Какие данные необходимы для моделирования многоканальных систем массового обслуживания?
Закон плотности распределения интервалов между заявками и времени обслуживания.
Среднее время между заявками (интервал между покупателями), среднее время обслуживания заявки (обслуживания в кассе).
Закон плотности распределения суммы покупки.
Условие окончания моделирования.
4. Что представляет собой моделирования с переменным шагом?
Variable-step (моделирование с переменным шагом).
Для непрерывных систем (с непрерывным временем смены состояний) по умолчанию используется переменный шаг приращения времени;
Для дискретных систем следует устанавливать постоянный (фиксированный) шаг.
При моделировании непрерывных систем с использованием переменного шага необходимо указать точность вычислений: относительную (Relativetolerance) и абсолютную (Absolutetolerance).
Задание 7.1
Проведите моделирование. Опишите результаты моделирования. Доработать предыдущую имитационную модель для случая двухканальной системы обслуживания (например, две кассы). Окончание моделирования выполнить по условию просмотра 300 единиц модельного времени. Среднее время обслуживания в 1-й кассе (кассир более опытный и расторопный) Тср = 1 мин., во 2-й кассе 5 мин. Интервал между покупателями Тср = 0,5 мин. для обеих касс.

Рисунок 1.1 – Управление модельным временем для случая двухканальной
системы обслуживания
В блоке Hit Crossing, который позволяет идентифицировать момент времени, когда входной сигнал «пересекает» некоторое значение, параметр равен 300 единицам модельного времени.

Рисунок 1.2 – Условие завершения моделирования

Рисунок 1.3 – Параметры для блока MATLAB function
процесса обслуживания заявки

Рисунок 1.4 – Параметры для блока MATLAB function процесса потока заявок на обслуживание на первой кассе

Рисунок 1.5 – Параметры для блока MATLAB function процесса потока заявок на обслуживание на второй кассе
Закон плотности распределения интервалов между заявками и времени обслуживания – экспоненциальный. exprnd(1/60) - среднее время обслуживания в 1-й кассе Тср = 1 мин., exprnd(5/60) - среднее время обслуживания в 2-й кассе Тср = 5 мин. Закон плотности распределения суммы покупки – нормальный с параметрами МОЖ = 200 руб., СКО = 50 руб., поэтому на рис. 1.3 – normrnd(200,50).
Рисунок 1.6 – Окно отображения процесса обслуживания заявки

Рисунок 1.7 – Окно отображения процесса потока заявок на обслуживание на первой кассе

Рисунок 1.8 – Окно отображения процесса потока заявок на обслуживание на второй кассе

Рисунок 1.9 – Окно отображения общего время работы и количества посетителей
Задание 7.2
Смоделировать работу двух накопителей HD1 и HD2 с использованием блока Stop Simulation. Условием окончания сеанса моделирования является исчерпания емкости хотя бы одного из накопителей (если накопитель заполнен то Ku ≥ 1). Установить интервал моделирования Stop time =100.
Вычислительная система, содержит 2 дисковых накопителя различной емкости: 600Мб (назовем его HD1) и 800 Мб (HD2). Данные поступают на каждый из накопителей от своего источника. Объем очередной порции информации является случайной величиной, распределенной по нормальному закону распределения.
Для первого источника закон распределения СВ имеет параметры m1=10, v1= 3; для второго источника m2 = 20, v2 = 7.

Рисунок 2.1 – Модель работы двух накопителей HD1 и HD2

Рисунок 2.2 – Параметры закона распределения СВ для первого источника

Рисунок 2.3 – Параметры закона распределения СВ для второго источника

Рисунок 2.4 – Окно отображения работы первого накопителя

Рисунок 2.5 – Окно отображения работы второго накопителя
Выводы: В данной лабораторной работе мы узнали, как моделировать многоканальные и одноканальные системы массового обслуживания с ожидание при неограниченной очереди, одноканальные системы массового обслуживания с отказами, одноканальные системы массового обслуживания с ожиданием при ограниченной очереди.

Приложенные файлы

  • docx 17872442
    Размер файла: 251 kB Загрузок: 2

Добавить комментарий