Пример выполнения РЕФЕРАТА


Министерство образования и науки Российской Федерации
Государственное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет»
Факультет «Заочный Инженерно-Экономический»
Кафедра «Электропривод и автоматика»





Голографическая память

РЕФЕРАТ
по дисциплине «Информатика»



Проверил, доцент
___________/Саинский И. В./
12 сентября 2010 г.

Автор работы
студент группы ЗФ-124с ___________/Cаттаров Н. Г. /
12 сентября 2010 г.

Реферат защищен
с оценкой (прописью, цифрой) ___________
12 сентября 2010 г.









Челябинск 2010

АННОТАЦИЯ
Cаттаров Н. Г. Голографическая память. – Челябинск: ЮУрГУ, ЗФ-124с. 33 с., 6 ил., 1 табл., библиогр. список – 7 наим.

Цель реферата – отразить историю создания голографии, ее технологию и применение в современной технике, ее достоинства и недостатки.
Задачи реферата:
Изучить популярные поисковые системы в интернете, историю их создания и развития.
Изучить историю создания и развития голографии, технологию оптической записи, ее применение, отразить это в иллюстрациях. Выявить перспективы и проблемы использования голографической памяти, отразить существенные недостатки и преимущества. Сделать заключение.















TOC \o "1-3" \h \z \u ОГЛАВЛЕНИЕ ВВЕДЕНИЕPAGEREF _Toc20709 \h4 1 ПОИСКОВЫЕ СИСТЕМЫ В ИНТЕРНЕТЕPAGEREF _Toc20710 \h7 1.1 GooglePAGEREF _Toc20711 \h8 1.2 YandexPAGEREF _Toc20712 \h9 1.3 RamblerPAGEREF _Toc20713 \h10 2 ИСТОРИЯ СОЗДАНИЯ ГОЛОГРАФИИPAGEREF _Toc20714 \h11 3 ТЕХНОЛОГИЯ ОПТИЧЕСКОЙ ЗАПИСИPAGEREF _Toc20715 \h14 4 ГОЛОГРАФИЧЕСКИЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВАPAGEREF _Toc20716 \h19 4.1 Голографические ПЗУPAGEREF _Toc20717 \h19 4.2 Голографические ОЗУPAGEREF _Toc20718 \h20 5 ПЕРСПЕКТИВЫ ГОЛОГРАФИЧЕСКОЙ ПАМЯТИPAGEREF _Toc20719 \h22 6 ШАГ ЗА СУПЕРПАРАМАГНИТНЫЙ ПРЕДЕЛPAGEREF _Toc20720 \h24 7 ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ ГОЛОГРАФИЧЕСКОЙ ПАМЯТИPAGEREF _Toc20721 \h28 ЗАКЛЮЧЕНИЕPAGEREF _Toc20722 \h31 БИБЛИОГРАФИЧЕСКИЙ СПИСОКPAGEREF _Toc20723 \h33

ВВЕДЕНИЕ

Метод фотографирования, используемый для сохранения изображения предметов, известен уже довольно долгое время и сейчас это самый доступный способ получения изображения объекта на каком-либо носителе (фотобумага, фотоплѐнка). Однако, информация, содержащаяся в фотографии весьма ограничена. В частности, отсутствует информация о расстояниях различных частей объекта от фотопластинки и других важных характеристиках. Другими словами, обычная фотография не позволяет восстановить полностью тот волновой фронт, который на ней был зарегистрирован. В фотографии содержится более или менее точная информация об амплитудах зафиксированных волн, но полностью отсутствует информация о фазах волн.
Голография позволяет устранить этот недостаток обычной фотографии и записать на фотопластинке информацию не только об амплитудах, падающих на неѐ волн, но и о фазах, то есть полную информацию. Восстановленная с помощью такой записи волна полностью идентична первоначальной и содержит в себе всю информацию, которую содержала первоначальная волна. Поэтому метод был назван голографией, то есть методом полной записи волны.
Для того чтобы осуществить этот метод в световом диапазоне, необходимо иметь излучение с достаточно высокой степенью когерентности. Такое излучение можно получить при помощи лазера. Поэтому только после создания лазеров, дающих излучение с высокой степенью когерентности, удалось практически осуществить голографию.
Первоначальная задача голографии заключалась в получении объѐмного изображения. С развитием голографии на толстослойных пластинах возникла возможность создания объѐмных цветных фотографий. На этой базе исследуются пути реализации голографического кино, телевидения и т. д.
Один из методов прикладной голографии, именуемый голографической интерферометрией, нашел очень широкое распространение. Суть метода в следующем. На одну фотопластинку последовательно регистрируются две интерференционные картины, соответствующие двум разным, но мало отличающимся состояниям объекта, например, при деформации. При просвечивании такой «двойной» голограммы образуются, очевидно, два изображения объекта, измененные относительно друг друга в той же мере, что и объект в двух его состояниях. Восстановленные волны, формирующие эти два изображения, когерентны, интерферируют, и на новом изображении наблюдаются интерференционные полосы, которые и характеризуют изменение состояния объекта.
В другом варианте голограмма изготавливается для какого-то определенного состояния объекта. При просвечивании ее объект не удаляется и производится его повторное освещение, как на первом этапе голографирования. Тогда опять получается две волны, одна формирует голографическое изображение, а другая распространяется от самого объекта. Если теперь происходят какие-то изменения в состоянии объекта (в двух последовательных волнами возникает разность сравнении с тем, что было во время экспонирования голограммы), то между указанными хода, и изображение покрывается интерференционными полосами. Описанный способ применяется для исследования деформаций предметов, их вибраций, поступательного движения и вращений, неоднородности прозрачных объектов и т. п.
Интересно применение голографии в качестве носителя информации. Часто необходимо получить объемное изображение предмета, которого еще не существует, и, следовательно, нельзя получить голограмму такого предмета оптическими методами. В этом случае голограмма рассчитывается на ЭВМ (цифровая голограмма) и результаты расчета соответствующим образом переносятся на фотопластинку. С полученной таким способом машинной голограммы объемное изображение предмета восстанавливается обычным оптическим способам. Поверхность предмета, полученного по машинной голограмме, используется как эталон, с которым методами голографической интерференции производится сравнение поверхности реального предмета, изготовляемого соответствующими инструментами. Голографическая интерферометрия позволяет произвести сравнение поверхности изготовленного предмета и эталона с чрезвычайно большой точностью до долей длины волны. Это дает возможность изготовлять с такой же большой точностью очень сложные поверхности, которые было бы невозможно изготовить без применения цифровой голографии и методов голографической интерферометрии. Само собой разумеется, что для сравнения эталонной поверхности с изготовляемой не обязательно восстанавливать оптическим способом машинную голограмму. Можно снять голограмму предмета, перевести ее на цифровой язык ЭВМ и сравнить с цифровой голограммой. Оба эти пути в принципе эквивалентны.
Особенности голограмм как носителей информации делают весьма перспективными разработки по созданию голографической памяти, которая характеризуется большим объемом, надежностью, быстротой считывания и т. д.

ПОИСКОВЫЕ СИСТЕМЫ В ИНТЕРНЕТЕ
Одним из первых способов организации доступа к информационным ресурсам сети стало создание каталогов сайтов, в которых ссылки на ресурсы группировались согласно тематике. Первым таким проектом стал сайт Yahoo, открывшийся в апреле 1994 года. После того, как число сайтов в каталоге Yahoo значительно увеличилось, была добавлена возможность поиска информации по каталогу. Это, конечно же, не было поисковой системой в полном смысле, так как область поиска была ограничена только ресурсами, присутствующими в каталоге, а не всеми ресурсами сети Интернет. Каталоги ссылок широко использовались ранее, но практически утратили свою популярность в настоящее время. Причина этого очень проста - даже современные каталоги, содержащие огромное количество ресурсов, представляют информацию лишь об очень малой части сети Интернет. Самый большой каталог сети DMOZ (или Open Directory Project) содержит информацию о 5 миллионах ресурсов, в то время как база поисковой системы Google состоит более чем из 8 миллиардов документов.
В 1997 году Сергей Брин и Лари Пейдж создали Google самую популярную на сегодняшний момент поисковую систему в мире.
23 сентября 1997 года была официально анонсирована поисковая система Yandex, самая популярная в русскоязычной части Интернет.
В настоящее время существует три основных международных поисковых системы - Google, Yahoo и MSN Search, имеющих собственные базы и алгоритмы поиска. Большинство остальных поисковых систем (коих можно насчитать очень много) использует в том или ином виде результаты 3 перечисленных. Например, Mail.ru используют базу Google, а AltaVista, Lycos - базу Yahoo.
В России основной поисковой системой является Яндекс, за ним идут Rambler, Google.ru, Aport, Mail.ru.
По данным исследования проводившегося на конец 2007 года доминирующие место в рейтинге стабильно занимает компания Google. В декабре на долю гиганта пришлось 41,3 миллиардов поисковых запросов, это - 62,4% рынка. Второе место (с большим отрывом) у Yahoo! - 8,5 миллиардов запросов.
Cамой популярной русскоязычной поисковой системой является Яндекс -
54% всех поисковых запросов.

Google
На сегодняшний день всемирная сеть интернет насчитывает огромное множество поисковых систем во всех странах мира, из них всех можно выделить самое крупное и пользующееся наибольшей популярностью среди пользователей – Google.
Лидер поисковых машин интернета, Google занимает более 60 % мирового рынка, а значит, шесть из десяти находящихся в сети людей обращаются к его странице в поисках информации в интернете. Сейчас регистрирует ежедневно около 50 миллионов поисковых запросов и индексирует более 8 миллиардов вебстраниц.
Была разработана в 1997 выпускниками Стэндфордского университета Сергеем Брином и Лари Пейджем, которые применили для ранжирования документов технологию PageRank, где одним из ключевых моментов является определение "авторитетности" конкретного документа на основе информации о документах, ссылающихся на него. Говоря общими словами, чем больше документов ссылается на данный документ и чем они авторитетнее, тем более авторитетным данный документ становится.
Google осуществляет поиск по документам более чем 35 языках, в том числе русском. В настоящее время многие порталы и специализированные сайты предоставляют услуги поиска информации в интернете на базе Google, что делает задачу успешного позиционирования сайтов в Google еще более важной. Google проводит переиндексацию своей поисковой базы примерно раз в четыре недели. Не смотря на то, что в поисковике имеется форма для бесплатного добавления страницы в базу, Google предпочитает сам находить новые документы по ссылкам с уже известных и не будет индексировать добавленную через форму страницу, если в его базе не найдется ни одной страницы, ссылающейся на нее.

Yandex
Основное отличие русскоязычных поисковых систем от иностранных одно - это то, что глобальные поисковые системы, поддерживающие поиск на русском языке, не поддерживают русскую морфологию.
Яндекс - на сегодня наиболее популярная поисковая система, ежемесячно к ней обращаются более 35 миллионов пользователей Русскоязычной части Интернета. Начала свою работу во второй половине 1997 года учитывая морфологию русского языка. История компании "Яндекс" началась в 1990 году с разработки поискового программного обеспечения в компании "Аркадия". За два года работ были созданы две информационно-поисковые системы - Международная Классификация Изобретений, 4 и 5 редакция, а также Классификатор Товаров и Услуг. Обе системы работали локально под DOS и позволяли проводить поиск, выбирая слова из заданного словаря, с использованием стандартных логических операторов. В1993 году "Аркадия" стала подразделением компании CompTek. В 1993-1994 годы программные технологии были существенно усовершенствованы благодаря сотрудничеству с лабораторией Ю. Д. Апресяна (Институт Проблем Передачи Информации РАН). Слово Яндекс придумал за несколько лет до этого один из основных и старейших разработчиков поискового механизма. "Яndex" означает "Языковой index", или, если поанглийски, "Yandex" - "Yet Another indexer". За 4 года публичного существования Яndex возникли и другие толкования. Например, если в слове "Index" перевести с английского первую букву ("I" - "Я"), получится "Яndex".
Помимо поисковой системы, сегодня Яндекс - огромный портал с целым набором широко используемых сервисов, такими как каталог, Яндекс. деньги, и другие. Официально поисковая машина Yandex.Ru была анонсирована 23 сентября 1997 года на выставке Softool. Основными отличительными чертами Yandex.Ru на тот момент были проверка уникальности документов (исключение копий в разных кодировках), а также ключевые свойства поискового ядра Яндекс, а именно: учет морфологии русского языка (в том числе и поиск по точной словоформе). Сегодня Яндекс имеет внутри мощный поисковый робот, позволяющий производить поиск по самым различным критериям.

Rambler
Rambler - старейшая поисковая система российского интернета, запущена в 1996 году, на сегодня - вторая по популярности с обращением более 25 миллионов посетителей в месяц. Помимо поисковой системы, сегодня Рамблер - один из крупнейших порталов русскоязычной части интернета с большим набором широко известных сервисов, таких как каталог Рамблер, Рамблер-почта, Рамблер-ICQ или Рамблер-ТВ. По сути, сегодня Рамблер - больше, чем просто поисковая система и набор сервисов, это крупная медиагруппа. Поисковая машина "Рамблер" начала работу в октябре 1996 года, на стартовом этапе содержала всего 100 тысяч документов. "Рамблер" не был первой отечественной поисковой системой, однако в первый год своего существования вынес основной груз поисковых запросов. Вторая версия "Рамблера" начала разрабатываться летом 2000 года. В нее были введены функции, давно уже имевшиеся в конкурирующих системах. Она учитывает координаты слов, обучена строгой и нечеткой морфологии, связывает поиск с каталогом, в качестве которого используется Top100 (http://top100.rambler.ru/), группирует результаты поиска по сайтам, ищет по числам. Достаточно удачная архитектура продукта позволяет "Рамблер" иметь для поисковика количество серверов в 2 раза меньшее, чем у "Яндекса", и в 3 раза меньшее, чем у "Апорта".
ИСТОРИЯ СОЗДАНИЯ ГОЛОГРАФИИ
Стереоскопическая съемка за счет получения одновременно двух изображений на фото- или кинопленке (отдельно для правого и левого глаза) позволила создать у зрителя ощущение объемности изображения. Однако стереоскопическое изображение не дает возможности рассмотреть предмет с разных сторон.
Такая возможность появилась после изобретения голографического метода получения изображений Д. Габором в 1948 году. Он основан на волновой природе света, явлениях дифракции и интерференции.
Фотография дает только плоское изображение предметов, то есть неполную информацию о нем. Дело в том, что свет - это волна, характеризующаяся двумя основными величинами - амплитудой и фазой. Фотография дает информацию только об амплитуде излученной фотографируемым предметом световой волны, а о ее фазе ничего не сообщает. Значит, для получения полной информации о предмете нужно еще уловить фазу этой волны. Ведь именно фаза дает информацию об объемности предмета. Вот эту задачу и удалось решить Деннису Габору.
Он осветил предмет (это был полупрозрачный кубик) светом ртутной лампы. В то время это был самый лучший источник световых волн с постоянной длиной волны, так называемый когерентный источник. На пути световых волн от ртутной лампы, которые отразил предмет (кубик), Габор поставил фотопластинку. Волна от лампы сложилась с волной от предмета. В результате их интерференции появилась суммарная волна, которая и была зафиксирована на фотопластинке в виде чередующихся черных и светлых полос. Ее Габор назвал голограммой. Для того чтобы вместо интерференционной картины увидеть изображение предмета, Габор поставил справа от голограммы ту же самую ртутную лампу, только теперь свет от нее шел в обратном направлении. В результате дифракции слева от голограммы возникли те же волны, которые ее создали, а в результате интерференции произошло вычитание волн, направленных навстречу друг другу, и осталась только волна от предмета. Заглянув в голограмму, Габор увидел за ней парящий в воздухе кубик - первое голографическое изображение.
Слово «голография» - греческое. Оно состоит из двух частей: голо - погречески "полный, целый, весь" и графо - "пишу". То есть слово "голография" означает "полное описание", что полностью соответствует физическому смыслу этого термина.
Однако развиваться голография стала только в 1960-х годах с появлением лазера, дающего идеальное когерентное излучение. В 1962-1963 гг. американские физики Э. Лейт и Ю. Упатниекс впервые применили лазер в качестве источника света для получения голограммы. При голографической съемке фотопластинка освещается опорным лазерным лучом и одновременно отраженным от снимаемого предмета светом. В результате сложения световых волн в плоскости пластинки возникает картина, содержащая всю информацию об отраженной световой волне. Если после проявления фотопластинки осветить ее лазерным лучом, возникает голографическая картина - голограмма. Объект съемки не только кажется объемным, но при повороте головы его действительно можно рассмотреть с разных сторон - справа, слева, сверху и снизу!
Наиболее необычное свойство голограммы состоит в том, что любой ее участок содержит информацию обо всем запечатленном на ней предмете. Причина в том, что практически на каждую точку поверхности фотопластинки падает излучение, отраженное от всех точек предмета. Если разорвать фотографию на несколько кусков, то каждый кусок будет содержать информацию только о части предмета. В то же время, если голограмму разделить на несколько фрагментов, то каждый из них будет содержать информацию обо всем предмете. В этом смысле голограмма больше похожа на зеркало, чем на фотографию. Ведь каждый кусочек разбитого зеркала отражает весь предмет. Этот факт натолкнул ученых на некоторое сходство голограммы с памятью человека. Такая аналогия ни в коей мере не является прямой, однако голографические принципы хранения информации могут быть полезными для раскрытия механизмов человеческой памяти.
Способ получения голограммы на фотопластинке с толстым слоем эмульсии, разработанный в 1962-1963 гг. Ю.Н. Денисюком, позволяет рассматривать голограмму при освещении ее обычным осветителем или солнечным светом. Толщина слоя эмульсии намного больше длины световой волны, поэтому интерференционная картина встречных предметного и опорного пучков света возникает в толще эмульсии и образует объемную голограмму. При проявлении изображение формируется в ней в виде микроскопических зеркал. Такую голограмму можно рассматривать только в отраженном белом свете. Голографическое изображение "по Денисюку", подобно фотографическому, занимает всю поверхность голограммы. Этим оно отличается от голографического изображения "по Габору". Объемную голограмму записывают в слое светочувствительного пластика - фоторезиста. С помощью химической обработки на пластмассовой пластинке формируют рельеф. Затем ее покрывают никелем и превращают в матрицу, с помощью которой на тонкой ленте штампуют копии голограмм. Такие радужные наклейки можно помещать на товарные упаковки и документы для защиты от подделки.
В наше время голографические методы играют значительную роль в самых различных областях науки, техники и искусства.
Так, методы голографии позволяют получать объемные цветные изображения предметов искусства, голографические портреты. Голографические изображения могут вызвать в недалеком будущем целый переворот в музейном деле: представьте себе, что в любом провинциальном музее будет находиться объемная голографическая копия Венеры Милосской. Методы голографии успешно используются в физике для визуализации акустических и электромагнитных полей, для исследования движущихся частиц. Ультразвуковая голография дает возможность увидеть и внутренние органы.
ТЕХНОЛОГИЯ ОПТИЧЕСКОЙ ЗАПИСИ
Появление в скором будущем задач, требующих очень большой вычислительной мощности, заставляет уже сейчас устремиться к поиску новых технических решений не только в плане совершенствования самих процессоров, но и других компонентов ПК. Независимо от того, какая для изготовления процессора используется технология, количество данных, поставляемых им на обработку, определяется возможностями и других подсистем компьютера. Емкости современных устройств массовой памяти отражают эту тенденцию. Диски СD-ROM позволяют хранить до 700 Мб информации, развивающаяся технология DVD-ROM - до 17GB. Технология магнитной записи также развивается очень быстро - за последний год типичная емкость жесткого диска в настольных компьютерах возросла до 15-20 GB и более. Однако в будущем компьютерам придется обрабатывать сотни гигабайт и даже терабайты информации - гораздо больше, чем может вместить любой из существующих сегодня CD-ROM или жестких дисков. Обслуживание таких объемов данных и перемещение их для обработки сверхбыстрыми процессорами требуют радикально новых подходов при создании устройств хранения информации.
Широкие перспективы в этом плане открывает технология оптической записи (см. рисунок 1), известная как голография: она позволяет обеспечить очень высокую плотность записи при сохранении максимальной скорости доступа к данным. Это достигается за счет того, что голографический образ (голограмма) кодируется в один большой блок данных, который записывается всего за одно обращение. А когда происходит чтение, этот блок целиком извлекается из памяти.
Для чтения или записи блоков, голографически хранимых на светочувствительном материале (за основной материал принят ниобат лития, LiNbO3) данных , используются лазеры. Теоретически, тысячи таких цифровых страниц, каждая из которых содержит до миллиона бит, можно поместить в устройство размером с кусочек сахара. Причем теоретически ожидается плотность данных в 1TБ на кубический сантиметр (TB/см3). Практически же исследователи ожидают достижения плотности порядка 10GB/см3, что тоже весьма впечатляет, если сравнивать с используемым сегодня магнитным способом - порядка нескольких MB/см2 - это без учета самого механизма устройства. При такой плотности записи оптический слой, имеющий толщину около 1 см, позволит хранить около 1ТВ данных. А если учесть, что такая запоминающая система не имеет движущихся частей и доступ к страницам данных осуществляется параллельно, можно ожидать, что устройство будет характеризоваться плотностью в 1GB/см3 и даже выше.


Рисунок
1

-

Технология оптической записи























































Рисунок
















1

































-

































Технология оптической записи

























Необычайные возможности голографической памяти заинтересовали ученых многих университетов и промышленных исследовательских лабораторий. Этот интерес уже довольно давно вылился в две научно-исследовательские программы. Одна из них - программа PRISM (Photorefractive Information Storage Material), целью которой является поиск подходящих светочувствительных материалов для хранения голограмм и исследование их запоминающих свойств. Вторая научно-исследовательская программа - HDSS (Holographic Data Storage
System). Так же, как и PRISM, она предусматривает ряд фундаментальных исследований, и ее участниками являются те же компании. В то время как целью
PRISM является поиск подходящих сред для хранения голограмм, HDSS ориентирована на разработку аппаратных средств, необходимых для практической реализации голографических запоминающих систем. Как же функционирует система голографической памяти? Рассмотрим для этого установку, собранную исследовательской группой из Almaden Research Center.
На начальном этапе в этом устройстве происходит разделение луча синезеленого аргонового лазера на две составляющие - опорный и предметный лучи (последний является носителем самих данных). Предметный луч подвергается расфокусировке, чтобы он мог полностью освещать пространственный световой модулятор (SLM - Spatial Light Modulator), который представляет собой просто жидкокристаллическую (LCD) панель, на которой страница данных отображается в виде матрицы, состоящей из светлых и темных пикселей (двоичные данные).
Оба луча направляются внутрь светочувствительного кристалла, где и происходит их взаимодействие. В результате этого взаимодействия образуется интерференционная картина, которая и является основой голограммы и запоминается в виде набора вариаций показателя преломления или коэффициента отражения внутри этого кристалла. При чтении данных кристалл освещается опорным лучом, который, взаимодействуя с хранимой в кристалле интерференционной картиной, воспроизводит записанную страницу в виде образа "шахматной доски" из светлых и темных пикселей (голограмма преобразует опорную волну в копию предметной). Затем этот образ направляется в матричный детектор, основой для которого служит прибор с зарядовой связью (CCD - ChargeCoupled Device или ПЗС), захватывающее всю страницу данных. При чтении данных опорный луч должен падать на кристалл под тем же самым углом, при котором производилась запись этих данных, и допускается изменение этого угла не более чем на градус. Это позволяет получить высокую плотность данных: изменяя угол опорного луча или его частоту, можно записать дополнительные страницы данных в том же самом кристалле.
Однако дополнительные голограммы изменяют свойства материала (а таких изменений может быть только фиксированное количество), в результате образы голограмм становятся тусклыми, что может привести к искажению данных при чтении. Этим и объясняется ограничение объема реальной памяти, которой обладает материал. Динамическая область среды определяется количеством страниц, которые она может реально вмещать, поэтому участники PRISM и занимаются исследованием ограничений на светочувствительность материалов.
Используемая в трехмерной голографии процедура заключения нескольких страниц с данными в один и тот же объем называется мультиплексированием. Традиционно используются следующие методы мультиплексирования: по углу падения опорного пучка, по длине волны и по фазе, но, к сожалению, они требуют сложных оптических систем и толстых (толщиной в несколько миллиметров) носителей, что делает их непригодными для коммерческого применения, по крайней мере, в сфере обработки информации. Однако совсем недавно Bell Labs были изобретены три новых метода мультиплексирования: сдвиговое, апертурное и корреляционное, основанные на использовании изменения положения носителя относительно световых пучков. При этом сдвиговое и апертурное мультиплексирование используют сферический опорный пучок, а корреляционное - пучок еще более сложной формы. Кроме того, поскольку при корреляционном и сдвиговом мультиплексировании задействованы механические движущиеся элементы, время доступа при их применении будет примерно таким же, как и у обычных оптических дисков. Bell Labs удалось построить экспериментальный носитель на основе все того же ниобата лития, использующий технику корреляционного мультиплексирования, однако уже с плотностью записи около 226GB на квадратный дюйм.
Пожалуй, ошибочно рассматривать устройства голографической памяти как радикально новую технологию, ибо ее основные концепции разработаны около 30 лет назад. Если что и изменилось, так это доступность ключевых компонентов для этой технологии - цены на них стали значительно ниже. Так, полупроводниковый лазер уже не является чем-то диковинным, а давным-давно уже стал стандартом. С другой стороны, SLM - это результат той же технологии, которая применяется при изготовлении LCD-экранов для ПК-блокнотов и калькуляторов, а детекторная матрица CCD позаимствована прямо из цифровой видеокамеры.
Итак, преимуществ у новой технологии более чем достаточно: кроме того, что информация сохраняется и считывается параллельно, можно достичь очень высокой скорости передачи данных и, в отдельных случаях, высокой скорости произвольного доступа. А самое главное - практически отсутствуют механические компоненты, свойственные нынешним хранителям информации (например, шпиндели с гигантским числом оборотов). Это гарантирует не только быстрый доступ (для данной технологии правильней сказать мгновенный) к данным, меньшую вероятность сбоев, но и более низкое потребление электроэнергии, поскольку сегодня жесткий диск - один из наиболее энергоемких компонентов компьютера. Правда, есть трудности с юстировкой оптики, поэтому на первых порах данные устройства, вероятно, будут все еще «бояться» сторонних «механических воздействий».
ГОЛОГРАФИЧЕСКИЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА
Голографические ПЗУ
На первый взгляд принцип работы устройств голографической памяти достаточно прост (Рисунок 22). При записи лазерный луч расщепляется на объектный и опорный лучи. Первый проходит через пространственный модулятор света (Spatial Light Modulator, SLM), кодирующий исходную информацию, которая представлена в виде двоичной матрицы или т. н. страницы. Проходя через оптическую систему, лучи пересекаются в специальном светочувствительном носителе, который запоминает интерференционный узор. Изменяя угол пересечения лучей (этот метод называется угловым мультиплексированием), можно сохранить в единичном объеме носителя тысячи страниц двоичных данных. Кроме того, можно менять положение точки пересечения лучей в носителе. Таким образом, информация записывается не только на поверхности носителя, но и по всему его объему. Для считывания записанных данных достаточно направить на носитель луч лазера под определенным углом и преобразовать оптический сигнал с помощью матрицы световых датчиков, например ПЗС-матрицы. Несмотря на кажущуюся простоту, суть явлений, происходящих в процессе записи и считывания информации голографическими методами, достаточно сложна. Ее невозможно наглядно изобразить на паре картинок, здесь более уместен язык формул, понятный лишь избранным. Вероятно, именно этим объясняется то, что, хотя "академические" разработки в области голографической памяти ведутся уже давно - еще с начала 60-х гг., практические результаты появляются гораздо медленнее, чем хотелось бы, несмотря на пристальный интерес к этой технологии со стороны крупнейших промышленных компаний, государственных и военных структур. Напомним, что в 1995 г. по инициативе Управления перспективных исследований и разработок министерства обороны США (DARPA) были начаты работы в рамках пятилетней программы, среди участников которой компании IBM, Kodak, Rockwell и несколько университетов. Ее составными частями стали проект HDSS (Holographic Data Storage Systems) по разработке голографических систем хранения данных и проект по исследованию материалов носителей -
PRISM(Photorefractive Information Storage Materials).



Рисунок
2

-

Упрощенн
ая

модел
ь

записи

и считывания информации








































































Рисунок
















2

































-

































Упрощенн
















ая

































модел
















ь

































записи

































и считывания информации

























Голографические ОЗУ
Рассмотрим пример страничного ОЗУ (Рисунок 3).
Лазер генерирует пучок когерентного света, дефлектор, управляемый адресным устройством, обеспечивает быстрое и точное отклонение лазерного луча в любую из позиций на накопительной пластине. Матрица гололинз, которая представляет собой двумерный массив постоянно записанных диаграмм, обеспечивает расщепление светового пучка на объектный и опорный. Каждая гололинза предназначена для записи голограммы только на единственную позицию в накопительной среде. Устройство набора страниц (УНС) - это 2мерная матрица электрически управляемых световых модуляторов. Это устройство ввода информации (которая формируется буферным ЗУ в виде страниц). Стоит отметить, что в последние годы делается упор всѐ-таки на голографические ПЗУ, и исследования по ОЗУ практически нигде не ведутся.
Скорее всего, это связано с их сложностью и высокой стоимостью, а также тем фактом, что современные полупроводниковые ОЗУ по скорости уже способны конкурировать с голографическими ОЗУ.

-15544-37214Рисунок 3 - Оптическая схема голографического ОЗУ со страничной организацией (РП - расширитель пучка; ЭОПП - электрооптический
переключатель поляризации; М - модулятор)
ПЕРСПЕКТИВЫ ГОЛОГРАФИЧЕСКОЙ ПАМЯТИ
Фирма IBM, признанный лидер в области систем хранения данных, исследовала историю и перспективы развития запоминающих устройств (ЗУ) с точки зрения поверхностной плотности записи.
Голографическая память, по сравнению со всеми остальными видами памяти, как известно, имеет ряд выигрышных позиций. Здесь и высочайшая скорость чтения, поскольку обмен происходит целыми страницами, которые могут содержать миллионы двоичных битов, и высочайшая плотность, которая теоретически может достигать нескольких десятков терабит на кубический сантиметр носителя. Тысячи голографических страниц могут быть сохранены в одном и том же объеме записывающей среды с помощью различных вариантов мультиплексирования. Его можно выполнить за счет изменения угла падения лучей лазера, длины его волны, фазы опорного луча пространственного изменения точки входа информационного и опорного лучей в среду записи при ее сдвиге или вращении, а также комбинации всех этих способов. Так как интерференционные шаблоны однородно заполняют весь материал, это наделяет голографическую память другим полезным свойством - высокой достоверностью записанной информации. В то время как дефект на поверхности магнитного диска или магнитной ленты разрушает важные данные, дефект в голографической среде не приводит к потере информации, а вызывает всего лишь "потускнение" голограммы. Кроме того, весьма впечатляет и феномен, связанный с тем, что при разбиении носителя на несколько фрагментов каждый из них несет в себе всю информацию - это означает высочайшую надежность, устойчивость к повреждениям и простоту тиражирования.
Исследования проводятся по двум направлениям - оперативная память и
ПЗУ.


Таблица 1 - Голографические запоминающие устройства
Голографические запоминающие устройства
Тип Динамические ОЗУ CD RAM CD ROM Дисковый архив
Емкость 25 Гб 1 Tб 1 Tб 1Пб
Время доступа 10 нс 10 мс 10 мс 10 мс
Достоинства Энергонезависимость Высокая надежность Низкая стоимость Малый объем









ШАГ ЗА СУПЕРПАРАМАГНИТНЫЙ ПРЕДЕЛ
Очевидно, что существует только один путь преодолеть суперпарамагнитный порог – использовать немагнитные методы записи. Самым перспективным и разработанным из них является голография.
Беспристрастная статистика отмечает, что в последние несколько лет человечество ежегодно накапливает около 5 экзабайт (1018 байт) информации, и темпы продолжают расти. Это требует создания все более емких, быстрых и надежных устройств для хранения данных. Одно из многочисленных направлений разработок использует методы оптической голографии. Успехи в этой области таковы, что на рынке уже появились первые коммерческие продукты.
Голографическая память развивается, начиная с работ Питера Ван Хеердена (Pieter J. Van Heerden), сотрудника фирмы Polaroid. Он предложил идею хранения данных в трех измерениях еще в 1963 г., а сегодня некоторые производители уже приступили к коммерческому выпуску голографических ЗУ.
Используемая технология позволяет записать и прочитать миллионы бит данных за одну вспышку лазера. Предельная объемная плотность информации N (N ~ λ3 ~ 1012 bit/cm3) определяется длиной волны излучения.
Тысячи голографических страниц могут быть сохранены в одном и том же объеме записывающей среды с помощью различных вариантов мультиплексирования. Его можно выполнить за счет изменения угла падения лучей лазера, длины его волны, фазы опорного луча пространственного изменения точки входа информационного и опорного лучей в среду записи при ее сдвиге или вращении, а также комбинации всех этих способов.
Достоинства голографической памяти: высокая плотность записи и большая скорость чтения; параллельная запись информации; высокая точность воспроизведения страницы; низкий уровень шума при восстановлении данных; неразрушающее чтение; длительный срок хранения данных - 30-50 и более лет; конкурентоспособность с другими оптическими технологиями.
Технология голографической памяти не имеет ограничений обычных оптических за счет применения трехмерной записи данных, а не двумерных чтения и записи лазерным лучом на плоскости. Это означает, что теоретически для записи данных в голографической памяти может использоваться полный объем кристалла, хотя есть и практические ограничения. Однако и с ограничениями трехмерный носитель - существенное преимущество для технологии голографической памяти. Его возможности достаточны, чтобы оставить далеко позади DVD и Blu-ray. Скорости передачи данных могут достигать 1 GBps и более. Это намного быстрее любой другой оптической технологии типа CD, DVD, HD DVD и Blu-ray, где максимальная скорость передачи не превышает 11 MBps.
Теоретически голограммы могут хранить 1 бит в объеме, который равен кубу длины волны лазера. Например, красный луч лазера на смеси неона и гелия имеет длину волны 632,8 нм, и совершенная голографическая память могла бы хранить 4 Gb в кубическом миллиметре. В действительности же плотность записи данных намного ниже, чему есть, по крайней мере, четыре причины: необходимость коррекции ошибок, недостатки и ограничения оптической системы, экономические (с увеличением плотности записи стоимость растет непропорционально быстрее) и физические ограничения (конечность длины волны лазера, междуатомного расстояния в кристалле записи и несовершенство оптических систем).
Работы по созданию голографической памяти начались более 40 лет назад, и сегодня ряд компаний, например NTT и Optware в Японии, InPhase Technology в США, имеют законченные разработки с голографическими дисками (Holographic Versatile Disc - HVD) и картами (Holographic Versatile Card - HVC), и наконец
приступают к продаже своих первых коммерческих приборов. Рассмотрим несколько голографических устройств, уже вышедших на рынок.
Компания NTT продемонстрировала прототип накопителя высокой емкости, в основу которого положена технология многослойной тонкопленочной голографии, и устройство для считывания данных. Емкость носителя (сто слоев) размерами с почтовую марку - 1 Gb. Новая карта памяти была названа Info-MICA (Information-Multilayered Imprinted CArd), так как ее многослойная структура
похожа на структуру породы слюды (Рисунок 5). Запись информации производится следующим образом. Сначала цифровые данные перекодируются в двухмерные изображения, которые затем преобразуются в голограмму с помощью технологии CGH (Computer Generated Hologram), и наконец эти голограммы записываются в виде особых структур на слоях носителя. Слои представляют собой волноводы. Когда луч лазера фокусируется на торце такого волноводного слоя, он начинает распространяться по нему, рассеиваясь на записанных структурах. Рассеянный свет формирует двухмерные изображения в плоскости, параллельной волноводному слою. Они захватываются CCD-сенсорами и декодируются в исходные цифровые данные.


757123-28663 Рисунок 4 – Голографическая карта Info-MICA.

Достоинства новой технологии Info-MICA состоят в высокой плотности записи, малых размерах дисковода, низком энергопотреблении, возможности дешевого массового производства носителей, трудности несанкционированного копирования данных с них и простоте утилизации.
В NTT полагают, что Info-MICA вследствие их дешевизны и малых размеров могут заменить другие устройства ROM. Рассматривают их и как заменитель бумаги в качестве носителя информации. Эти карты будут полезны при массовом распространении игр, музыки, кинофильмов и электронных изданий, поскольку клонирование их пиратами затруднено. Предполагаются и многие другие применения новой технологии.
Первые кард-ридеры (стоимостью несколько сот долларов) и носители емкостью 1 Gb ($1-2) уже появились на рынке. В планах компании - выпуск InfoMICA ROM емкостью 10 Gb и разработка устройств записи и перезаписи носителей.
Первый дисковод типа Tapestry HDS-300R оборудован встроенной системой радиоидентификации (RFID) и использует диски 300 GB с однократной записью, предназначенные для профессионального архивирования. Он имеет SCSI-интерфейс со скоростью передачи 20 MBps, среднее время доступа 250 мс. Длина волны лазера - 407 нм, объем страницы - 1,4 Mb, вероятность ошибки не превышает 10-15. Среднее время безотказной работы - 100 000 ч. Носителем служит диск 130 мм, размещенный в картридже размером 5,25×6×0,25", срок хранения записи - до трех лет, архивного хранения - более 50 лет.
В ближайшей перспективе - создание конструкции с многократной перезаписью. InPhase сообщает, что к 2010 г. емкость дисков будет доведена до 1,6 TB. Планируется также выпуск других изделий, подобных носителю 2 GB также размером с почтовую марку, и устройства размером с кредитную карточку емкостью 210 GB.
ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ ГОЛОГРАФИЧЕСКОЙ ПАМЯТИ
Одна из главных проблем в области хранения голографической информации - создание подходящих материалов для записи. Голографические носители должны удовлетворять строгим критериям, включая расширенный динамический диапазон, высокую фоточувствительность, безусадочность, оптическую прозрачность, неразрушающее считывание, термо- и влагостойкость, а также иметь низкую цену. Разработчики нашли множество материалов: фазовращающие материалы, фоторефрактивные кристаллы типа LiNbO3, органические полимеры, жидкие кристаллы, полимеры со структурной поверхностью и даже такие экзотические среды, как бактериородопсины в желатиновых матрицах. Самые дешевые в производстве - фотополимеры. При освещении участка полимера поляризованным светом его молекулы ориентируются и надолго сохраняют такое состояние (Рисунок 6).


Рисунок
5

-

Освещение участка полимера


















Рисунок
















5

































-

































Освещение участка полимера



























Генетически модифицированный бактериальный белок может позволить создать более эффективные устройства хранения информации. В отличие от обычных двумерных носителей, голографическая память позволяет записывать информацию в трѐх измерениях. Первые голографические носители информации уже поступили на рынок, однако перезапись информации в реальном времени пока для них недостижима. Американские исследователи из Университета Коннектикута продемонстрировали возможность создания перезаписываемой голографической памяти, используя лазеры для записи данных на бактериальных белках. Новая технология основана на использовании бактериородопсина бактерии Halobacterium salinarum - светочувствительного мембранного белка, вырабатываемого микроорганизмом, когда концентрация кислорода в среде становится опасно низкой. Поглощая квант света, белок претерпевает серию химических превращений, приводящую к "прокачке" протона через мембрану, что создаѐт разность электрохимических потенциалов на мембране и позволяет бактерии производить энергию. В течение цепи химических превращений белок проходит через некоторые конфигурации, которые могут быть использованы для создания голографических изображений при освещении. В природных условиях время жизни промежуточных конфигураций чрезвычайно мало: весь цикл длится всего 10-20 миллисекунд. Однако, более ранние исследования продемонстрировали возможность путѐм освещения красным светом на конечных стадиях цикла перевести белок в состояние, стабильное в течение многих лет - так называемое Q-состояние.
Еще одна проблема - сложность используемой оптической системы. Так, для голографической памяти не годятся светодиоды на базе полупроводниковых лазеров, применяемые в традиционных оптических устройствах, поскольку они обладают недостаточной мощностью, дают пучок с высокой расходимостью и, наконец, полупроводниковый лазер, генерируемый излучение в среднем диапазоне видимой области спектра, получить очень сложно. Здесь же необходим мощный лазер, дающий как можно более параллельный пучок. То же самое можно сказать и о пространственных световых модуляторах: до недавнего времени не было ни одного подобного устройства, которое можно было бы применять в системах голографической памяти. Однако времена меняются, и сегодня уже стали доступными недорогие твердотельные лазеры, появилась микроэлектромеханическая технология (MEM - Micro-Electrical Mechanical, устройства на ее основе представляют собой массивы микрозеркал размером порядка 17 микрон), как нельзя лучше подходящая на роль SLM.
Так как интерференционные шаблоны однородно заполняют весь материал, это наделяет голографическую память другим полезным свойством - высокой достоверностью записанной информации. В то время как дефект на поверхности магнитного диска или магнитной ленты разрушает важные данные, дефект в голографической среде не приводит к потере информации, а вызывает всего лишь "потускнение" голограммы. Небольшие настольные HDSS-устройства должны появиться к 2003 году. Поскольку аппаратура HDSS для изменения угла наклона луча использует акусто-оптический дефлектор (кристалл, свойства которого изменяются при прохождении через него звуковой волны), то, по общим оценкам, время извлечения смежных страниц данных составит менее 10 мс. Любое традиционное оптическое или магнитное устройство памяти нуждается в специальных механических средствах для доступа к данным на различных дорожках, и время этого доступа составляет несколько миллисекунд.
ЗАКЛЮЧЕНИЕ
Согласованные усилия многих исследователей позволили накопить ряд сведений и фактов о свойствах трехмерных голограмм. За этими на первый взгляд разрозненными фактами достаточно отчетливо вырисовывается то единое явление природы, которое лежит в их основе. Материализованная объемная картина волн интенсивности способна воспроизводить волновое поле со всеми его параметрами — амплитудой, фазой, спектральным составом, состоянием поляризации и даже с изменениями этих параметров по времен. Есть все основания считать, что будут открыты новые неожиданные оптические свойства голограмм. Вполне вероятно, что ряд новых эффектов будет обнаружен при применении светочувствительных материалов, обладающих специфическими свойствами, подобно тому как применение резонансных и поляризационных сред открыло возможность записи временных и поляризационных характеристик волновых полей. Прецедент объединения голографии и нелинейной оптики в динамическую голографию показывает, что внесение идей голографии в смежные с ней области знаний может привести к появлению совершенно новых направлений. В наше время голографические методы играют значительную роль в самых различных областях науки, техники и искусства.
По сравнению с другими видами памяти, голографическая память имеет много достоинств: высочайшая скорость чтения, поскольку обмен происходит целыми страницами, которые могут содержать миллионы двоичных битов; и высочайшая плотность, которая теоретически может достигать нескольких десятков терабит на кубический сантиметр носителя. Тысячи голографических страниц могут быть сохранены в одном и том же объеме записывающей среды с помощью различных вариантов мультиплексирования.
Важнейшим достоинством голографической записи является то, что информация, соответствующая каждому двоичному разряду данных, распределена по всей площади голограммы. Поэтому те или иные дефекты носителя, неравномерность освещения и даже значительные повреждения носителя не приводят к потере данных, а лишь ухудшают отношение сигнал/шум.
Следует отметить такое важное для некоторых применений свойство голографической техники, как невозможность воспроизведения информации в случае, если не известна длина волны лазера, применявшегося при записи, что позволит надежно защитить информацию от несанкционированного доступа.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
www.citforum.ru - CIT forum, Поисковые системы в сети Интернет.
Популярные поисковые системы. - ru.wikipedia.org/wiki/Поисковики.
История поисковиков Yandex, Rambler, Google. – http://www.forum.mista.ru/topic.php?id=4608.
Новости Информационных Технологий. - http://itnews.com.
История голографии. - ru.wikipedia.org/wiki/Голограмма.
Голографическая память – шаг за суперпарамагнитный предел// Компьютерное обозрение. – http://ko.com.ua/node/27096.
Самков И. Ю. Перспективы голографической памяти. Краткий обзор. - http://dlrm.ru/physics/golography.php





Приложенные файлы

  • docx 15696798
    Размер файла: 342 kB Загрузок: 3

Добавить комментарий